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Abstract

The AEREL system contains subprograms for deter-
mining analytical displacement modes, numerical
values of aerodynamic transfer functions, analyt-
ical approximations to these, eigenvalues and
eigenvalue derivatives. The approximations are
combinations of simple functions fitted to given
values, which can be calculated by programs based
on the Advanced Doublet Element method, an exten-
sion of the Characteristic Box method, strip
theory or piston theory or obtained in some other
way. Eigenvalues are determined by Newton itera-
tion for increasing flow density by using natural
frequencies as initial approximations or & rou-
tine besed on complex integration for determining
these. Control laws may be included.

1 INTRODUCTION

The AEREL system is primarily intended for flut-
ter analysis and is written in Fortran. It has
been used for the transport aircraft SAAB 340,
the canard fighter SAAB 39 Gripen, and several
flutter models tested in wind tunnels’',

When the system is applied to an aircraft, this
is represented by a configuration of trapezoidal
panels with two edges in the free-stream direc-
tion. The configuration is otherwise arbitrary.
For each panel, analytical displacement modes are
determined by first subtracting rigid-body con-
tributions for trailing edge or leading edge con-
trol-surfaces from given data and then fitting a
linear combination of suitable functions.

The aerodynamic transfer functions can be calcu-
lated for subsonic flow,by a subprogram based on
the previously employed but unpublished ADE or
Advanced Doublet E%e?ent method. The advanced
velocity potential®’” and doublet-type solutions
with constant density on panel elements is used
in this, The ADE method is more,attractive than
the Lifting Line Element m.ztgod3 or the equiva-
lent Double Lattice method®s”, since simpler
kernel functions are involved and the resulting
influence coefficients can be calculated almost
exactly. The method permits in addition the use
of a modified Kutta condition,

For supersonic flow, a corresponding subprogram
applicable to a canard configuration formed by
two pairs of trapezoidal panels is included. The
method employed, which is called the CHB or Char-
acteristéc Box method, is basically the method

of Stark™, who allowed for the downwash singular-
ity at a subsonic leading edge. An approximate
extension makes the 9rogram applicable to a
canard configuration’.

The strip theory program may be useful for treat-
ing a wing with control-surface with tab, while
the piston theory program may be utilized for
achieving the appropriate asymptotic behavior of
the approximate transfer functions,
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As a wind gust hits different parts of an air-
plane at different times, the resulting forces
do not appear simultaneously. The simple func-
tions in the approximations to the aerodynamic
transfer functions are therefore designed such
that the time delays can be allowed for.

The subprogram included for flutter and gust
analysis shall solve the set of algebraic equa-
tions that results from Laplace transformation
of the equations of motion®, which in turn im-
plies that a nonlinear eigenvalue problem shall
be solved. This is achieved by a routine based
on the iterative Newton-Raphson method”. Given
eigenvalues for a density lower than that con-
sidered usually form the initial approximations,
which also can be found by complex integration.

2 AIRCRAFT MODELLING

A configuration of trapezoidal panels representing
a transport aircraft is shown in Fig. 1.
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Fig. 1 Panel configuration for & transport air-

craft. The wing and stabilizer dihedrals
are 7 and 15 degrees respectively.

The configuration is defined by the coordinates of
the corners of the panels. These are to be given
in a global coordinate system as input to the pro-
gram system. By giving them in the same order as
the corners appear when the panel contour is fol-
lowed around the panel, a unique normal direction
is defined for each panel.

In addition to the global system, a local system
X, ¥y 2 for each panel is defined. The origin of
the local system lies at the center of one of the
side edges, the x axis is directed in the same
direction as the global x axis, and the y axis lies
in the plane of the panel. The global x and z axes
shall lie in the symmetry plane of the aircraft and
x axis shall have the free-stream direction.
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Ve let eK, e§, and eK be unit vectors in the direc-
tions of the” local axes for the Kth panel, which is
called SK

5 EQUATIONS OF MOTION

Basic relations

It is of interest to consider a disturbed motion
relative to a specified rectilinear steady flight.
The steady flight is represented by the motion

of an inertial coordinate system, the global sys-
tem, which moves with the constant velocity U in
the negative x direction relative to the undis-
turbed atmosphere.

The equations of motion may be derived on the
basis of Cauchy’s first law'”. Applied to an air-
craft in steady flight, this yields

. U
oL+ div I

0 (1)
where ¥ is the density of the aircraft, f the
force due to gravity on unit mass, and I~ the
steady-state stress tensor. Using this relation,
a corresponding application of Cauchy’s law to
the disturbed motion results in
0Ca - aiv ] =0 (2)
where g is the acceleration field and T the

contribution to the stress tensor due to the
disturbance.

A finite number of
derived by forming

equations of motion may be
scalar products of weighting
fields [, with the left hand memver of £q. (2),
by integrating the products over the aircraft,
and transformlng the integral of Rk -div 1 by
means of Green’s theorem. Applying this procedure
to some part of the aircraft, e. g. a wing, we
may write the resulting equations as

Jrsgrs ~ ologypllev = Jg, 508 + fpppes ()
where ¥V is the aircraft part. The
this is S+I and S is that part of
that is exposed to the airstream.
nal part of the boundary and } is
tion to the contact force on unit
due to the disturbance.

On S, the tangential component of t, may be de-
lated and the normal component (in"the direction
into the aircraft) equals the perturbation pres-
sure p of the airstream. Modelling the aircraft
as described, we may thus write ig. (3) as

boundary of

the boundary

1 is the inter-
the contribu-
area of S or 1

2

[lop o+ wrop 1i]av « a2 fn_apaxay =
v . K s

K

= Jﬁm'Bﬂs (4)

I

where h_ is the component of Q in the local z
direction and Ap the jump in p across Sy in the
same direction. The pressure p and the coordi-
nates x, y, and z are dimensionless and referred
to the free-siream dynamic pressure q and a ref-
erence length I respectively. Since the field h
is zero outside the aircraft part considered,
the second term in Eq. (4) yields contributions
only from this part.

Linear approximation

The displacement g of a material point relative
to the inertial system due to the disturbance may
be small so that an approximation to it can be
found in the form of a linear combination of
given fields. Taking these fields identical to
the weighting fields and dimensionless, we write

LZ boa, (5)

where the quantities g are undetermined coeffi-
cients. These depend only on the time t, which
is dimensionless and referred to L/U.

8 =
~

The pressure jump 4p is considered linearly re-
lated to g so that

Ap =) ap,
n

where Ap_ corresponds to the n
sum in 2q. (5).

(6)

th term of the

The stress tensor T depends on the deformation
and the deformation velocity at the current time
as well as all earlier times. For simplicdty, it
is here written as

2 =20 (2

1
where [ and T
the fields p "

+ (u/nrte ] (1)

are given tensors determined by

Substituting the expressions (5), (6), and (7)
into Eq. (4), defining mass matrix elements by

- S 8
ugy = Japy g (&)
stiffness matrix elements by

1
- vf (v *1,)av (9)
demping metrix elements by
(10)

= Itr(vgm-gi)dv
v

and aerodynamic matrix elements by

L2
= = 2 I 11)
Kmn(t) S : ! h Ap dxdy (11)
r X 3
K
where S_ is a reference area, and dividing each

term by a reference mass M »s the square of a ref-
erence c¢ircular frequency (&%, and L,we obtain
the equations

‘ . 2,0
Zn[anvaqntt * DunVng * Spnn * (v /H)kmn(t)l =
1

= -tas 12
e E

where
an = mn/Mr (13)
Dun = Dmn/(Mr wr) (14)
.. 2 .
Smn = bmn/(Mru)r) (15)
v = U/(wL) (16)
Vi = (e, )

and p the free-stream density. The equations (12)
corregpond to those derived in Ref. 8.



Indicial functions

In addition to aerodynamic forces due to the dis-
placement of the aircraft, aerodynamic forces due
to a gust may appear. We consider a "frozen" gust
with transversal velocity Ug w (X)in a direction
determined by the unit vecto gg.

The factor w _(X) depends only on the distance Xin
the flight d%rection from the point where the gust
starts to the point considered.The global and local

coordinates of this point are x’=x+x’ and x respec-

tively and x; the global coordinate of the center
of the root chord of S The root chord shall be

smaller than 2x£ for a§l panels.

Since the origin of the global system is supposed
to meet the gust at t=0, the boundary conditian
for the gust-generated dimensionless potential ﬁg
reads

X . . -
ﬁgz = flz.sgwg(t_x ) 0 x & T on DK (18)
0 t & x°

The gust generates a pressure jump Apg and a

corresponding aerodynamic matrix element

2
_ L E )
ng(t) =35 — I oo 4pgaxdy

r SK

(19)

For expressing the azerodynamic matrix elements in
terms_of 4, we introduce indicial potentials dg
and ﬁg. The former shall satisfy

xr . N
dnz = hnxﬂ(t) for r=1 on Sy (20)
T " —_
b H(t) r=2
and the leatter
ﬁ;z = si-ggﬁ(t-x') on S (21)

where H(t) is the Heaviside unit_step function.
Like g _, the potentials dg and g~ are dimension-
less aRd referred to UL. g

The indicial potentials yield via the linearized

N . . PR : r
Bernoulil equation indicial.pressure jumps A4py
end 4p. and by means of these we define indicial
functio%s by

OIS P PIPE:

Imn(t) =5 b 4p dxdy (22)
r K SK

and
2
L I

Img(t) = —S—anmz.\p dxdy (23)

K S, &

The aerodynamic matrix elements may then be ex
pressed as

t
Kmn(t) = J[I;m(t-r)qn‘t * Iin(t_r)anr] GT (24)
and

1
ng(t) = j Img(t—‘[)wgr at (25)

U
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Laplace transformation

Using the notation f for the Laplace transform of
f(t) with respect to the dimensionless time t and
p for the transform parameter, the result of
transforming Eq. (24) and (25) is

Kon = A0 (P)3, (26)
and

ng = Cu(P)¥g (27)
where

1

A_(p) = oI+ p°T2 (28)
and

Go(p) = pI (29)

These functions may be called aerodynamic trans-
fer functions. They are analytic functions of p,
which is complex in general.

Eq. (24) may be used for calculation of the aero-
dynamic coefficients K__(t) for arbitrary varia-
tion of q_ with time, €. g. harmonic variation.
Limiting The study to this case and to the behav-
ior of K _(t)_for large values of %, we substi-
tute M bT for qn(T). It is then seen that

for t-»o00,

Kmn(t )— eP? ({[ pI;m(‘l') + pglin('l')] e-pf at

—»a_(p)eP? (30)
and for p = iw (with Im{W} & 0) we get
K_(t)— a_(iw)e'™" (31)

The ordinary unsteady aerodynamic coefficients,
which are often considered defined only for real
w, are thus seen to be identical to Amn(iw).

4 MODELLING OF TRANSFER FUNCTIONS

Theory
For subsonic flow, the indicial functions may be-
have qualitatively as shown in Fig. 2
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Fig. 2 Qualitative behavior of indicial func-
tions for subsonic flow

In order to reproduce the behavior at t=0 and for
t—» 00, we use functions of the form

fj(t) = 1 j=1 (32)
§(¢v) i=2
973t 5502



in approximations for I- (t), S(t) being the
Dirac delta function, all} functions of the form

(33)

gj(t)z 1-e j=1

J=-1 -t
37 e J>1
in approximations for Img(t).

It is observed, however, that & gust hits differ-
ent parts of the aircraft at different times and
that the different time delays must be allowed
for. The approximations are therefore writtien as

I;n(t) = Zkéfj((t-Tk)/C)H(t-Tk)agk (34)
and
(0 = L L ey(Gn/omten (35)

where Tk and C are arbitrary parameters.

Laplace transformation of Eq. (34) and (35) and
substitution into Eq. (28) and (29) yields

-pTk - 1 2
Zk %e pij(pC)(ajk + pajk) =& (p) (36)
and
-pT -
%‘JZe Pk ngj(pC)bjk = ¢, (p) (37)
where
pfj(p) =41 i=1 (38)
P _ J =
p/(1+p)'3-2 i»e2
and
pZ.(p) = <1 3= (39)
J j=1 .
p/(1+p) J»

It has been found11 that the variation with time
of indicial functions is almost the same for

functions corresponding to different normal ve-
locity distributions. The coefficient &< in Eg.
(36) may therefore be deleted. k

The remaining coefficients aT and b. are deter-
mined in the AEREL system byJ%he metﬂgd of least
squares on the basis of values of A_ (i) and

G (iw) for a number of real values 6Ff W . The
pgrameters C and T, can be determined rather
easily by trial and error and use of a plotting
progranm.

Subprograms

The system contains two subprograms for aerodynam-
ic transfer function modelling. One of these works
essentially as described above and yields close
approximations both for A__(i®w) and Gm(iw). This
is illustrated in Fig. 3. The curves represent

the approximation and the circles the given values
of the transfer function.
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Fig. 3 Traunsfer function for the yawing moment on
a transport aircraft due to a spanwise

gust.

The second program offers the possibility of em-
ploying other functions instead of pCf.(pC) in
Eq. (36). One of the options available“implies
that this function can be replaced by pC.f,.(pC.),
which means that several parametrs, C., %ngtea&
of one, C, are to be determined. The fesulting
approximation yill be of the sam?3kind as those
of R. T, Jones ° and W. P, Jones °°

For supersonic flow, the second program offers
the possibility of using the functions described
in Ref. 14 for this case. Fig, 4 shows that close
agreement can be obtained by means of these func-
tions.
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Fig. 4 Transfer function for a control-
surface mode of a cropped delta wing.

M=1.08 .
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5 COMPUTATION OF TRANSFER FUNCTIONS

Basic equations

The dimensionless perturbation velocity potential
satisfies in the linearized theory the wave
eﬂuation. In terms of the inertial local coordi-

nates for SK this reads

2
Vo, - WRx + 3Bt)%4, = 0 (40)
where M is the Mach number.
Laplace transformation applied to E%. (40) and
the boundary conditions for dn and g yields
27T 2 2T
9°d - u(d/ix + p)F =0 (41)
., = (h +9h )T on S, (42)
and
§ =K. oPXF on S (43)
gz ~Z wg g K
where W_ is the transform of % _(X) with respect

to the ®dimensionless distance® X.

The right hand members of Eq. (42) and (43) are
seen to be proportional to the unknown or arbi-
trary factors 3, end W_. In order to find general
solutions, we may therBfore calculate transfer
functions that correspond to unit values of these
factors. In terms of transfer functions £ ,

4
4P , and 4P for the potentials and pregsuré
jumps, we may-write
g, =83, By =57, (44)
4%, = 4R, end AT, = AP, (45)

where

APn = -Q(Afnx+pafn) and APg:-Z(Afg;pAﬁ’g) (46)

and the transfer functions A (p) and G (p) can
- mn m
be written

2
L
a_(») = s % éfhmAPndxdy (47)
and K
2
Gm(P) = ‘g—‘ Z jhmAPgdxdy (48)
r X SK

Elementary solution

Bquation (41) is satisfied by the elementary
solutions

3 = (ayre?H)™ (49)

where

R = (p%+n?)"/? (50)
- ((u-x)%+B(v-y)?)1/? (51)

T = M(M(u-x) ¥ R)/B (52)

and

B = 1-M° (53)

The so called advanced velocity potential2 Y is
related to the ordinary potential by

QV(X"yiz,t) = d(x',y,z,t+x’)

Laplace transformation of this function, which is
used in the subsonic case, yields the correspond-
ing transfer functions
P =§epx
g g

P = Fe™

The solution that corresponds to the - sign in
Eq. (52) is not relevant for subsonic flow, and
an elementary solution of doublet type for the
advanced potential and M € 1 is therefore defined

by

(54)

and

7 - fg(mneﬂ)” (55)
where
= (u-x + MR)/B (56)

Derivation of the elementary solution (55) yields
the kernel functions

)2

Y(y-x) =m—z-(Mrnep'f)‘1 (57)
and
3° 7 -1
Z2(y-x) = ;—5(4”Rep ) (58)
zZ

where 1 and x are position vectors with components
u, v, 0 and. x, y, 2 in the local system for SK'

Both signs in Eq. (52) are relevant for super-
sonic flow, and

= -1 pMZ(u-x)/B
§ = (29R)” 'cosh(pMR/B)e (59)
is therefore a useful elementary solution for
the velocity potential and M > 1.

The ADE method

A subprogram based on the ADE method, the Advanced
Doublet Element method, is included in the AEREL
system, In this method, the jump in jﬁn across a
panel is approximated by dividing the panel into
s%ﬁll elements and replacing the jump across the

k*" element by an undetermined constant ¢ .

This results in a set of equations containing
influence coefficients W equal to the advanced
normal velocity at a coné%ol point on the j
element due to a unit jump across the kth element.

The jump in? across the wake of a panel is
approximated in a simpler way. Since

-2 Aiz’nxe-px ’

and since there is no pressure jump, 4¥. is in-
dependent of x on the wake, It is sufficient,
therefore, to divide the wake into streamwise
strips and to replace AW’ by a single constant
for each strip. The ADE meth?d is thus similar
to the Vortex Lattice method 5.

ap = (60)
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A sufficient number of equations for determining
a unique solution is obtained by applying the
Kutta condition. The program is written in such
a way, however, that a modified condition can be
used. The potential jump across a wake strip is
put equal to the product of the jump across the
panel element at the trailing edge and an arbi-
trary constant.

For the transport aircraft that was modelled as
shown in Fig. 1, it was found that a more satis-
factory solution was obtained by using a smaller
value than the default value, which is unity, for
the arbitrary constant for the strips behind the
panels S1 and SZ'

Table 1 Side force Y, yawing moment N, and roll-
ing moment L due to steady yaw angle 4.

PHOBOS ADE Wind tunnel

M=0.63 M=0.63 M=0.15
Y/(qsrﬁ) 1.00 1.05 1.01
N/(quLﬁ) 0.20 0.21 0.18
L/(qsrL/g) -0.19 -0.19 -0.17

Table 1 shows that the results obtained by the ADE
method for the side force, the yawing moment, and
the rolling moment due to steady yaw are in ggod
agreement with those from the PHOBOS program
which many elements on the actual body surface

are used, and from measurements.

The influence coefficient for a control point X,

on SJ and an element A on SK may be written
lim
ij = (gz-gy) IY(u X3 Ydudv +

-~ a-J

k
+ e - ) ] Z(B 2.3
k

and the equations for the constants Agk and
Apkg as

.)dudv (61)

= pX =
2; W B8P = (hy vohy e x0T (62)
and
J .
% wjkAPkg = SZ'Sg 3=1,2, ... (63)

The control points are centers of the elements,
which are bounded by chords and constant percent
chord lines., These intersect the chords at equi-
distant points. The distance from the leading
edge to the first point like the distance from

the trailing edge to the last point is one quarter
of the distance between the points.

The formulas derived and employed for calculation
of the influence coefficients cannot be shown or
described here. They are included in or can be
found as special cases ?$ thogse derived for the
Polar Coordinate method''. Simpler and more direct
numerical gquadrature routines have been included,
however, for use when the control point is located
at a large distance from the element forming the
gquadrature region.

If A, is an element located downstream of the
elemenit A , the value of AP_at the leading
k-1 - n
edge of Ak is approximately egqual to
- -pXi
-(24xk)(4y‘/kn A.Wk-‘l,n)e

AP, = (64)
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where x” is the global x coordinate of the center
of the *eadlng edge of A and Ax, the mean
chord of A, . Replacing 4 by zero if the
element A4, lies at the 1eadlﬁg edge, the program
calculates AP by Eq (64) and the aerodynamic
transfer functlons A (p) by

. ZZh

where h is the value of h_ at the center of the
leading lgdge of Ak and &y the span of Ak' The
method employed for Gm(p) 1s analogous.

n A%y BYy (65)

The CHB method

Aerodynamic transfer functions for supersonic flow
may be calculated by a subprogram based on the

CHB method, the Characteristic Box method”, which
is included in the AEREL system.

Using characteristic coordinates s and t defined
by

X = (66)

xO +ﬂ(s+t)/M
and
= (-s+t)/M (67)

where M =(u -1)1/2, the transfer function for
the potential jump across a planar wing can be
expressed for p=iw as

s t
A.ﬁ(x’Y) = - I I

| Wn(u,v)cos(gw-r/ﬁ).

C

-1wM( s-o+t-T) dFay
Tir

where W(u,vj is the downwash transfer function,

(68)

r = ((s-0)(t-2))"/2 (69)
u = xy +AT+T)/M (70)
and

v = (-F+1)/M (71)
The integral is evaluated in the CHB method by

dividing the wing plane by Mach lines defined by

S=sj=3'3 =0, 1,2, ...
and
tztk=k$ k=0, 1, 2, vvs

and replacing the downwash W (u,v) in the boxes
formed by these lines by constants. For boxes cut
by a subsonic leading edge, these constants are
determined by a special procedure, but for boxes
lying within the wing boundaries they are known
and given by

= WO (3k)8A/M, (- 3ek)S/M)

At a node (s,t) = (js,ké), the potential jump is
then approximately equal to

J ok w
A_g!'jk = -‘i% K(o,o)’é {1 Buv K(3-pk-»)

where

(72)

(73)



K(j,k) = K(j,k)/K(0,0)

(74)

K(j,k) = } }cos(Z(ﬁSR4§)e-inM(j+u+k+v)Aa Q%g!
o0 (75)

and

R = ((j+u)(k+v))1/2 (76)
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Fig. 5

Wing in characteristic lattice. I=3.

In case of & subsonic leading edge with sweep
angle @, the program can be applied for Mach
numbers given by

(77)

for I =2, 3, 4,, ... . As shown in Fig. 5, the
leading edge intersects in these cases the Mach
lines 8 = s, at nodes only and divides the I
boxes lying“between these nodes into two parts.
The downwash on the parts upstream of the edge is
approximated by the product of a suitable func-
tion and a constant such that the potential at
the node on the edge becomes zero. The mean value
of the downwash approximation is then calculated
for the boxes cut by the edge and inserted for
corresponding constants in Eq. (73).

M= (1 + ((I-1)/(I+1)tan7)1/2

The CHB program has been extended7 in such a way
that a canard configuration consisting of two
parallel symmetric wings each formed by two trap-
ezoidal panels can be treated. Since there is no
upstream influence in supersonic flow, the poten-
tial jump across the canard and its wake is first
determined without regard to the presence of the
main wing. The downwash due to this potential
jump is then calculated approximately by a two-
dimensional method at points on the main wing and
subtracted from the given normal velocity of this
wing, whereupon the potential jump across the
main wing is calculated by the CHB program.
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Fig. 6 Transfer function for 1lift on the main

wing due to pitch of the canard. M=1.054 .

The 1ift on the main wing of a canard configura-
tion due to oscillations in pitch of the canard
has been calculated! by the method described. It
is compared in Fig. 6 to c?grespdnding resulss
kindly supplied by Hounjet'“. The agreement is
seen to be surprisingly good.

6 SOLUTION OF EQUATIONS

Laplace transformation

Applied to the complete aircraft, Eq. (12) gives
a se* of equations for determining the unknown
generalized coordinates 9. We take gust excita-
tion into account by replacing K_ (%) in the
equation by K (t)+K (t) and write a set of

. mn mg" | .
equations for ng term8 in the displacement ap-
proximation (5) as

S
éF =
mn

c, - (v24u)xmg m=1,2 ...n, (78)

n=1
where
2 2
an = anv qntt+Dmnvqnt+smnqn+(v Au)Kmn <79)

C stands for the term on the right hand side of
Eg. (12) and represents a generalized force ex-
erted by a control-surface actuator.

Having determined the generalized coordinates,
an internal shear or moment component at some
section separating two aircraft parts can be ob-
tained by applying Eq. (12) to one of the parts
and taking the weighting field hm equal to an
appropriate rigid-body field. The term on the
right hand side of Eq. (12) is then a dimension-
less generalized force representing the desired
shear or moment, It may be called S (%) and is
given by o n

g
2 .
Sm(t) = ;;1 Foot+ (v 44)ng m=n_+1,n_+2,... (80)
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The integrations involved here, i. e. for m > n ,
are confined to the aircraft part considered,

and since the integrals (9) and (10) are zero for
h equal to a rigid-body field there are no damp-
ing or stiffness terms involved in this expres-
ion,

Applying Laplace transformation to the equations
agd letting the initial values be zero, we get

E..-z._
£. Qpndy = Cm-(v 4M)°mwg m=1,2,..0yn (81)
and
n
S

S, = :; Ul +(v ?1)0 W, men_+1,n_+2,... (82)
where

Q_ =M

mn mn (83)

(Vp)2+Dman+Smn+(vz/}OAmn(p)

Solving the generalized coordinates from the set
(81) and substituting them into Eq. (82) yields

= (v /;4[ Z

c .G
an nj J] gt

n=1

ns Ny

32
+Z Q C_.C. (84
=1 D o mn nj J ]

where D is the determinant of the matrix Q={Q
_%n% th %uantltles [ nj form the inverse me %11
C .

Inverse Laplace transformation gives
t

J LA
2 ja s(e-m) (T)ar

where W (t) and R

5,(t) = (v2 //«)(K t-T)w (T)dt) +

(85)

t) are weighting functions

deflnedmby
RORE 3 CROZEIC (86)
and
31D = T (7(2) /00000 ap (87)
where n

S
X,(p) = < ¥p3(p)64(p) (88)
and

nS
,5(p) = n%;an(p)an (89)

The integrals (86) and (87) can be evaluated on
a line from p=0"-igo to p= ¢~ +i®0 where ¢~ has a
value large enough for all eigenvalues, zeros of
D(p), to lie to the left of the line.
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However, the line may be moved or deformed into
a curve such that there are V; eigenvalues, p=py,
to the right of the line or curve. The equations
(86) and (87) then transform into

s

Wo(t) = vZ1 (X, (5y)/D"(5))ePP" &
i 4 CROLCILINCO)
and
‘)S
g = 2 (L) /0 (o))"

+ 5%{ g(ij(P)/D(P))eptdp (91)

where D"(p,) is the derivative of the determi-
nant at P=Pp, -

The integralg in Eq. (90) &nd (91) may be zero
if there are no singularities to the left of
the line or curve.

Flutter program

Plutver is a aynamic instapbility waich exists ir
the resl part of any py is positive. The flutter
problem is therefore mainly a problem of deter-
mining the eigenvalues, i. e. a prooblem of solv-
ing the characteristic equation

(p) =

Based on the Newton-Raphson method, a program
for this purpose is included in the AZREL system.

The method, which has earlier been described9 s

is iterative and predicts simply that

p" =p - D(p)/D°(p)

(92)

(93)

is an improved approximation provided p is a
value that deviates not tooc much from the true
eigenvalue.

The program developed is such that a selected
number of eigenvaliues can be generated for some
selected Mach numbers as functions of the alti-
tude or as functions of the stagnation pressure
of an isentropic flow for each Mach number.
Aercdynamic transfer functions shall be avail-
able on a file for one or a few Mach numbers

and for a number of reduced frequencies for each
Mach number. Spline interpolation is included
for interpolation in the Mach number and the
modelling described is utilized in the program
for rapid aerodynamic matrix generation for com-
plex values of p.

In flutter investigations, it is common practice
to let the fields gn in the displacement approx-
imation be natural modes determined in a ground
vibration test or by a finite-element calcula-
tion. The associated natural frequencies W _ and
the generalized masses M . are then also given.
Measured data for the modes can be used as input
to subprograms for determining analytic modes
and aerodynamic transfer functions, while the
natural frequencies and the generalized masses
form input data to the flutter program.



It is favourable to use natural modes in the dis-
placement approximation both because the associ-
ated natural frequencies yield suitable initial
approximations to the eigenvalues and because a
a good displacement approximation is obtained in
that way.

Since one wants to know the eigenvalues for a
number of altitudes, it is natural to start at a
high altitude, where the natural frequencies
yield useful initiel approximations, and to pro-
ceed to lower altitudes by using the results for
the previous altitude as initial approximations.
Only a few iterations are then regqired for each
altitude.

The values required for D(p) and D’(p) in Eq.
(93) are determined in the program by using
Gaussian elimination and triangularization for
D(p) and the difference formula
p°(p) = (D(pra)-b(p-4))/2a (94)
for the derivative;
with small modulus.

A being any complex humber

When running the program for a number of alti-
tudes, it sometimes happens that the eigenvalues
generated (for one and the same altitude) are
not all different but that some are identical.
This can usually be avoided by using smaller
altitude steps, but another possibility exists.

The alternative possibility is to use a routine
based on complex integration by meens of which
the number of eigenvalues within arbitrarily
selected rectangular parts of the p plane can be
determined "7,

Since the modelling of the aerodynamic transfer
functions is made by using simple analytical
functions, it is easy to calculate their deriva-
tives with respect to the frequency parameter p.
Extensions for celculation of derivatives of
eigenvalues were therefore easy to include in
the program. These can be employed for calcula-
tion of derivatives both with respect to the
flow density and to design variables. The latter
are ne?ged in optimization studies by the OPTSYS

system in which flutter constirajints are being

included.
7
8
1
2
3
4

Divergence

The flutter program
such an instability
Pig. 7, which shows

also predicts divergence, if
exists. This appears from

how the eigenvalues for a

fin with rudder and tab vary in a particular .case
for increasing flow density. One of the eigen-
values is seen to become real, first negative and
then positive, as the density increases, which
implies divergence.

b 7
FIN BENDING. | Im{vp}

4

%

TAB ROTATION

£ 1
RUDDER ROTATION

L 5

L 4

—~1 0

Pig. 7 Eigenvalue loci for a fin with
rudder and tab. M=0.S5.
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