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Abstract

In this paper, two methods are
presented to analyze nonlinear flutter
of wings with separated vortex at high
angle of attack. One of the methods is a
Time Integration Method(TIM). Combined
with the calculated unsteady aerodynamic
forces for wings at high angle of attack,
the structural dynamic equations of the
wing are integrated by Runge-Kutta method
in time domain, and the wing motion can
be simulated at any flying speed. Another

method 1is a Describing Function Method
(DFM) . In the DFM, the nonlinear
generalized aerodynamic forces are

linearized by wusing the concept of
describing function. Then, the structural
dynamic equations of the wing are solved
by conventional V-g method, and the
critical flutter speed can be obtained.

To verify the numerical methods,
flutter tests for wings at high angle of
attack are carried out in a low speed
wind tunnel. The wing models are a rec-
tangular wing and a delta wing. The
wings can move in rolling and pitching.
The basic angles of attack in the
experiment are 14° and 18°., It is shown
that the higher the basic angle of
attack, the lower the critical flutter
speed. The results calculated by the
above mentioned methods are in agreement
with the experiment.

Nomenclature
C(%,t) = generalized aerodynamic force
_ coefficient
D(%,k) = describing function
[D] = generalized aerodynamic force

coefficient matrix
state vector
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generalized aerodynamic force
vector

indicial response of generalized
aerodynamic force coefficient
unit matrix

generalized stiffness matrix
reduced frequency

generalized mass matrix

zero matrix

pressure difference on the wing
surface

generalized coordinate

wing area

laplace variable

time

freestream velocity

critical flutter speed
corresponding coordinates
deformation of the wing

a kind of deformation of the
wing

nondimensional time

density

eigen frequency

static angle of attack
nondimensional rolling angle
nondimensional pitching angle
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Introduction

For nonlinear flutter analysis of
wings at high angle of attack, Strganac
and Mook [1) developed an integration
method in time domain. With the unsteady
airloads on wings obtained by an unsteady
Vortex-Lattice Method, the equation of
motion is integrated. 1In Ref.[1], only
the results of a rectangular wing with
big aspect ratio AR=10 were given. For
another low aspect ratio rectangular
wing, no detailed results were supplied.
The integration method in Ref.[1] can
give the vibration history of wings at
any flying speeds, but the computational
work is time consuming.



By
for the

introducing a describing function
nonlinear generalized aerodynamic
force, Ueda and Dowell [2] analyzed the
flutter of airfoils at transonic flow in
frequency domain with Dbetter computa-
tional efficiency.

Up to now, the phenomenon of non-
linear flutter for wings with separation
at  high angle of attack has not been
thoroughly investigated. So, wind tunnel
tests for this problem would be much
helpful for further research.

In this paper, both Time Integration
and Describing Function Methods are
developed for nonlinear flutter analysis
of wings at high angle of attack. The
nonlinear aerodynamic forces are provided
by a subsonic unsteady numerical method~—
Potential Difference Method [3] developed
recently by the authors. Besides, the

experiments of flutter for the wings at
high angle of attack were carried out,
and the test results confirm the feasi-

bility of the above mentioned methods.

Time Integration Method

The small deformation
structure can be expressed by

of wing

N
z2(x,7,t) =2 §(x,¥)-q,(t) (1)
where @i(x,y) is the ith eigen mode, and
q.(t) is the corresponding generalized
coordinate.
Then
written as

the equation of motion can be

[M1{q}+[Kl{q} = {f}
where the dot means d/dt, [M] is the
generalized mass matrix, [K] is the
generalized stiffness matrix, {f} is the
generalized aerodynamic force vector.

By introducing ,the state vector
{e}z(q1’Q2’qsl"‘ qulqglég!égl (i")T'
Eq.(1) is transformed to

[0}
M1 (K] [0]

(2)

(1] tol
ji¢s)
[M]

{e}= {e}+ (3)

For a given initial vector {e,},the
aerodynamic pressure difference AP(x,y)

on wing surface is obtained by the
Potential Difference Method, and the
generalized aerodynamic forces are

calculated by
f; = i}amx,y)-@i(x,y)dxdy

then, Eq.(3)
Kutta

obtained

can be solved by Runge-
method. The state vector {e}
at the end of each time step
provides a new boundary condition for
the next time step to calculate the
aerodynamic pressure. By this procedure,
the wing motion can be simulated with a
step-by-step discrete time history.
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For a given basic angle of attack o,
the static deformation (q,} must be cal-
culted at first by an iteration process
from the governing equation

[K]{q,}=(fs}

where (fg} is the static aeroelastic
airload. Then, the initial state vector
{e.} for the above Runge-Kutta procedure
is formed with {qg} superposed by a
certain disturbance of generalized
displacements and velocities.

Describing Function Method
For a harmonic vibration of the wing

%= ?ei" , where ¢ is the nondimensional
time and k is the reduced frequency, the
corresponding generalized aerodynanmic
force f is expressed by

£z 5 PUsS-C($,7) (4)

where iPUfo is the dynamic pressure, S

is the wing area, and C(4,7) is the
coefficient of generalized aerodynamic
force.

For present problem, C(¢,7 ) is a
nonlinear function with respect to 4 .For
harmonic motion, it can be linearized by
introducing a discribing function D(%,ik)
and the following approximate relation
holds:

€(3,7)=D(%,ik)- §=D(F,ik) Tk (5)
The corresponding relation in the Laplace
domain is

6(%,s)= D(F,s)-F/(s-ik) (6)

where the superscript ° represents the
Laplace transformation of a function, s
is the Laplace variable and i=/=T1 .

If k=0, the Eq.(6) represents an

indicial response relationship

H(4,s)= D(¢,8) %§/s (7)
In practical application, the indicial
response time history of aerodynamic
force 'is first calculated by certain
nonlinear aerodynamic code with a step
input 2. Then, by aid of curve fitting,
this indicial response is approximated
by a polynomial of exponential functions
rasexp(bpt),from which it is straight-
forward to get an cliosed form expression

of H(¥,s) in Laplace domain. According
to Eq.(7), the describing function is
obtained
D(%,ik)= ik-H(%,ik)/% (8)
By introducing the describing
functions, the generalized aerodynamic

force for wings at high angle of attack



formally has a linear relation to the

generalized displacements
1
(£)=5PU3S- [D1{q}

where the generalized aerodynamic force
coefficient matrix [D], different from
the linear problem, depends on not only

(9)

the reduced frequency but also the
vibration amplitudes.

So, a linear flutter equation is
gotten

[M]{d}+(K]{a}=2 PUZIDI{a} (10)

This equation must be solved by an
iteration process. At first, a set of
vibration amplitudes ({J,)} are chosen.

After the steady flow for the wing at a
basic angle of attack is computed, a
step deformation &$.(x,y)-q.is superposed

upon the wing impufsively, and a set of
indicial reponses of generalized
aerodynamic force coefficients are
obtained in the time domain. Then, the
D;; (i=1,N) are calculated by the
procedure mentioned above.

Having got the aerodynamic matrix

[D], the conventional V-g method is
adopted to solve Eq.(10), and the result
provides a critical flutter speed Vi and
flutter mode (q,},which usually is not
consistent with the preassigned (q, }.
Then, the resultant mode {@;} is used as
the initial {§;} for the second run of
flutter calculation. Such an iteration
procedure will lead to the final results,
i.e. the 1limit cycle flutter mode and
the flutter speed.

Experiments

The models for wind tunnel test are
a s8o0lid wooden rectangular wing and a
delta wing. A supporting system provides
rolling (¥) and pitching (8) degrees
of freedom for the rigid models. The
rectangular wing has a sharp side edge
with aspect ratio AR=2, and the chord
length is 300 mm. The pitching axis is
68 mm behind the leading edge. The delta
wing has a sharp leading edge with aspect
ratio AR=2.61, and the root chord length
is 460 mm. The pitching axis is 285 mm
before the trailing edge.The basic angles
of attack in the experiments are 14°and
18° for both wings. At these attitudes,
vortex separation occurs from the side
edge for the rectangular wing and from
the leading edge for the delta wing.

A low speed wind tunnel with the
diameter 1.m of the test section is
used, its maximum airspeed is 60 m/s.
Fig.1 is the photograph of the test
model.

The supporting springs are adjus-
table, and hence can provide different
eigen frequencies for the model. The wy
and <y denote the rolling and pitching
frequency respectively. For the rectan-
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gular wing, two sets of Wy , wse are
selected. One set is @y=1.875 Hz and
We=2.5 Hz. Another set is wy=1.875 Hz
and we=2.75 Hz. For the delta wing, only
one set (Wy=2.0 Hz,Wwe=2.375 Hz) is used.

(a)

(b)

Fig.1 The test system
(a) the supporting system
(b) the rectangular wing model
in the wind tunnel

Results and Conclusions

The test results of the ecritical
flutter speed and the results calculated
by Dboth TIM and DFM are listed in
Table-1, where o, is the basic angle of
attack.



TABLE-1 COMPARISION OF

CALCULATED

RESULTS WITH EXPERIMENT

CASE | TEST ° Wy We V; (m/s)
No WING o, (Hz) (Hz) TEST TIM DFM
1 RECT. 14 1.875 2.5 11 10.25 10.47
2 RECT. 18 1.875 2.5 10 9.25 9.129
3 RECT. 14 1.875 2.75 13 11.30 11.9635
4 RECT. 18 1.875 2.75 11 10.20 10.1936
5 DELTA 14 2.0 2.375 21 19.50 18.6414
6 DELTA 18 2.0 2.375 20 18.50 17.56
where the RECT. means rectangular.
The vibration time history obtained
by TIM for case-3 at the airspeeds 11 References
m/8 and 11.5 m/s are shown in Fig.2 and
Fig.3 respectively. The former is a 1. Strganac, T. W. and Mook, D. T.,
subcritical state, and the latter is =a Application of The Unsteady Vortex-
supercritical state. Lattice Method to The Nonlinear Two-

Fig.4 and Fig.5 depict the results
of the TIM for case-5 and case-6 at the
airspeeds 19.5 m/s and 18.5 m/s respec-
tively. Both states are at the critical
flutter point.

For the calculation of the genera-
lized aerodynamic force coefficients in
the DFM, an eleven terms polynomial of
exponential functions is used in the
curve fitting process for the indicial
response.

Since
wing root

the
and

be
the
the

there is a gap between
and the shield plate,
the influence of this gap cannot
taken into account accurately in
numerical analysis. This is one of
reasons for the discrepancy between
the test and calculation results.
Nevertheless, the numerical results may
be considered to be satisfactory.
Compared with the TIM, the advantage
of the DFM lies in the much less
computational time needed to get a
flutter point. But the DFM can only give

the critical flutter point, while the
TIM can give not only the critical
flutter point, but also the subcritical
and supercritical responses. Besides,
the 1linearized approximation of the

generalized aerodynamic forces in DFM is
not involved in the TIM. The superposi-
tion of modal generalized aerodynamic
forces wused in the DFM is tenable only
upon the engineering consideration.

From the results of the present work,
it can be seen that the higher the basic
angle of attack, the lower the critical

flutter speed. This means that the vortex

separation for wings at high angle of

attack deteriorates the flutter

characteristics of the wing, which is

important for combat aircraft in maneuver
flight.

Degree-of-Freedom Aeroelastic Equations.
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Fig.2 The ¥ and 8 versus the
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