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Abstract m, = engine~propeller-nacelle mass
The feasibility of wusing the active M, = P(”C%/q)R
contrel technique to suppress the whirl- = number of blades
flutter instability of advanced turboprops o
and propfans is analyzed. Aerodynamic vanes P =q . . . ;
are incorporated at the engine nacelles to @ = output vector weighting matrix
generate control airloads. The actuator Q‘ QO = propeller aerodynamic damping
system is driven by a contrel law derived ’ and stiffness matrices
from the linear quadratic regulator theory. q = vector of dependent variables
The results demonstrate that the aero- g = control weighting matrix
servoelastic system provides enough 5 0 : ;
controllability to prevent the whirl-flutter R, R = vane aerodynamic damping and
onset well beyond the design speed. The stiffness matrices
present study suggests that very efficient R = propeller radius . .
engine vibration isolation may be achieved by 5 = matrix-solution of the Riccati
optimizing the engine-propeller suspension to 1 2 equation :
attenuate unpleasant low frequencies without S, B = aerodynamic control matrices
t:eb risk of downgrading the required S_ = vane span
stability. t = time
u = control vector
Nomenclature V = airspeed
: v = horizontal displacement of
A, B, C = aeroservoelaltic system matrices engine CG w.r.t. nacelle
A1, ..,A4 = propeller aero coefficients W = vertical displacement of
a = distance between fuselage and engine CG w.r.t. nacelle
nacelle centerlines X = augmented state vecltor
b = engine-propeller CG distance ¥ = vector of output states
from pylon elastic axis ¥ = pylon torsion about E.A.
b = vane semichord £ = vane rotation angle
€ , . 2] = aft fuselage cone torsion
Clk) = Theodorsen's function K = reduced frequency
Cpr Ce = blade chord, vane chord u = 2Nm /T
d = propeller distance from pylon v = c!ogeélioop control gain
elastic axis § i
: : P air density
G = control gain matrix o = engine-propeller pitch
G = gyroscopic loads matrix ¥ = engine-propeller yaw
h = pylon elastic axis out-of-plane o = aeroelastic mode freguency
displacement . W, = engine prop uncoupled natural
hy, hz = aft.fuse1age cone displacement: ! frequencies (i=v, w, ¥, ¢}
horizontal, vertical @ = aft fuselage uncouplied natural
It = engine-prop mass moment-of- v,z 8 frequencies
inertia about pylon E.A. W = pylon uncoupled natural
Iy = engine-prop-nacelle mass moment- 3.7 frequencies
of-inertia about pylon E.A. @ = actuator natural frequency
IX = total polar mass moment-of- a . .
inertia about fuselage axis g = aeroelastic mode damping
L = propeller polar mass moment-of- Ca = actuator damping ratio
inertia 1, O = ynit, null matrix
J = cost function i + = referred to clockwise/counter-
J = propeller advance ratio (=V/(R) clockwise spinning directions
K = gtiffness matrix
Le = vane lift Superscripts:
1 = vane distance from pylon E.A. * = 1/6 a/8t
M = mass matrix - = dimensionless value
Mt = gystem total mass T = transpose
M8 = vane aerodynamic moment € = rgferred to control system
m = engine-propeller mass Cy =3 0)
" Subscripts:
Visiting Professor; Member AIAA, 1,2 referred to power plants 1 and 2

referred to actuator
referred to vehicle
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i. Introduction

The whirl-flutter is a major aerocelastic
probliem described as an oscillatory
instabiity of the engine—-propelier
installation. Two-degree-of-freedom models,
for which the engine-propeller structure is
considered to be a rigid body free to deveiop
only the pitch and yaw natural modes with
respect to the airstream direction, are able
to reproduce the precessional motion which
may become unstable under certain

conditions'. In the classical whirl-flutter
analysis, the fexibility of the system is

supposed to be originated by a combination of

the individual flexibilities due to both the
engine suspension (or mounting system), and
the back-up structure which supports it.

Equivalent spring rates are determined. They
provide a positive damping to the aerocelastic
modes =~ the forward and the backward
precession - up to a critical advance ratio,

Jcr. Further assumptions are considered as

follows: (1) wuniform flow reaching the
propeller disk; (2) small-perturbation, two-
dimensional, blade section aerodynamic

theory; (3) no significant motion of the
engine-propeiler center-of-mass; (4) no
coupling between the engine-propellier whirl
modes and the natural modes associated with
the back-up structure. Furthermore, by
definition, in a whirl-flutter formulation
the airloads are solely generated by the
propelier motion relative to the airstream.
However, more sophisticated idealizations
have demonstirated that the aforementioned
hypotheses are not always representative.
Significant motion of the engine-propeller CG
is wverified in complex engine-suspension
systems, specially when the distance betwsen
the elastic center and the mass center is not
negligible, and yields highly coupled natural
modes involving not only the angular
displacements of the power plant {pitch-yaw),
but also the linear displacements
(vertical-horizontai)] of the same with
respect to the unperturbed flow. In general,
both the roll and the fore-and-aft motions of
the engine-propeller setup have no
participation in the whirl-flutter

phenomenonz. Zwaan and Bergh have also
demonstrated that the wing natural modes may
couple with the engine-propeller whirl modes
to modify the aercelastic behavior of the

system3. Hence,

turboprops, in which two pusher
engines are supported by short
cantilivered with the aft fuselage cone, the
whirl-flutter analysis requires some more
elaborate work. Under the dynamic point-of-

view, this problem was treated in two former

in modern configurations of
propeller
pylons

papers“’s. A sketch of the 15-degree-
of-freedom model used to investigate the
problem is reproduced in Fig.1 for the sake

of completeness. Considerable influence of
the back-up structure dynamics was observed
in the stability characteristics. The whir]
modes developed by the two power plants
presented strong coupling with the natural

modes of the back-up structure. Both
symmelric and antisymmetric whirl-flutter
conditions were verified, involving in many

cases a major participation of the supporting
strgcture motion rather than the classical
engine-propeller-nacelle precessional modes.
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Situations such as the relative spinning
direction of the two propeliers could be
investigated as well, demonstrating that

counter-rotating propellers lead to larger
whirl-fiutter margins.

Aside from that, in advanced
turbopropellier configurations, another
problem must be addressed: the influence of

the nonuniform flow induced on the propeller
disk by the entire aircraft, specially by the
pylons which support the engines. The uniform
flow is one of the basic hypotheses of the
classical solution. However, if a steady flow
perturbation is assumed, the problem may
be solved by well known techniques. For
an observer sitting on the reference frame
fixed with respect to the propeller blade,
the peturbation flow field generated by the

aircraft is periodic. The periodic
aerodynamic loads may be added to the
classical aerodynamic loads, due to the

propeller motion with respect to the uniform

flow, if the assumption of small angles is
preserved. The transition matrix over a
complete characteristic period may be
calculated and Flogquet’'s theory for the

stability of periodic systems may be used to

check the whirl-flutter margin®. On the other
hand, if short, multiple, plate-like blades
are employed, as in propfan installations,
even the classical whirl-flutter aerodynamic
theory used for propeller blades should be

modified to introduce the cascade effects’
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Fig. 1. Fifteen-degree~of-freedom Model.

2. Vibration Transmissibility Problem

One of tihe most important features of
the 15-degree-of-freedom model described in
Fig.1 is a relatively large stability margin,
based on the fact that for the majority of
situations the back-up structure acts as a
dynamic damper, absorbing energy from the

engine mounting sy$tem4. Therefore, it is
feasible to consider the back-up structure as
an integrated part of the design of the
engine vibration isolation and, while keeping
the whirl-flutter stability, to reduce the
ransmissibility levels. Figure 2 depicts a
typical whirl-flutter stability contour for
#*

the critical advance ratio Jcr as function of

the engine
dimensionless,

suspension
natural

system

uncoupled,
frequencies

in pitch



and yaw, (5¢ and Bw respectively). The shaded

regions correspond to islands of  high
stability, where the engine vibration
transmissibility optimization may be
potentially expiored. However, if passenger

comfort ailied to the high speed are the
primary design objectives, it represents a
step further to apply the active control
technology to prevent the onset of
whirl-flutter. As a2 result, the engine
suspension system may be designed as soft as
possible to cut-off the unpleasant, low
frequency, vibration spectrum inherent to

turbopropeliers. The present work
investigates the possibility of obtaining
higher whirl-flutter critical speeds by

exploring the advantage,
point-of-view, of
of-freedom dynamic
coupled eigenvectors,

under the control
having a
system

multi-degree-
with strongly

Fig. 2. Whiri-Flutter Stability Contours for

the Dimensionless Advance Ratio J* as a
Function of the Engine Suspension Uncoupled
Dimensionless Natural Frequencies in Pitch
and Yaw.

3. Open-Loop Model

The open loop model is described in
reference 4. The 15-degree-of-freedom linear,
coupled, second order differential equations
are cast in state vector form:

{1}

#*
Xx = A x
v ¥ W

where:
X, = LP q _!T (2}
p=4q (3)
Te'-e) M (pQ-k)
A = (4)
M 1 o
and

- — 7
$, 7, 51 w, ﬁz 8 W, ﬁz 7,9, (5)
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is the wvector «collecting the dependent
variables of the problem. The matrices M, G,

K, Q' and Q° are defined in Apendix A. They
are function of the mass, stiffness and
geomeiric properties of the dynamic system
along with the flight and engine operating
conditions. A thoroughly discussion on the
characteristics of the above defined
aeroelastic problem is presented in
references 4 and 5. Here, it is important to
stress the highly coupled nature of the
complex eigenvectors associated with the
aercelastic modes, indicating that the
studied aircraft configuration whirl-flutters
in a complicated pattern, involving many
components of the back-up structure: pylon
pending-torsion and fuselage bending-torsion.
The instability associated with a complex
eigenvector having the main component related
to a back-up structure displacement,
generally denominated whirl-induced-flutter
in reference 4, will be the matter of primary
interest of this work.

4. Aercservoelastic Model

To achieve the controllability of the
open-loop system, a pair of aerodynamic vanes
is designed for the two naceles and
positioned at a distance 1 from the pylon
elastic axes (Fig.3). The goal is to provide
through appropriate rotations of the two
vanes the aerodynamic forces which can
control both the pylon bending and the pylon
torsion in symmetric and antisymmetric
whirl-flutter modes.

The aerodynamic loads {1ift and moment)
obtained from Theodorsen’s unsteady

theory for incompressible flowa, which may be
adjusted for compressibility and three-
dimensional effects. Assuming that the vanes
are driven by an actuator system connected to

are

the 174-chord position, from Fig.4 one has
for the two-degree-of-freedom aercdynamic
problem:

Lg = pbé( Vr(e-y) )+2anb€C{K)( Vie-y]

(8)
{73

+(h~hzt8a}+b€(e—w}/4 )

M. = -pblvr(&-y)/4

£

Fig. 3. Aerodynamic Vanes Geomeiric

Definition.



where, in the term tba, the plus sign is
associated with the propelier #1 and the
minus sign with the propeller #2. In these

equations the apparent mass is neglected.
Furthermore, a quasi-steady approximation is
coherent with the aerodynamic theory
developed for the propellier blades. Hence,
the Theodorsen’s 1ift deficiency function is
identified to the unity for all values of
reduced frequency.

Next, Eqs.?é) and (7) are put in a
dimensionless state vector form compatible
with the open-loop problem described in
reference 4 and the new generalized forces
are included in the equations of motion. The
original aercelastic equations, augmented
with the four new states represented by the
rotation of the two vanes, are rewritten as:

*

x= Ax+Bu (8)
where:
X=X, X N {93
— c c T ¢ )
u= e €, {10

AneH B
A= Y v (11)
0 Aa

-1 1,51 -1 0. nd
(p(Q'+R"}-G) M (p(Q°+R°}-K)
Ace“:r #(Q # ] (12)

1 0 J
Mlust M s
B = (13)
) 0
0
B = B (14)
a
L x ok T
X, = LE €8 &, (18)

The aerodynamic matrices R1, Ro, s' and SQ
associated with the generalized airloads
developed by the vanes, along with Aa and By

describing the dynamics of the
system, are presented in Appendix B.

control

_.\..._
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/
v

Fig. 4. Control Vane Aerodynamics.
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5. Control Law Synthesis

Optimal regulator theory, which provides
the minimization of a quadratic cost function
of both the system states and the control,
sub ject to the aeroservoelastic equations of

motion, will be employed to determine the
control law. Hence, the problem is posed as:
03
min J = J (y0y+ uRu) df (16)
u G

(17
(18)

s70: x = Ax + Bu

y =Cx

The solution of the
by the LQR (linear

theoryg. The full-state feedback control law
is:

Tatter problem is given
quadratic regulator)

u= -6 x (19)
which, for the constant-coefficient
differential equations, is derived from the
steady state solution of the Riccati
equation:

G=R'"BS (20)
where:

sA+As+Ccoc-sBR'BsS=0 (21)

B. Whirl-Flutter Stability. Closed-Loop.

The matrices @ and R in Eq.(16) are
respectively weighting the cutput and control
vectors. Both are chosen fo be unit matrices
in the present solution. In general, R is
written as R = v 1, where v is the control
gain of the closed-loop system. Here, v is
implicit in the matrix equations, and may be
associated with the ratio:

v =cS/(N COR) (22)
which gives the area of the control vanes
over the total area of the propeller blades.
The ratio v may be tuned to match the desired
overall feedback control gain at the design
point J des

The parameters chosen
study to represent the aeroservoelastic
system are collected in Table 1. The
corresponding free-vibration eigenvalues are
given in Table 2. Figure 5 depicts the root-
locus plot of the open~loop eigenvalues of
the characteristic matrix A as a function of

#*
the advance ratio J at sea-level condition.

in the present

The wh}r1~ flutter onset occurs at J*=1.15.
Referfxng to the phase diagram of the
associated free- vibration eigenvector, the

unstable mode presents a significant motion
of the pylon, and should be controllable by
the proposed control system. In Fig.7, the
result of using a LOQR algorithm to determine

the optimal control gain at J, = 1.5 is
des

shown. The root- locus plot versus J of the
closed-loop system characteristic matrix,
(A~BG), demonstrates that whirl-flutter is



#*
precliuded in the entire range of J values. .
In fact, the former instability was no longer Table 1: Definition of the Aercservoelastiic

. * System.
verified up to J = 2.0. Furthermore, the .
complex eigenvaiues present large damping a2 = 1.6216
ratios, well beyond the desired design point. B = .2008
It is well-known that the LQR theory does not d = .7878
guarantee that the aeroservoelastic system is c = .1961
also free from the static (divergence) _0 2317
. z N c= .
instability below the design point1q ¢
However, the pusher configuration is known to v = .0760
be intrinsically free +Trom divergence. A T = .3861
second example demonstrates that even with o= .00123
the output matrix € constructed to select Q = 178 rad/s
only those entries corresponding te the 1) o
states associated with the pylon a,; = a, = .4000
bending-torsion, the system is controllable O)_ (D)
with an ample margin (Fig.B8). a,'"’= a,”" = 4.000
b, = b{® = 4.000
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Fig. B. Open-Loop Root-Locus vs. J*

Table 2: Aeroservoelastic Open-Loop Sygtem:
Free-vibration Eigenvalues: J =0;
g =0; @ =178 radss, counter-
rotating propellers.

mode number W/ £/Q
w/ak.5357 01 4,9928 0
_h_~hﬂhﬁ“hhhrmﬁﬁ_~m-w_ﬁ~ 02 4.9888 0
¥,= 1.00 - - 03 4.6721 0
: “z“l%i f3e 1.0 04 4.6721 0
©q=%=-413 05 1.6400 C
T sh 08 1.4346 0
1=hy=.5%6 07 . 9300 0
L 08 . 8027 0
Vp=- 0413 $y=.0413 09 .5981 0
10 .B357 0
;Y]dz:.oasg 11 . 4598 0
By ,=.0553 12 . 4157 0
13 . 2828 0
14 . 2298 8]
15, . 2053 0
16, 1.990 -.200
Fig. 6. Phase Diagram - Critical 17 1.990 ~. 200
Free-Vibration Open-Loop Eigenmode: Back~ *
ward Elliptical Precession for the two control system eigenvalues

Counter-rotating Propellers {clock/counter-
clockwise spinning direction), symmetric
pylon bending~torsion and fuselage vertical
bending out-of-phase w.r.t. pylon motion.
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7. Conclusions

The present work confirms that the
active control technique may be used to
prevent the whiri-flutter onset. The reason
for the particularly good results achieved
with the proposed control system, lies on the
great controilabiiity of the aercejastic
system due to the strong dynamic coupling

observed in the whirl modes. This situation
is likely to be inherent to advanced
turboprop and propfan configurations. The

ability of suppressing the instability onset
up to very high speeds using a relatively
simple control system, based on aerodynamic
vanes attached to the nacelles, opens a vast
new area of promising research. The problem
of vibration attenuation, specially critical
in propeller-driven aircrafts, may be more
efficiently solved if the possibility of
designing unusually soft engine suspension

systems which do not become unstable at low
speeds is visualized.
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Apendix A: Open-Loop Mailrices
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The geometric parameters are adimensionalized
by R, the mass parameters by Mt, the mass

moment-of~inertia parameters by M:RZ and the
frequencies by .

Apendix B: Closed-Loop Matrices
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