ICAS-90-1.4R

DYNAMIC RESPONSE OF ANISOTROPIC COMPOSITE
PANELS TO TIME-DEPENDENT EXTERNAL EXCITATIONS

L. Librescu® and A. Nosier!
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA, 24061-0219, U.S.A.

Abstract

This paper deals with the dynamic response
of anisotropic laminated composite flat panels
exposed to sonic boom and explosive blast-type
loadings.

The pertinent governing equations incor-
porating transverse shear deformation, trans-
verse normal stress, the higher order effects as

well as the viscous structural damping are
solved by using the integral-transform
technique. The obtained results are compared

with their counterparts obtained within the
framework of the first order transverse shear
deformation and the classical plate theories and
some conclusions concerning their range of
applicability are outlined.

The paper also contains a detailed analysis
of the influence played by the various
parameters characterizing the considered
pressure pulses as well as the material and
geometry of the plate.

Introduction

The response of elastic structures to time-
dependent external excitations, such as sonic
boom and blast-type loadings, constitutes a sub-
ject which 1is currently of much interest in the
design of aeronautical and space vehicles as
well as of marine and terrestrial ones. With
very few exceptions, fts study was done in the
past for the case of thin isotropic structural
members (see e.g. [1-8]).

With the advent of the new composite
material structures and their increased use in
the aerospace as well as in the other fields of
the advanced technology, there is a need to
reconsider the problem of structural response.
This is due to the fact that the new composite
material  structures exhibit distinguishing
features as compared to their metallic counter-
parts. While the former ones are characterjzed
by a weak rigidity in transverse shear and by
high degrees of orthotropy of the layer
materials, the latter ones are constituted of
isotropic materials and may be considered to
exhibit an infinite rigidity in transverse
shear. That is why, in order to get correct
results for the response behavior of flat struc-
tures made of advanced composite materials,
refined plate models have to be used. They
should incorporate transverse shear deformation
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and transverse normal stress and should account
for the higher-order effects. Since transverse
shear properties and damping characteristics are
primarily matrix dependent, they would certainly
play an important role in the dynamic response
of composite material structures.

The analytical studies devoted to the
dynamic response of shear deformable laminated
and single layered flat panels to blast loadings
are very few. In this sense, the reader fis
referred to [9-11]1 and [12], respectively.
Within this paper, the far field overpressure
produced by an aircraft flying supersonically in
the. earth's atmosphere (referred to as the
sonic-boom pressure pulse), or by any supersonic
projectile, rocket or missile [13,14], as well
as the one resulting from an explosive blast
(see [3, 5-10] are considered to predict the
panel response. The time-history of the sonic-
boom is described as an N-shaped pulse, whose

negative phase duration s included as a
variable in the analysis. As concerns the
explosive blast, its time-history is

approximated both as an exponentially decaying
pressure pulse, and, in an approximated way, by
a triangular pulse. .The results obtained within
a higher-order plate theory (HSDT) are compared

with their first order transverse shear
deformation (FSDT) and  classical (CLT)
counterparts and some conclusions concerning

their range of applicability are outlined. In
addition, the obtained numerical results allow
one to draw conclusions about the influence
played by the various physical and geometrical
parameters entering the problem. Having in view
that the severity of the dynamic response can be
conveniently measured in terms of the dynamic
magnification factor (DMF), its variatjon for
several pulse shapes is also displayed in the
paper. This paper constitutes a synthesis of
the results reported in [15,16].

Governing Equations

The response problem will be analyzed
within the framework of a higher order bending
theory of cross-ply symmetrically laminated com-
posite plates. Previously formulated in
[17,18], this theory exhibits all the advantages
embodied in its FSDT counterpart both with
regards to the number of involved unknown
quantities and the order of the associated
governing equations. However, in contrast to
FSDT, the present theory is based on: i) a
parabolic distribution of transverse shear
stresses across the plate thickness (thus



avoiding the need for a shear correction factor)
and i) the elimination of the contradictory
assumptions involving the simultaneous con-
sideration of zero transverse normal
stress o,, and zero transverse normal strain
eq3. Fu?éhermore, the results predicted by HSDT
w??] be compared with the ones obtained within
the framework of FSDT and CLT. By adopting the
assumptions formulated in [17] and by referring
the points of the mid-plane of the laminated
composite rectangular (axb) plate to a Cartesian
system of coordinates x-y parallel at each point
with the principal material directions, the
governing equations (see [15-18]) may be reduced
to:
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The FSDT counterparts of Egs. (1) are given by
(see [15-1817):
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where, in contrast to HSDT, the higher order
effects as well as the contribution of o 3 are
disregarded. The coefficients appearing 1% Eqs.
(1) and (2), which are functions of stiffness
quantities, are displayed in Appendix I. In
particular, the coefficients c3 and ¢4 include
the effect of the in-plane edge loads T; and
Top, respectively, which, as will be ‘shown
1a%er, play a substantial role in the response
behavior. The structural response corresponding
to CLT can be obtained as a special case of FSDT
by considering the transverse shear moduli to be
infinite quantities. For convenience, in Egs.
(1) and (2), the notations W, Yy and wy replace
(0) (1)

V. s

3

1
vl, and (v; , respectively, originally

introduced in [17,18]. As a result, W, Voo

and y_ denote the transverse deflection and
rotatfons of normal lines to the mid-plane
(about the y and x-axes, respectively) while C
denotes the transverse viscous damping coeffi-
cient. The boundary conditions for a simply-
supported rectangular axb) plate are [15-17]

y =0, W=20, and ay W +

Yy XX
taguy, T Dat x=0, a,
and (3)
¥, = 0, W=0, and bl w,yy +
+ b3 wy,y =0aty=20, b.

while the initial conditions are prescribed to
be:

¥, (6:Y50) = B, (6¥)5 v, (5,0 = § (xy),
W(x,y,0) = W(x,y),

Way (63500 = B (6y), W, (x,y,0) = W (x,y),

Y
¥, (%55,0) = ¥ (x,y,),
1]

xby(x,y,o) z "y(x,y), W (x,y,0) = R(x,y),
W, (%5y50) = W (x,y),
W,y(x,y,O) = wy(x,y)- (4)

Here, the single and double over tildes denote
prescribed quantities for the basic variables
Vs Yy W as well as for W,  and w,y and their

time derivatives, respectively, at t =0 .

As concerns the boundary conditions
associated with FSDT, they can be found e.g. in
[17]. For the sake of completeness, they are
displayed here also:

wy =0, W=0, and wx,x =0at x = 0,a

and {5)
=0, W=20, and =0aty=0,b.

wx wy,y y

Solution Procedure

The integral-transform technique will be
used to solve the dynamic-response problem. To
this end, Eqs. (1) and (2) are subjected to a
Laplace transform with respect to the time
variable and successively (1);, (1), and (1)3 to
finite Fourier cosine-sine,” sine-cosine, "and
sine-sine transforms, respectively. Appropriate
use of initial and boundary conditions given by
Egs. (3) and (4) yields an algebraic system of
equations expressed in the transformed space as:
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In addition, ¢ = mn/a and B_ = nn/b; m and n
denote Fourier” transform variables associated
with x and y, respectively, while s denotes
Laplace transform variable associated with the

time variable t. A bar over a quantitity
fdentifies 1its Laplace transf?gT (that 35
L {a(t)} = a(s)) while and (e )

denote finite sine and cos1ne Fourier trans-
forms, respectively. It should be remarked that
the right-hand side of Eqs. (6) contains the
initial conditions as part of the forcing

2.7 _ Aes) _

(Kll + 38 ) Klz (K13 + ag“ms ) Wx (ansS) T1

2 2 _ (sc) _

Koq (K22 + bgs ) (K23 + bgB s ) wy(m,n,s) = T,
(6)

2 _(ss) _

K31 K39 (K33 *ocgst + Cs) W(m,n,s) T3

function.

Two different problems which nevertheless
are interrelated could be analyzed when starting
with the system of Egs. (6). These are the
dynamic response and its associated eigenfre-
quency problem. While for the former problem
the right-hand side of Egs. (6) is different
from zero, for the latter one it should be
considered zero. From the system of equations
(6}, a formal solution to the dynamic response
in the transformed space could be written as:

7. (m,n,s5) Fpj(mn,s)
3T,
— (sc) = _J —
vy (myn,s) jzl - Fai(m.n,s) o (9)
W(SS)(m,n,s) Féj(m,n,s)

where D and Fij are defined by:

= _ 6 5 4 3 2
D= Ays™ # Ap8" + g+ a8T +AgST + s + Ay
_ *
= Al(s - Sl)(s - sl)(s - 52) (10)
* *
(s - sy)(s - s3)(s - s3),
and
F..(m,n,s) = ; I,.s°" (11)
ijyee Ly Tiir *
r=1
The coefficients A and I1 are displayed in
the Appendix 1 of' [16]. ™1 Eq.(10), 5k (k
=1,3) and their complex conjugates si are
assumed to be the six roots of D = 0. Now by
writing

S = - Bk + ka s (3 =v-1)

Eq. (10) can alternatively be written in a more
convenient form as:

D= ay0(s + 8% + Wd10(s + £)? + 03] )
[(s + 8% + w51

In order to obtain the response in the real time
domain it is essential to determine:

{ ;/0} =

(m,n,t),

T
1, {SFij/D} E Lij(m,n,t).
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To this end, the partial fraction expansion is
used to express Fi /B as:

3 Apgls + B ¥ By
2 E
k

where Aijk and Byjy are real coefficients (see

Appendix 2 of [161). Based on the representa-
tion (14), it may be shown that H;; (m,n,t)
(playing the role of impulse response function)
results in the form:

(14)
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As concerns ij(m,n,t), from (13), we obtain
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where § = §(t) denotes Dirac's  distribution

while T is a dummy time variable.

However, by virtue of the relationship
3
Hij(m,n,o) = rzl Aijk= 0,

Eq. (16) reduces finally to the form:
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A ]
The inverse Laplace transform applied to Egs.

(9) yields the response quantities in the time
domain as:
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For zero initial conditions, the time-histories
of the basic unknown functions (18) reduce in
the Fourier space to:
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In the following developments, for computational
reasons, Eq. (19)3 will be expressed in an
equivalent form as:
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w(SS)(mgngt) = Z ! e k * (A33kcos wk(t-"r)
k=1 0
(20)
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Successive application of inverse sine and
cosine Fourfer transforms to Egqs. (18) or (19)
yields the primary response quantities in the
physical space expressed as [15,16]:
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Needless to say that the above equations could
be applied to determine the structural response
of viscously damped cross-ply symmetrically
laminated plates to any time-dependent excita-
tion. However, in the forthcoming developments
the case of N-shaped pulse and blast-type
loadings will be considered only. In addition,
the solution given by Eqgs. (18)-(21) s
applicable also to the FSDT, in which case the
proper coefficients aj, bs and c4 should be
used.

It should be mentioned in passing that for
the case C » 0, the equatjons (15)-(20) reduce
to their undamped counterparts as developed in

f15].

Response to Blast and Sonic Boom-Type Loadings

Within the present paper, several results
which concern the response of composite flat
panels to explosive blast and sonic boom-type
loadings, synthesizing the ones obtained in
[15,16], will be presented. Due to their struc-
tural damaging effects, these types of loadings
have been estimated by using both theoretical
and experimental considerations. For the case
of blast type Tloadings, various analytical
expressions have been proposed and discussed in
the Titerature (see e.g. [5,9 and 10]). As it
was clearly established, the blast wave reaches
the peak value in such a short time that the
structure can be assumed to be loaded
instantly. Due to the relative small dimensions
of the plate when compared to the blast (and
sonic boom) wave front, it may also be assumed
that the pressure is uniformly distributed over
the plate. The overpressure-time history can be
described in terms of the modified Friedlander
exponential decay equation [7,8]:

- - t -a't/t
PZ(Xa.y’t) (— Pz(t)) - Pm(l = g ) e p’
(22)
where the negative phase of the blast is
included. In Eq. (22), Pp denotes the peak

reflected pressure in excess of the ambient one;
t, denotes the positive phase duration of the
pB]se measured from the time of arrival of the
blast at the plate surface; and a' denotes a
decay parameter which has to be adjusted to
approximate the pressure curve from the blast
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test. A depiction of the ratio P,/P, vs. time
for various values of the ratio a'%p and a
fixed value of t  is displayed in Fig. 1. As it
could be inferrgd, the triangular load may be
viewed as a limiting case of (22), that is

for a'/tp +0.

As concerns the sonic boom loadings, they
could be modelled as an N-shaped pressure
pulse. Such a pulse corresponds to an fdealized
far field sonic boom disturbance arriving at a
normal fincidence. The pressure time-history of
the N-wave shock pulse experienced by the plate
may be described by [2-4,13,14]:

PL(6y,t) (2 P (1)) =
t
Pm(l - ) for 0 <t < rtp

P
0 for t <0and t > rtp,

where r denotes the shock pulse length factor,
and P and t, maintain the same meaning as in
the case of bﬁast-type loadings. It may easily
be seen that: 1) for r = 1, the N-shaped pulse
degenerates into a triangular one; 1ii) for

r 2, a symmetric N-shaped pressure pulse is
obtained; while iii) for 1 < r < 2, the N-shaped
pulse becomes an asymmetric one as shown in Fig.
2. Another special case emerging from the N-
shaped pulse occurs when r 1 and tp + ®, Or

from the blast pulse when t_ + «,

In this case

the time duration of the pulse becomes infinite
and consequently the pressure pulse becomes a
step pulse.

In addition to the transverse deflection
time-history, the dynamic magnification factor
(DMF) of the transverse deflection produced by
these pulses will also be determined.

As is well known, this factor is defined as
the ratio of the largest (in the absolute sense)
dynamic deflection to its static counterpart at
a point on the structure.

Numerical Illustrations

Four types of structures will be considered
in the subsequent numerical illustrations. The
first one labelled "“"Structure A" is a three-
layered cross ply (0°, 90°, 0°) square plate
whose mid-layer is two times thicker than the
external ones. Also it is assumed that the
orthotropic material of all laminae is the same,
being characterized by:

E, = 19.2 x 10% psi, E, = 1.56 x 10° psi,
1.56 x 10° psi,

E3 =
- 6 . _ 6 .
G12 = 0.82 x 10" psi, G13 = 0,82 x 10° psi,
6,5 = 0.523 x 10° psi,
Vip T Vi3 T 0.24, Vo3 = 0.49.



The second structure labelled “"Structure B" is
also a three-layered square plate, whose mid-
layer is two times thicker than the external
ones, It is assumed that the material of the
laminae is transversely-isotropic, the plane of
isotropy being parallel at each point to the
mid-plane of the structure. It 1is further
assumed that the material properties of the
layers are:

By / E(r) G E3)/E(3)) =5 Ep) fB(p) = B

By / E2) T E3) / By = 10
v(i) = in) = 0.24, (i = 1,2,3}).

Here, the indices 1 and 3 are associated with
the external layers while the index 2 with the
mid-layer; E and v are the Young's modulus and
Poisson's ratio, respectively, associated with
the isotropy plane; while E', v' and G' denote
the Young's modulus, Poisson's ratio and trans~
verse shear modulus, respectively, in the planes
normal to the fisotropy plane. For both struc-
tures, the material_gensity 2f0r4a11 layers 1is
taken as p = 13 x 10 ~ 1b sec™/in',

The "Structure C" and "Structure D" are
characterized by: Structure C: A three-layered
(0°, 90°, 0°) square plate, while, Structure
D: A nine-layered (0°, 90°, 0°)3 square
piate. In these cases it is assumed that the
layers are of equal thickness and that they are
constituted of the same orthotropic material
defined by:

_ 6 . . - 6 .
E1 = 30 x 10" psi, E2 = E3 = 0,75 x 10" psi
8,5 = 0.85 x 108 psi, G5 = 0.37 x 10° psi,
Gp3 = Gy3

Vi T Vi3 T Vg3 = 0.25

o = 0.000143 1b sec?/in”

In addition, the numerical results will include
the nondimensional viscous damping parameter
defined by A/n(= C/c.w), where w denotes the
fundamental undamped ‘eigenfrequency determined
within CLT while c,. = my stands for the mass
term (see Appendix f%.

Based on the previous theoretical results,
Figs. 3 and 4 diplay the time-history of the
dimensionless plate center deflection for the
case of a blast loading; Fig. 5 and Figs. 6-9
depict the time-history of the nondimensional
transverse defiection to a step and a N-pressure
pulse, respectively. Figures 10 and 11 display
the influence of in-plane tensile edge-loads and
of transverse shear flexibility on the time-
history response of a dimensionless trans-
versely-single-layered plate to a step pulse of
finite duration (t, = 0.004 sec). In addition
to these graphs, F?gs. 12-14 display the varia-

tion of DMF to a N-pulse and blast-pulse,
respectively, determined at the center of the
plate  vs. wt_, where w is the  fundamental

undamped frequéhcy determined within the HSDT.
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Discussion and Conclusions

In Figs. 3 and 4, the dimensionless
deflection V(= W/h) response of the center of a
three-layered square plate to a normal blast
loading is displayed. Figure 3 shows that with
the decrease of the parameter a', higher
amplitudes of the deflection are obtained.
Figure 4 compares the deflection response
obtained within HSDT, FSDT (with two shear
correction factors) and CLT. As it results f£om
these plots (obtained for the Structure B}, k¢ =
2/3 gives better results when compared to their
counterpart obtained with k“ = 5/6., Opposite
results are obtained when_ Structure D s con-
sidered. In this case, K = 5/6 constitutes a
better_selection of the shear correction factor
than K¢ = 2/3, This trend reveals once more the
fmportance of approaching the response in the
framework of a higher-order plate theory, which
in contrast with FSDT does not require
incorporation of such a correction factor,
largely dependent on the lamination sequence,
relative anisotropy of the 1layers, etc. The
numerical results obtained for the response to a

step pulse of infinite duration (see Fig. 5),
reveal that the damping plays a great and
constant role in reducting the deflection
amplitudes.

Figures 6-9 display the deflection response
of the center of a square plate to a sonic
boom. While Fig. 6 reveals the quantitative and
qualitative differences in the response deflec-
tions due to a symmetric (r = 2), asymmetric (r
= 1,5) and a degenerated (r = 1) N-shaped pulse,
Fig. 7 reveals the strong influence played by
the parameter t. (that is by the duration of the
positive phase of N-shaped pulse). This figure
also shows that even in the case of non-thick
plates (that 1is when a/h = 20), the results
obtained within the framework of the classical
theory are in total disagreement with the ones
incorporating transverse shear deformation
effects. While during the positive phase of the
pulse, the deflection response obtained as per
the CLT follows the well known trend (in the
sense that it 1is underestimated), within the
negative phase of the pulse, it may result in
higher wvalues as compared to their shear
deformable counterparts. However, for thin
plates, the results {not displayed here), reveal
that the response characteristics obtained
within classical and shear deformable theories
are in perfect agreement. Figures 7 through 9
reveal again the strong influence played by the
parameter t. principally within and after the
negative phase of the pulse, as well as the
unreliable character of the results furnished by
the CLT.

In connection with the sonic boom pulse and
the triangular one, two different regions of

- their response could be observed: a former one,

occuring during the forced motion and a latter
one, occuring during the free motion (that is
after the wave has left the structure).

However, for the sonic boom-pulse two more
distinguished regions could be discerned,
namely, the ones associated with the positive



and negative pressure pulse. For the N-shape
pulse (depending on the values of t, and r), the
largest (in the absolute sense) dyRamic deflec~
tion can occur in these three regions appearing
explicitly as three different branches of the
DMF curves (as indicated in Figs. 12-14).

Figure 6 reveals that for the two pulse
Toadings characterized by r = 1 (triangular
blast) and r = 2 (symmetrical sonmic-boom) the
response corresponding to the common time phase
0 < t<t, is identical. However, for t > t
the time-ﬁ%stories produced by these two pu]seg
are totally different. Another conclusion fis
that the two structures C and D yield, for the
same pressure field, practically the same
response behavior. Like Fig., 6, Fig. 13 reveals
that during the free osciliation range (i.e.,

t > rtp = 0.02 sec)), there are instances when
CLT could result in higher deflection amplitudes
than its HSDT counterpart.

The same conclusion emerges also from Figs.
12 and 13 where there are depicted the DMF
curves against wt_, for an asymmetrical
{r = 2.5) sonic boBm pulse. As a general
conclusion (obtained alsec 1in the case of
metallic type structures [4-61), the most signi-
ficant amplitude attenuation due to the damping
effect occurs during the free motion range (see
Fig. 14) and 12, 13, and 15. However, Figs. 13
and 15 reveal that there are few instances
during the free motion range when the damped
oscillations exhibit higher deflection
amplfitudes than their undamped counterparts.

Figure 13 reveals that for r = 1.5, the
negative phase of the pulse plays a reduced role
in the amplitude magnification response, the
main role being played by the positive phase.
As it could be seen from the same figure, the
branch of the DMF generated by the positive
phase of the pulse coincides with the one
generated by a triangular pulse (r = 1).

Figure 10 reveals the beneficial effect of
in-plane tensile edge 1loads while Figure 11
shows the influence of transverse shear
flexibility of the material of the plate on the
dynamic response. Figure 11 reveals that the
predictions of the classical theory are insensi-
tive to any variation of transverse shear
flexibility.

Finally, Figs. 7, 8, 11, and 13 as well as
the previous ones, reveal that the assumption of
the infinite rigidity in transverse shear as
implied by the CLT provides unreljable results
even for non-thick composite plates in the sense
that the time-history deflection is generally
underpredicted.

Based on these findings it may be concluded
that a consistent evaluation of the time-history
structural response of composite flat panels and
implicitly, a rational design could be accom-
ptished within a theory taking into account
their flexibility in transverse shear.

It should also be added that in a number of
cases the external excitations exhibit a random
character and as a result, the response charac-
teristics have to be determined in a

probabilistic sense. For such a treatment of
the problem where the response of composite
laminated plates to random excitation was
analyzed, see e.g. [19-21].
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to a normal blast loading characterized
by varjous a' and t. = 0.1 s (the
results are obtained aithin HSDT with
Py = 500 psi).
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