ICAS-90-1.5.3

A MISSILE CONTROL SYSTEM BASED ON AI IDEAS

Erik Skarman
SAAB Missiles
Linkdping

Abstract

This paper describes a missile control
system, BRAIN, which is based on Artificial
Intelligence ideas. Some key properties of the
system are:

o It is a three level architecture, where the
mid level is rule based.

The rule base is written in a language
understandable to a human reader, and it
looks like a consise specification of the
missile system.

The top level contains domain specific
information in the form of algorithms for
computations, that go beyond the expres-
sional power of the rule base language.

The mid level gets its "mental engergy" from
alarm processes on the lowest level. These
keep the mid level occupied with making the
missile avoid a number of dangers.

Other processes on the lowest level are
dealing with control and perception.

The number of state variables throughout the
system is restricted as far as possible, so
that state variables fall into one of three
categories:

* Estimates of entities in the external
world (which includes the missile hard-
ware).

Discrete obervations about the external
world, 1ike "It is snowing", or "The
target is now visible".

The intention occupying the mind of the
system for the moment (usually the inten-
tion to avoid some danger of dangers).

The processes on the three levels are so
written, that they can be executed in paral-
1ell and in anarchy, and they communicate
via a common bank of known state variables.

The mid level processes are subprocesses o

the Tow level processes, and thus hier-

archially under the low level procedures.

Hence, there is no centralized control.
General ideas

The state variables in a control system

Modern control theory teaches us to make
control systems, in which the states of the
controlied system are fed back to the inputs
through constant gains (and not through any

Copyright © 1990 by ICAS and AIAA. All rights reserved.

827

sort of filters). Put in another way: The dyna-
mics required for good, stable behaviour of the
closed loop system, is contained entirely in
the controlled system itself. The control
system doesn't need to contribute with any
state variables.

A further
any state
system as
artefact.

stretch of this thought is to regard
variable introduced in the control
an unnecessary and undesirable

A justification for the judgement "undesirable"
is that such a state variable contains infor-
mation, and you can loose track of whether that
information is relevant or not. This kind of
problem can be seen, when some variables satu-
rate, but other variables continue to charge
up, and when a control system shifts its mode,
but filters retain values that were only rele-
vant in the previous mode.

This is even more true for the logical overhead
that usually comes with a control system, to
control modes etc. "Flags" and "Mode-words" and
"Submode-words", tend to remember their lessons
too long. The system designer looses track of
all the information contained in these words,
and how it affects the continued behaviour of
the system.

The radical approach to this problem is to re-
move all state variables from the logical
overhead too. The thought, that would make this
possible, would be a generalization of the sta-
tement above, say: “All information needed to
control a system, is contained in the control-
led system itself", or slightly reformulated:

"The situation of the controlled system,
determines at any moment, which control
actions ought to be taken".

We don't know whether this statement is true,
but it seems to be true enough.

"Situations" and "problems”

In ordinary language, the word "situation” has
a double meaning. Firstly it has a very neutral
meaning, that being in a situation is being in
a point in the state space. No situation is
worse than any other. Secondly, it has a more
loaded meaning as in sentences like "How did we
get into this situation"? Here the word "situa-
tion" is more or less synonymous with “prob-
lem". Between the two one can imagine an
interpretator, interpreting the situation -
described to it very neutrally - as being
“"problematic" or not.

Our control system divides itself along the
same lines.

It has one control level, which handles the
situation very neutrally, by feeding the state
variables back to the input, without any
further "thought". Every point in the state
space (every situation) is mapped onto a value
sent to the input. We will call every such
mapping, or “control law" or “"feedback pattern"
a stategy.

It has another control level, which handles
situations interpreted as problems. It solves
problems by taking actions. It maps every
problem on a action:

problem -> action

The mapping from problem to action may be given
to the system directly as a table. We call this
table a rule base.

The rule above can be rewritten as
if problem then action

This looks more 1ike a rule in the rule base of
an expert system. The rules here share the pro-
perty of the rules in an expert system, that
every rule is independant of the other. All
rules coexist in parallell. The rule base is
merely a list of rules without any ordering or
hierarchy or other structure.

Actions to be taken. Regression

Obviously one possible action to take is to
tell the other control level to use another
strategy. This is more universal than it may
seem. If the input, that the controlled system
expects from the control system, is an on/off-
signal, then one possible strategy is to send
the on-value irrespectively of the situation -
or the off-value. Hence the rule base can de-
scribe control of on/off signals.

The second possible action is of a higher
order. As result of the appearence of problem,
the system may have to "withdraw to its rooms"
and think the situation over. The result of
this thought process can be a redefinition or
reparametrization of some strategy, or a re-
formulation of some of the rules in the rule-
base. We call this withdrawal process the
regression process.

State estimation. Perception

As in ordinary state feedback control, the
state of the controlled system is often not
available directly through sensors, so it must
be recontructed or estimated inside the control
system. The Kalman filter is prototypical for
systems, that can do this reconstruction. The
Kalman filter is based on a model of the
controlled system (or some part of it). The
sensor measurement is compared to the expected
measurement according to the model, and the
difference, called the innovation, is used to
update the model. Other, more or less Kalman-
filter-like, estimation systems can be de-
signed along the same lines. We call all these
systems perception processes.

828

The concept of experience

The system may be said to solve its task by
means of a amount of experience, which it may
have gained by itself, or may have inherited
from the designer, who in turn may have gained
part of it from simulations with system proto-
types. This experience contains mainly:

- Rules.

- Strategies (in terms of, for instance, gains
in some control process).

- Models.

The regression process is solely occupied with
updating this mass of experience, but it has no
exclusive privilege to do that. The perception
process may also update the models, if it con-
tains an element of system identification in
addition to its state estimation tasks. In this
case the limit between state and experience
becomes floating. Purely formally the expe-
rience information satisfies the require-

ments for being state information.

System architecture

We can now outline the system architecture for
the entire system {see fig 1). The subsystems
involved in the control process are called
processes. We can identify the following pro-
cess types:

- Control processes.

- Perception processes.
- Alarm processes.

- A decision process.

- A regression process.

The control process handles the direct mapping
from the point in state space to the control
system outputs (= the input of the controlied
system). There is at most one control process
for each output.

The perception process reconstructs the state
vector from the input signals, using some
models of the environment. There may be one
perception process per model.

The alarm processes monitor that state vector
or, in other words, the situation and interpret
it as being problematic or not. There is at
most one alarm process for each problem that is
relevant.

The decision process has access to the rule
base, and decides whether a problem alarmed for
is to be considered, and which action is to be
taken.

The regression process does the regression.

Together these proccesses form a three level
architecture. The perception, control, and
alarm processes are on the lowest level. They
are run continously on some kind of cyclic
basis. The decision process, which is rule
based, is on the mid level. It is executed on
demand from the alarm processes. The regression
process is on the top level. It is executed on
demand from the decision process. Large regres-

sion tasks can possibly be solved in a back-
ground environment on spare time from the
other processes.

Communication within the system

The communication between these processes is
also shown in fig 1. The state vector is
accessabie by virtually all processes, as via a
common bus. The perception process writes its
data on this bus.

The alarm processes all read this data. As a
result of their interpretation they may send
the names of their problems to the decision
process.

The decision process has access to the rule
base, and from this it makes a decision. The
decision may be a new strategy, which is sent
to the control process, or it may be a regres-
sion task, which is sent to the regression
process.

The control process receives the strategy from
the decision process, and forms a feedback pat-
tern according to it. The state-variables then
flow through this feedback pattern to the out-
puts.

Perception through alarm processes. Observa-
tions

Once we have freed ourselves from the Kalman
filter scheme, the perception processes may
very well estimate boolean variables, as well
as real variables. But an alarm process toget-
her with the rule base also lends itself well
for estimation of boolean variables. Once a
problem has occurred, according to the alarm
process, one may set a "the problem has
occurred"-variable to true. When an alarm
process has interpreted state data so that "it
is snowing", one can make the observation that
"it is snowing". This observation is then a
part of the state information available in the
system..

Rule base syntax and semantics

The rule base is an unstructured 1ist of rules.
Each rule has the form

probiem -> action.
The action consists of different subactions in
different channels. Each subaction is given
with the syntax

CHANNEL : subaction;

and the action is an unstructured list of such
subactions.

Each subaction may contain conditions, so that
the subaction may be written as:

stratO,condl -> stratl,cond2 » strat2
This structure is searched from left to right,

and the action used is the rightmost one, whose
condition is satisfied. Conditions are quotings

829

of possible observations. The condition is
satisfied, if this quoted observation has ac-
tually been made.

Channels
There are channels for:

- Each control process {subaction: a stra-
tegy).

- The regression process (subaction: a regres-
sion task).

- Observations (subaction: an observation).

- Possibly individual parameters in the mass
of experience ({subactions 1ike "up" and
“down" or "reset").

- Possibly indivudial system outputs (sub-
actions like "on" and "off").

A1l the subactions are texts, as clearly as
possible expressing what the action means.

The observation-channel is actually divided
into boxes. Every observation assigned to one
box, overwrites previous observations assigned
to that same box.

Some dynamical aspects

Alarm processes and subjunctive strategies

Alarm processes are not supposed to give alarm,
when a disaster actually happens. It is suppo-
sed to give alarm, at the very latest, when the
disaster is inevitable. Principally, however,
no single disaster is ever inevitable before it
has actually happened. If we may only consume
limitless amounts of energy, pull as many g:s
as we like etc, we can avoid any disaster in
the very last moment before it happens. Alarm
processes therefore occupy themselves with
conflicts.

Suppose that we want to make a missile avoid
hitting the ground. The way to do that is to
pull up with some acceleration. If we assume
constant acceleration during the pullup, it is
straightforward to compute how big acceleration
is required (for a given missile state, and a
given terrain). A conflict arises when that
acceleration reaches a level when the missile
would stall. Before that moment, we need not
worry about ground coliision. There is a safe
way to avoid it. After that moment we can only
choose between ground collision and stall. The
alarm, then, should be given at that very
moment.

Note now, that while the alarm process analyses
this pull up manoeuver, the missile does not at
all do any pull up. The missiie actually fol-
lows one strategy, while the alarm process
makes computations as if it followed another.
The alarm process works with a subjunctive
strategy (with the word subjunctive used with
the meaning it has in grammar).

Subjunctive strategies are used everywhere in
the alarm processes. The system also contains
a mechanism to actually control which subjunc-
tive strategy is used in an alarm process. In
the place of a strategy in a rule table, one

can put a more complex strategy, like this:

problem CHAN:stratl/ALARM/strat2;

The system actually follows the strategy
stratl, but the alarm process ALARM is told to
analyze what would happen if strat2 were used
instead.

Conflict areas

In the ground collision alarm that we just stu-
died, there was a conflict in that the solution
to one problem {not hitting the ground) led to
another {stall). This conflict exists in some
subset of the state space. The alarm process
shall alarm when we reach the edge of such a
subset. We cal call the subset

M(so1{(P1},P2)

The missile moves in state space in a archi-
pelago of such subsets. They have some inte-
resting properties. One of them is that, for a
given problem Q and a 1ist of problems Pi (pos-
sibly including Q), all the sets.

M(so1(Q),Pi)

form a total order. It means that if you avoid
the biggest of the sets you avoid them all.

Priority

Using the conflict sets as a tool, you can make
a system, which avoids conflicts between diffe-
rent alarms. Two alarms requiring contrary
actions in the same channel, would not appear
simultaneously. However it happens that a
missile is "born into" such a situation at the
moment of launch. In that case one has to make
a choice between the two actions. Hopefully one
can negiect one of the alarms, and yet avoid a
disaster. The problem may imply that a disas-
ter happens with some probability. In that
case, one could neglect the problem, and take a
calculated risk. This would justify the intro-
duction of a priority mechanism.

Syntactically it just means that a priority
number is attached to a problem.

problem '7 -> action
(This problem has priority 7).

The simple rule for prioritation is: "If two
alarms require actions in the same channel,
that one wins which has the highest priority".

In a multi-channel system were an alarm may
require actions in several channels, an extra
rule is needed. We have chosen the following,
out of many possible: "If an alarm does not win
priority over its competitors, in all the
channels, where it requires action, it is not
considered at all".

This rule can be overruled with a mechanism

that allows the designer to propose alternative
actions for the same problem. Those alternative
actions involve fewer channels, so that some of

them may win priority in all its channels.

Once it is introduced, the priority mechanism
can be used to simplify system design in many
ways. For example one may have a "System being
idle" problem meaning that the state is in no
conflict set at all. This alarm may be always
on, if it just has the lowest priority, so that
all other alarms can defeat it when they occur.

Challenger torunaments and the concept of
intention

An efficient way to implement the priority mecha-
nism, is in the form of a challenger tournament.

Some alarm is the champion in that tournament.
It is up to any new alarm to challenge that
champion. The fight then is a simple compari-
sion of priority numbers. When the champion
alarm is withdrawn, it leaves a "blank" cham-
pion behind, which triggers all other alarms to
try a new challenge. The principle is that an
alarm tries a challenge, when it is new, or
when the champion is new.

The “"Champion" has the name of a problem, and
that probiem is the reason for all the actions
taken by the system. In other words, it is the
systems intention to solve that very problem.

This intention, in fact, is now a new state
variable in the system. It is the only state,
that is not an estimation of something in the
outer world. It represents the systems own
will.

It is an artefact of one so wants, but its a
nice artefact, that one wouldn't easily loose
track of. In fact it means, that it is easier
now to keep track of the strategies. The stra-
tegies are no states, they are outputs. These
outputs can be directly computed from the
intention and the observations. This mapping
from intention and observation to strategy is
the rule base.

The dynamics between alarms and actions

Many alarm processes contain an ejement of
prediction. Prediction has some special dyna-
mical properties.

If some parameter in a strategy is changed, the
system will react with a smooth transfer to a
new form of trajectory, but a prediction of a
point on that trajectory some long time ahead,
will jump dicontinuosly to a new value. This
may cause the alarm to fire, which may result
in an equally discontinuos change in the para-
meter. There is then an algebraic loop in the
system. The alarm will fiip on and off at a
high rate.

Sometimes this is a result of oversimpliified
prediction algorithms. Sometimes one must be
careful in interpreting the alarms.

A system may contain an energy alarm process,
which predicts the energy status till the end
of mission. When this alarm process fires, the
correct interpretation is not that we have a

830

lack of energy, but that we will have it if we
follow the present plan. It is only natural,
that the alarm will disappear, if we revise our
plan. And if we, encouraged by the fact that the
alarm has disappeard, reestablich the plan
again, it is only natural that the alarm reap-
pears. And so on.

Instead of revising the plan, we could make the
observation that “Plan P causes energy prob-
lems", and that observation could then be a
guide in the revision of the plan. That way we
would at least not come back to plan P again.

System properties

Optimality?

The handling of the dynamics between the alarm
and its action is probably the most difficult
issue in the designing a BRAIN system.

Another difficult task is to make BRAIN systems
which provide optimal solutions. The strategies
used by the control processes are often optimal
control laws, which optimize something under
some few constraints, but the entire system is
not very much interested in optimality. Its
goal is "good enough", and its method to
achieve that is “Solve the problems when we
have them!".

The reason for this is that the BRAIN system is
intended to manage complex control tasks with
many constraints, where we believe it is too
difficult to find optimal solutions. In prin-
ciple, an optimal plan for solving a complex
problem can always be made up, but doing it
with reasonably small computer programs in
reasonable time is another thing. And plans are
no good anyway. They are not flexible enough.
What we want is optimal control laws, and that
is even more difficult.

It is very natural to define problems in terms
of optimal solutions under constraints. But as
a next step, it is also natural to put the
question: "Is optimality really necessary?" "Or
even relevant?” Often the problem can be refor-
mulated into a "good enough"-one.

If this is so, the BRAIN-concept offers the
designer a number of advantages.

System design with BRAIN

The rule base is written in a language under-
standable to a human reader, and is thus a

good means of communication with the end user
about what the system should do. In fact, the
rule base gives a very concise and at the same
time precise description of how the system
should behave. The rule base language is a good
specification language.

Hence it is a good start of system design, to
make a preliminary rule base.

The rule base also forces the system designer to
think about why something should happen in the
system. The left hand member in a rule contains
the argument for doing what is stated in the

831

right hand member of the rule. This issue of
argumentation is not at all so distinct, when
the design is made with state transition
diagrams.

When the designer writes his rule base, he has
some idea about how the different problems,
that he mentions in the rules can be detected.
The natural next step is to specify these algo-
rithms further. Other steps are to design the
implementations of the strategies in the
control process, and the tasks in the cognition
process.

Once this work has resulted in a working proto-
type, all further work, like expansion, modifi-
cation, adaption to changes in specifications
or environment, maintenance etc, is done in the
same way. New rules can be added and old ones
can be removed. For new problems, new alarm
processes are designed, and they can be added
to the old ones without disturbing them. In the
same way, new strategies can be added, and the
regression process can be ordered to fullfill
new tasks.

This modularity, and its consequence that pro-
gram maintenance is made along the same lines
as the original design, is perhaps one of the
main advantages of the BRAIN concept.

Real time properties

Some of the control and perception processes
usually have to be executed with a strictly
fixed frequency. The alarm processes only need
to be executed with a minimum frequency, usual-
1y lower, than that of the fastest control pro-
cesses. Hence it is usually suitable to have

at least two program cycles, one of which can
actually be a background cycle without any
fixed frequency.

This means that programs interrupt each other,
and that always means hazards. In this case we
believe that the standardization of the process
types and of the comunication between them,
minimizes these hazards.

An alarm process reads state data computed by
a perception process in another cycle. As long
as we feel happy when the alarm process gets
the latest state data available at every mo-
ment, everything is OK. Sometimes it may be
important that certain data items in a package
of data are from the same time. This is not too
common, though, when the state vector mainly
contains continuous type data about the situa-
tion. We have consistently avoided logical
types of data in the state vector.

The only type of data traffic in the opposite
direction is transfer of strategies to the
control processes. The new strategies are
delivered as quickly as possible, and the
control processes will follow the new strate-
gies as soon as they are delivered. The only
possible risk with this traffic, is when an
interrupt occurs the moment when the strategy
is transfered. In that case wixtures between
the old and the new strategy may be visible to
the control process. It is relatively easy to

build a protection mechanism against this.

Reusability

We have built systems according to this concept
mainly for two types of missiles. One is a
ground attack missile flying over hilly terrain
towards a single known target, and equipped
with an optical seeker. The other is an anti-
ship missile manoeuvering in archipelagoes, or
flyig over open sea against possibly Targe
groups of potential targets, and equipped with
an active radar seeker. In spite of the large
difference in task, environment and expected
behaviour for the two missiles, over 50% of the
software is common between the two programs. In
spite of the differences, so much is still in
common between the two guidance tasks, and the
BRAIN concept helps us discover this commona-
lity.

This also means that when some new system fea-
ture has been tested and approved for one of
the missiles, it can readily be taken over by
the other one, if it is a relevant and desi-

rable system feature for that other missile too.

Conclusions

We have found that by generalizing the ideas
from state feedback in ordinary linear control
theory, mainly by being very stringent about
introducing states in the system, we can give a
scheme for designing control systems with very
good properties:

Level

models

- The scheme can be used for solving a large
variety of control tasks, probably even
very complex ones.

- There is a natural path to follow, when
designing a system, a path that starts
with the overall requirements on the
system.

- Communication with the end user of the
system is simplified by the relative
readability of the rule base language
used.

- The designer is seeing the arguments he
used for the design explicitly in the
design.

- Maintenance and modification of the system
is made along the same lines as the origi-
nal design.

- The system is very robust to modifications,
e.g. when new functionality is added.

-~ Real time implementations are relatively
easy to make safe.

- Software for one project can be reused in
anogher to a large extent.

regression

out

832

