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Abstract

Transonic flutter is an important aeroelastic phe-
nomenon that occurs in the high subsonic Mach num-
ber flight regime. This paper presents the development
and applications of a three-dimensional unsteady tran-
sonic aerodynamics computer code designed primarily
for flutter analysis. The mathematical formulation is
based on a transonic small disturbance equation, and
the numerical technique employs a time-linearization
approach in which the flow potentials consist of (ronlin-
ear) steady and (linear) unsteady components. The nu-
merical procedure has been implemented in a computer
program called UST3D (UnSteady Transonic code for
a 3D isolated wing), and the primary features of this
code include: (1) An efficient fully implicit Newton-like
iterative scheme for the solution of the nonlinear steady
transonic equation; (2) A semi-implicit ADI scheme for
the linear unsteady transonic equation; (3) New non-
reflecting absorbing far-field boundary conditions for
the unsteady equation. The UST3D code has been in-
tegrated into the National Aeronautical Establishment
(NAE) flutter analysis program. * Transonic flutter re-
sults for a fighter type aircraft are presented.

1. Introduction

In the last decade, there has been considerable in-
terest in the development of computational techniques
for unsteady transonic aerodynamics. This development
was in response to a need to supplement the expensive
wind tunnel investigations and flight tests with fast, effi-
cient and inexpensive computer simulation codes to ac-
curately predict flutter boundaries and other fundamen-
tal aerodynamic phenomena in the transonic regime.
This is especially important for modern supercritical
airfoils since the decrease in flutter speeds in the tran-
sonic flow regime is considerably more severe than that
for conventional airfoils.

This paper describes the development and applica-
tions of a three-dimensional unsteady transonic aerody-
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namics computer simulation code on an isolated wing
for aeroelastic flutter calculations.

The mathematical model for the unsteady tran-
sonic flow is based on a three-dimensional nonlinear and
time-dependent transonic small disturbance (T.S.D.)
equation. The assumption of small perturbations in
the local flow relative to the free-stream, which is valid
for small thickness, incidence and amplitude of oscil-
lation of the body, is made. A finite-difference tech-
nique is used to solve the three-dimensional unsteady
T.5.D. equation. The solution of the nonlinear, time-
dependent partial differential equation can be found ei-
ther directly using a time-integration technique?~% or
indirectly by a time- linearization method.=% In the
time-linearization approach, the assumption is made that
the flow consists of the sum of two velocity potentials
representing the steady and unsteady effects. The steady
potential satisfies the well-known nonlinear T.S.D. equa-
tion, while the unsteady potential is obtained through a
linear time-dependent T.S.D. equation with coefficients
computed from the solutions of the steady velocity po-
tentials. The time-linearization method works best for
small amplitude wing motions which constrain shocks
to oscillate about the steady state positions. The time-
integration method solves the nonlinear, time-dependent
T.S.D. equation directly, it will model shock motions
better. However, this approach is more expensive in
terms of computer resources.

The numerical technique presented in this paper is
based on a time-linearization method, and it is imple-
mented in a computer simulation code called UST3D
(UnSteady Transonic code for 3D isolated wing). The
primary features of UST3D include:

(1) A new fully implicit Newton-like iterative scheme
used in conjunction with a preconditioned gradient
type method is developed for the nonlinear steady
T.S.D. equation. The method is not only faster
but also more reliable than the classical successive-
linear over-relaxation algorithms.

(2) The linear unsteady T.S.D. equation is solved by a
semi-implicit ADI scheme, in which the z-direction
is treated explicitly while the y- and z-directions
are discretized by an ADI type algorithm.

(3) A new non-reflecting absorbing far field boundary
condition is applied for the unsteady equation



to improve the overall efficiency of the simulation code.

In section 2, the mathematical formulation for the
three-dimensional T.S.D. equation is discussed. The
computational techniques for the numerical solutions
are then described in section 3. In section 4, applica-
tions of the UST3D simulation code for transonic flutter
calculations are given. Conclusions are presented in sec-
" tion 5.

2. Mathematical Formulation

The choice of the T.S.D. equation is not unique. It
is obtained from the full potential equation by a process
of nondimensionalizing, scaling and eliminating higher
order terms as the thickness ratio tends to zero. Often
extra terms are included to cater for special require-
ments such as to handle oblique shocks more exactly.
With this in mind, the three-dimensional unsteady mod-
ified T.S.D. written in conservation form is given by:

O, 0fi  Of  Bfs _
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where
fo=—A¢: — Bé.,

fi=E¢, + F¢’ + Ggj,
f2 = ¢y +H¢z¢ya
f3 = ¢,.

The coefficients A, B, E, F,G and H are defined as

A= M2k,
B =2MZ%k,
E=1-MZ%,

1

G =3(7- )M,
H=—~(y~ 1M,

where &, My, v and ¢(z,y, z,¢) are the reduced fre-
quency, free-stream Mach number, specific heat ratio
and disturbance velocity potential respectively. This
formulation is derived to be consistent to the first or-
der with the full potential equation. In the standard
classical T.5.D. equation, the coefficients for H and G
are set to zero. However, the additional crossflow terms
¢ybzy and éy¢,, are retained in the present formula-
tion, to permit a better resolution of shock waves with
large sweep angles.

The governing partial differential equation given in
Eq.(1) is nonlinear and time-dependent. This makes
computation of the flow-field troublesome since the prin-
ciple of superposition is not applicable. However, under
certain conditions, some of the benefits of linearity can
be salvaged. In particular, Tijdeman(® has found ex-
perimentally that time-linearization is justified for in-
finitesimal amplitude disturbances. For such cases the
unsteady flow can be treated as a linear perturbation
about a mean (nonlinear) steady state flow. This is an
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attractive approach since the computations can be sim-
plified considerably and it is particularly appropriate in
the context of flutter analysis. However, it should be
noted that since the time-linearization approach con-
strains shock waves to oscillate about their steady-state
positions, it is generally unsuitable for motions with os-
cillation amplitudes of the same order as the thickness
ratio or mean angle of attack of the airfoil (whichever is
larger).

Using the time-linearization approach, the solution
of the T.8.D. equation is separated into its {nonlinear)
steady ¢°(z,y, ) and (linear) unsteady ¢*(z,y, 2,t) com-
ponents, that is

é(z,y,2,t) = ¢°(2,y,2) + €8"(2,y,2,1), €K1 (2)
where ¢ is related to the amplitude of unsteady motion
which is assumed to be small. '

When Eq. (2)is substituted into Eq. (1), and the
€* and higher terms are neglected, the first approxima-
tion leads to a system of equations for ¢° and ¢*:

L

Oz 3y 3z 0

(3)
and

A'$g, + B¢z,
= 6L, + D*6% 4 E 6, + F 65 + G4, + 6%,
(4)

where

A* = M2 K?,
B* = 2M2 k,
C* = (1 - M)~ (v+ 1)M%L¢;,

D" = —(y+ 1)M%¢5. — (v — DML by,
E*=1-(y-1)M%43,

F* = —2M2. 45,

G = —2ML 4.

The steady potential ¢° satisfles Eq. (3) which is
a nonlinear mixed elliptic-hyperbolic partial differential
equation. Once ¢* is obtained from (3), it can be sub-
stituted into (4) to give a linear hyperbolic equation for
the unsteady component ¢*.

Wing surface boundary condition

Assume the wing surface is defined by
z = g% (z,y,1),

then the wing surface boundary condition can be de-
scribed as

+ E4 +
¢z :gz +K‘gt5

on z = 0, ¥ < Ytip, where 4. and x4,
denote the z-coordinate of the wing leading edge and
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trailing edge, respectively, and yip is the y-coordinate
of the wing tip.
Following the time-linearization procedure, we as-
sume
g=9¢"+¢eg*, e<l
Thus the wing surface boundary conditions become
=g5%,

+
é:

¢ = gz + K9y

%)
(6)

Condition (5) is the same as the wing surface condi-
tion for the steady state problem, it includes the effects
of thickness and mean angle of attack. Condition (6)
represents a wing of vanishing thickness undergoing an
unsteady motion with zero mean angle of attack.

Together with the conditions (5) and (6), the equa-
tions (3) and (4) are uncoupled. Thus equations (3) and
(5) constitute a steady state problem which is indepen-
dent of unsteady motion of the wing. Equations (3) and
(5) are solved by a Newton-like iterative method, which
will be discussed in the next section. Having obtained
the steady state solutions, the coefficients of equation
(4) are computed and the linearized three-dimensional
transonic small disturbance equation (4) together with
condition (6) is solved for ¢*.

Far fleld boundary conditions

The outer boundary conditions used for Eq. (3)
are the standard far-field boundary conditions given as
follows.

Far upstream: ¢* =0,
Far downstream: wy + 82, =0,
Far above and below: ¢* =0,
Far spanwise: ¢ =0,

For the plane of symmetry: y=0 and ¢, =0.

The standard boundary conditions for the unsteady equa-
tion (4) are given by:

Far upstream: ¥ =0,
Far downstream: o + koY =0,
Far above and below: ¢% =0,
Far spanwise and for the

plane of symmetry: oL =0.

These boundary conditions for the unsteady T.S.D.
equation presented above are, however, perfectly reflect-
ing boundary conditions, i.e., the energy of outgoing
waves will be totally reflected by the boundaries. When
such boundary conditions are imposed, it is necessary
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to place the boundaries far away from the wing in or-
der to prevent spurious reflections from contaminating
the solution. A common technique is to use the co-
ordinate transformation method, in which an infinite
physical region is mapped into a finite computational
domain. While this approach is effective for the steady
state equation (3), it is unsatisfactory for the unsteady
equation (4).

In this paper, a new non-reflecting absorbing bound-
ary condition is applied for the solution of the unsteady
T.8.D. equation. The construction of absorbing bound-
ary conditions for second-order hyperbolic equations is
discussed in detail by Jiang and Wong.(”) The new con-
ditions have been developed so that wave-like solutions
are permitted to propagate through the artificial com-
putational boundaries as if there are no boundaries pre-
sented. The boundary conditions are derived from the
theory of wave propagation, and it is obtained through
the dispersion relation of the differential equation by
requiring that the initial-boundary value problem ad-
mits wave solutions travelling in one direction only. It
has been shown that local approximations of the global
boundary conditions yields an n'**-order differential op-
erators, and the optimal boundary condition satisfies a
canonical factoriztion form with each factor annihilating
a wave packet travelling at a given group velocity.

An important feature in the application of a non-
reflecting absorbing boundary condition is that not only
does it increase the accuracy of the numerical solutions,
but it also reduces the computing costs since a smaller
computational domain could be used. Using the ap-
proach presented in {7}, the first-order absorbing far-
field boundary conditions for the unsteady equation (4)
are given as follows.

Far upstream and downstream:

adi + Béz + 74, =0,

AC
-1),

(-

20\/%—2- + AC
Lo __AG
20/ ¢ aC

for upstream and
a=\/%—2-+.40+~';—+(%—1) ———-——-—-,‘_B—;?_E_A.C_,
ﬁ:AKl—-%) ;—\/%TB*i_EH], 0<v<l

AG

V=,
201/ B> + AC

-1<v<h



for downstream.

Far above and below:

Bv
2VA

where 0 < v <1 for above and —1 < v < 0 for below,

¢r +vVA ¥ + ¢% =0, (7)

Far spanwise:

E¢;,‘+m/2'c_ ¢}‘+%(G+v\/§—B)¢: =0, (8)

where 0 <v < 1.
For the plane of symmetry:
¢y =0.
In the above conditions v is a parameter which can

be tuned to improve the absorptivity of the boundary
conditions. Typical choices are v =1 or v = —1.

3. Computational Methods

In this section, numerical techniques based on finite-
difference approximations are applied for the solution of
the T.S.D. equation (1).

The computational space and grid systems used in
this report is the same as that adopted by Boppe.(®) The
computational space is divided by a Cartesian grid, in
which the original (z,y, z) coordinates are mapped into
the new (£,7n, () coordinates. A stretching transforma-
tion is applied, so that the original physical domain in
the z,y, z region with far-field boundaries correspond-
ing to infinity becomes a finite computational domain in
the £, 7, ¢ region. Notice that the computational space
in the z-direction is broken up in three regions. The
wing planform is located in region II, in which a uni-
form grid is employed. In region I and III, stretched
grids are applied in the upstream and downstream di-
rections.

3.1. Solution Procedure for Steady Potentials

The solution of the steady potential ¢°(z,y,z) is
determined by solving the following equation:

C¢zx + G¢:y + E¢yy + ¢zz = 07 (9)

where

C=Q~M)~(y+1)M%és,

G= —2M§°¢y,

E=1-(y-1)M%L4,.
Notice that Eq. (9) is essentially the same as Eq. (3)
but written in non-conservation form. For convenience,
the superscript s will be omitted.

Eq. (9)is nonlinear and of mixed elliptic-hyperbolic
type, and the type of equation is determined by:

D =G*-4CE.
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Eq. (9) is of elliptic type (i.e., for subsonic region) if
D <0,

and of hyperbolic type (i.e., for supersonic region) if
D >0.

Finite-difference approximations

A finite-difference approximation is used to dis-
cretize Eq. (9), and the Murman-Cole type-dependent
difference sheme is used for the ¢, term, that is

_ Biv1,ik — 2045k + Gic1jk
- Az? ’

¢I$

if the grid point (7,7, k) is in subsonic region
(ie., D < 0), and

_ Bik—20i-1 5k + Bicz ik

¢IZ A.’L‘z !

if the grid point (4,4, %) is in supersonic region (i.e.,
D > 0).

Central differencing is used for all other derivatives
regardless of the local flow velocity, that is,

_ it ik = Pi-1,5k
- k)

& 2Az
by = Gi a1k — Pij~1,k
¥ 2Ay ’
_ Biy-1k — 2005k + ik
¢yy - Ay2 bl
_ Pigk—1 — 285k + $ijk1
¢ZZ - Azl b
oy = i1 i1,k — Pie1,j41.k — Pit15-1,k t Pity 41,k
Y T N

4Az Ay

The finite-difference approximations need to be modi-
fied to take account of the far-field and wing bound-
ary conditions, and this has been discussed in detail by
Boppe.(®

Newton-like iterative scheme

By the application of the finite-difference approxi-
mations, the solution of the steady transonic equation
(9) is transformed to the solution of a large system of
difference equations

L(¢) =0, (10)
where ¢ is a vector with elements ¢; j i corresponding
to the steady potential at the grid point (7,7, k). Since
Eq. (9) is nonlinear, the resulting system of difference
equation is also nonlinear.

A Newton-like iterative scheme, which was first prop-
soed by Wong(® for the nonlinear transonic full poten-
tial equation, is applied for the solution of Eq. (10).
The iterative procedure is described as follows:

Let ¢° be an initial approximation for the steady
potential vector, then for n =0,1,2,...,



"Step 1. Compute the residual vector:
™ = L(p™),

Step 2. Solve the linear system:
M, 66 = —p(0)

Step 3. Update the steady potential:
¢t = 4(m) 4 5g(n),

where n is an iteration number, §¢ is the correction vec-
tor and M, is a matrix operator varying from iteration
to iteration. The iterative process is repeated until the
residual norm |[#(™|| is less than e.

M,, is a linear operator, which is chosen to be an ap-
proximation to the linearized transonic operator. Sup-
pose, at the n' iterate, the coefficients C,E and G in
Eq. (9) have been calculated from the value of the po-
tential at the (n — 1)*® iteration. The result of the ap-
plication of a finite-difference approximation to Eq. (9)
then leads to a 12-point formula, where

(11)

(L)ijr = ACi jxbi;k + AWi i1k
+ AWW, j xbizo,jk + AE; j kdiv1 jk

+ A0 j ki j+1,k + AL jkdij-1k
+ ANi jx®i5k+1 + ASi ki k-1
+ NWijkdi-1,j+1,k + NEijkbiv1jr1k

+ SWijkdbiz1,j-1.k + SEij kPit1,i-1,k-
(12)

Notice that the coefficient AWW, ;1 is equal to zero if
the grid point (¢, ,%) is in subsonic region. Moreover,
the coefficients NW; ;r, NE;;r, SWijr and SE;;
are due to the cross-term G,y in Eq. (9), and their
values are usually smaller than other coefficients for the
transonic small disturbance formulation. In the present
work, the operator M, is chosen by setting the coeffi-
cients AWW; ; x, NW; ;k, NE; i4, SW; ;x and SE; ;&
to zero. Hence, M, corresponds to a seven-point for-
mula:

(M) = ACi j ik + AW jkdio1 jk
+ AEiqy k00641 + A0 jxbi jr1 k
+ AL ik dij-1,6 + ANy jiedi ka1

+ ASi jkbi k-1 (13)

Preconditioned minimal residual algorithm

The main computational work in the Newton-like
iterative procedure given in (11) is in step 2 for the
solution of the correction vector,

Mé§p = —r, (14)
where M is a large sparse matrix consisting of seven
non-zero diagonals. For convenience, the subscript and
superscript n are omitted. It is important to have an
efficient solution technique for Eq. (14}, since the large
system of equations has to be solved for each step in the
Newon-like procedure. A direct method is not possible
because it requires a large amount of storage and arith-
metic operations. A classical iterative technique such
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as the successive line over-relaxation method is also not
efficient because of the slow rate of convergence. In this
paper an iterative scheme based on a minimal residual
algorithm is applied. Moreover, the algorithm is used in
conjunction with a preconditioning technique in order
to yield a rapid rate of convergence.

The purpose of using a preconditioning technique
is to accelerate the convergence rate of an iterative pro-
cess. Suppose C' is a non-singular matrix, Eq. (14) can
be rewritten as

MC™1Cé¢ = ~r, (15)
where C is generally known as a preconditioning matrix,
and Eq. (15) is called the preconditioned system for
Eq. (14). If the operator C is chosen so that C'~!
is a good approximation to M ™!, then the condition
number of MC~! would be much smaller than that for
M itself. Since the rate of convergence for an iterative
method is depended upon the condition number of the
linear system, solving the preconditioned system Eq.
(15) could yield a faster convergence rate than that of
the original system Eq. (14). A detailed account of the
construction for the C matrix will be discussed shortly.

The preconditioned minimal residual algorithm is
given as follows.

Let §¢° be an initial guess correction vector, com-
pute the initial residual vector for the system, i.e.

p? = —r® — M§4°.
and solve the preconditioning system, i.e.,

C20 = p° )
Then for k¥ =0,1,2,...,k, do:
Step 1. Compute the parameter:

_ _(o*,M2F)
Qk = TMzF,Mz7)

Step 2.  Update the new correction vector:
6¢**! = 8¢* + axz¥,

Step 3. Update the new residual vector:
PP =pt — e M2F,

Step 4. Solve the preconditioning matrix for z¥+1:"
C5 = pk+1 .

In step 1, (z,y) denotes the usual inner product, i.e.,
(z,y) = zTy. Notice that, if C = I (the identity ma-
trix), then z*¥ = p* for all k and the method becomes
the basic minimal residual algorithm with no precon-
ditioning. The main computational work per iteration
in the preconditioned minimal residual algorithm is one
matrix by vector multiplication for Mz, and solving the
preconditioning system Cz = p.

The iterative procedure for the solution of the steady
potential thus consists of outer and inner iterations: the
outer is based on a Newton-like algorithm for solving
the nonlinear T.S.D. equation (9), and a preconditioned
minimal residual technique is applied to find the solu-
tion for the linear system Eq. (11). Since we are inter-
ested in the overall convergence for the nonlinear prob-
lem (i.e., Eq. (9)), it may not be necessary to soive the
linear system in Eq. (11) to excessively accuracy for



each Newton-like iteration. In the present implemen-
tation, only an approximate solution is sought for the
linear system. Hence, a small fixed number of iteration
(such as k = 4) will be sufficed in the preconditioned
minimal residual algorithm.

Preconditioning matrix

The preconditioning matrix C plays an important
role in the convergence rate of the minimal residual al-
gorithm. For an effective preconditioning, the matrix C
should have the following two properties:

(1) C should be chosen so that C™ is a good approx-
imation to M ™! in some sense. Consequently, the

condition number of MC~! is much smaller than
that of M itself.

(2) The preconditioning step Cz = p should be easily
computed; otherwise, the preconditioning step will
not be efficient.

A popular preconditioning algorithm which satis-
fies the conditions mentioned above is based on an in-
complete LU factorization. In this approach, C is taken
to be an approximation to the matrix M, and it is also
a product of sparse triangular matrices:

C=LU=M+E, (16)

where L and U are sparse lower and upper triangular
matrices. The non-zero elements of L and U appear in
the same locations as those in the matrix M, where

(L)ijk =Dijkbizk + Aijkdijr—1
+ Cijabim1,ik + Bij ki i1,k
(17)

and

Uik = bijk + Ei jxbiv1,5k + Fijxdbi ik
+ Gijkbijkt1- (18)

The matrix E in Eq. (16) is known as the error ma-
trix which measures how good the approximation be-
tween C' and M is. Since L and U are constructed
so that their non-zero diagonals are in the same loca-
tions as those in the lower and upper triangular part of
M, this approach is generally referred to as an incom-
plete LU factorization preconditioning. The precondi-
tioning techniques have been proven to be very success-
ful for large sparse symmetric and nonsymmetric matrix
computations.(10-11)

The coefficients of L and U are computed from the
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coefficients of M according to the relations:

Aiix = ASiix,
B.',j,k = AIi,j,ky
Cijx = AWk,

Dijix =1+ a)(AC: jx + AWW, ;1) — A ; kG jk—
+ CijkBiz15% + BijxFij-1,k
— Aij 1 (Bijg-1+ Fijk-1)
~ B; ;x(Eij-1,6 + Gij-14)
~ Cijp(Ficy ik + Giz1,jk)s

(19)

Eijx = AE; k[ Dk,
Fi ik = AO;;k/Dijk,
Gijk = ANi jx/Di k-

A small value « is added to the main diagonal
elements of M to ensure the stability of the iterative
scheme. However, the convergence rate is not sensitive
to a and a = 0.05 is used in our computer implementa-
tion. Notice that, AWW; ;, = 0 if the point (¢, 7, k) is
in the subsonic region, and AWW; ; ;. # 0if it is in the
supersonic region. However, if AWW, ;+ # 0. Then the
SIGN of AWW, ;i is the same as that for the AC; ;-
Consequently, adding the coefficient AWW; ;i to the
AC; ¢ will improve the stability of the scheme.

Since C = LU, the preconditioning step

Cz = p,

can be computed efficiently via solving a forward substi-
tution Ls = p, and then a back substitution Uz = s. It
is worthwhile to mention that the computational work
required for the preconditioning step (i.e., solve Cz = p)
is about one matrix by vector multiplication M z.

3.2. Solution Procedure for Unsteady Potentials

After the steady potential is obtained, the coeffi-
cients of equation (4) can be computed. The unsteady
potential ¢%(z,y,z2,t) can then be computed by solv-
ing the linear hyperbolic equation. In the following, we
describe the algorithm and the solution procedure for
solving (4). For convenience, the superscript u will be
omitted in the following discussion.

Finite-difference approximations

Equation (4) is discretized by a semi-implicit finite-
difference scheme, where the r-direction is treated ex-
plicitly while the y— and z-direction are discretized by
an ADI algorithm ‘analogous to that of Borland and
Rizzetta.(?
y-sweep:
g-¢"

At

-— — 1 -
BS, =CD, 8 .¢" + Dé,¢" + §E6yy(d>“ +¢)

+Fb,87 + 2GE.D(4" + §) + 88",
(20)



z-sweep:

¢n+1__¢'§—
At T

g —2gn 4 gn o
Gt

%6zz(¢n+l ___¢n)’
(21)

where

—

5 i ik = Gijk — Pic1,jk
Frh T~ Tie1

1 —— —
S0i ik = ‘2‘(6z¢i+1,j,k + 82i k),

.3 g’zk"¢i—1,j,k, if
Ti~Ti-1

C<90

qubi,j,k =
itk ~bijk if

Tipr—%i

b e—bii-1k i

¥ —¥i-r
Dy jr =

i jt1,k—Pij k if
Yitr—y;

< bi e — Bi -1k
6 ybi e = I,
Yi —Yj~1

1, -
Bydiik = 5(8ybiitrn + 8ydisn),

2

— E ¢','+l,k“§ Giik
yj+1“yj-—1( ¥Pij vbisk)s

5yy¢i,j,k =

= Biik = Biion
820k = Ihd¥ TRLETS

Rk — Zk-1

$.20i 5k = (gz¢i,j,k+l — 8.6i k)

Zk+1 T Zk-1

Semi-implicit ADI (SADI) algorithm

The SADI algorithm is used to advance the poten-
tial ¢ from the time level n to n+1 until some presecribed
time is reached. At each time level, the solution is up-
dated from n to n + 1 on each successive y — z plane,
marching from upstream to downstream. The value of
¢ on the first y — z plane upstream is obtained by us-
ing upstream boundary conditions. On each subsequent
y — z plane, the two sweeps of the SADI algorithm are
performed and the solution is obtained on this plane
by solving two tridiagonal matrix equations. On the
last y — 2 plane downstream, the downstream boundary
condition is applied.

y-sweep:
Eq. (20) leads to a system of equations of the form

a;’(;j—l + b;/$] + C;l'q;j+1 = d;l’ .7 = 27 vy Jmax-l (22)
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for each fixed z. The wing root and the far spanwise
boundary conditions are used to provide two additional
equations. Thus a completed system can be solved for
b1,..., P max for each fixed z. To evaluate the right-
hand-side d¥, the value of 6,,4" is needed. 4,.¢" is the
standard central differencing for all values of z except
z = 0, the plane of wing surface, where a special formula
must be derived because of the discontinuity of ¢ across
z2=0.

On the plane z = 0 (i.e., k = K B), the potential on
the upper and the lower surface of the wing are denoted
by ¢V and ¢, respectively. In region I, which includes
the region upstream of the wing and the region beyond
the wing tip, the potential is continuous across z = 0,
thus

¢L — ¢U
and
5 ¢=(¢k+l*¢k_¢k"¢’k«1) 2
= Zk+1 — 2k zk —2Zk~1/ Zed1 — 2k
k=KB, z=0.

In region Il which covers the wing planform, the
wing surface boundary conditions are applied to evalu-
ate 6,,0.

_ (Srp1 =Y
St = (T~ ) o
k=KB, z=0%, (23)
¢l — drs 2
0.0 = z T K - )
4) ((9 gt) Rl = Zp—1 ) Zp — 21
k=KB, z=0", (24)

where z = 0% and z = 0~ denote the upper and lower
surface of the wing, respectively. Finally in region III
of wake, the wake condition

{¢:1=0,. across z = 0
is used to obtain
o ($r1— ¢V Bl — e 2
8.0 = - ’
k41 T %k Zk — Zk—1 Zk41 — Zhk—1
k=KB, z=0. (25)

Thus on z = 0, two systems of equations of form
(22) need to be solved, one for ¢* and one for ¢U.

z-sweep:

After ¢ is obtained from the y-sweep, Eq. (21) is
used to compute ¢**1. Because of the term §,,¢"t!,
Eq.(22) will take three different forms in the three dif-
ferent regions as described in y-sweep above.

In the region I, the potential is continuous, ¢ =
¢l = ¢U. Eq. (21) plus the above and below boundary
conditions leads to

ai‘é:ii +blzc¢;:+1+ci¢z:1l =d}zcy k= 1,0, kmax
(26)



where ¢ = (V).

In the region II, conditions (23) and (24) are used
to decouple Eq. (21) into two systems of equations for
¢™*! above and below the wing surface. That is, two

. g . . 1 n+1
tridiagonal matrix equations, one for $7%1,..., (¢§( B) ,

1
the other for (¢%B)"+ , ¢7I?i)1+1 e Z::x are solved.

Finally in the region III, an intermediate variable
¢! is introduced

¢' = pug¥ + vgt, (27)

where
- Zk — Zk-1
Zht1 — Zkoy

and

Zraq —

= 1T KB
Zk41 — Zk-1
With this new variable, Eq. (25) becomes
5 ¢_(¢k+l"¢1 ¢I"’¢k—-1> 2
zz¥ = - :
241 = 2k Zk — 2k—1/ Zp41 T Tk

Thus Eq. (21) leads to the same system as (26) with

éxpreplaced by 47, ie., a tridiagonal system for ¢y, ...,

B, .. Phna,- After ¢7 is computed, ¢U and ¢¥ can be

obtained by using the Kutta condition
U — 4L =T. (28)

Combining (27) and (28), we have ¢V = ¢’ + T, and

¢t = ¢7 —pl.

Time-Step Consideration

The solution is advanced from the time level n to

n + 1 by SADI algorithm. Since the algorithm is semi-

implicit, a CFL condition must be satisfied for numeri-

cal stability. An estimate of the CFL condition may be

obtained by performing a stability analysis for a semi-

implicit algorithm applied to Eq. (4) with constant co-
_efficients, and it is found to be

At B

2« .
Az ~ maxC

(29)

The allowable time-step size for stability from (29)
is compatible with the time-accuracy requirement. The
restriction for stability is based on the receeding-wave
propagation time scale; such a time scale is necessary
to resolve receeding waves accurately. In the present
formulation, a large time-step size is not an important
issue because Eq. (4) is not used to calculate the steady
state solution; the steady state solution is obtained from
equation (3).

The following tables show the number of time-steps
per cycle required for stability. The theoretical value is
determined from Eq. (29) and the practical value is the
actual number of time-steps used in the computer code
without losing the stability. The results presented in
Tables 1 and 2 are for the reduced frequency k = 0.09.
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Table 1. ONERA M6 Wing

theoretical practical
Mo, time steps time steps
.85 480 300
90 440 300

Table 2. Fighter type Wing

theoretical practical
M, time steps time steps
.85 640 350
.90 560 300

3.3. Computational Results

The numerical algorithms reported in sections 3.1
and 3.2 have been implemented in a computer simula-
tion program called UST3D. The UST3D code has been
tested for the ONERA M6 wing and a fighter type wing.
This paper presents some results for the fighter type
wing. The computations are carried out for Mach num-
ber 0.9 at zero angle of attack, the reduced frequency k
for the unsteady T.S.D. equation is 0.45. The grid sys-
tem is 51 by 26 by 31 in the z—, y— and z-directions.

Figures 1 and 2 compare the performance of the
Newton-like iterative scheme and the classical succes-
sive line over-relaxation (SLOR) method used in Ref.
[8] for the steady transonic equation. It is clear from
the development of the supersonic points (SUP) in the
flow fields and the lift coefficient C; that the Newton-
like algorithm yields a very rapid convergence rate. The
improvement of the present algorithm increases for the
T.S.D. equation with high Mach number and non-zero
angle of attack. A typical computing time for the steady-
state solution using the Newton-like scheme is about 120
seconds on Amdahl 5860 computer. It is worth mention-
ing that the iterative scheme given in section 3.1 can
be easily vectorized. A vector version of the Newton-
like algorithm has been developed, in which the incom-
plete LU factorization preconditioning is replaced by a
matrix polynomial preconditioning technique.(?) The
computing time for the steady-state solution reduces to
about 35 seconds on CDC Cyber 205 vector computer.

Figure 3 illustrates the effects on the application of
absorbing far-field boundary conditions for the unsteady
T.S.D. equation. The solid lines are the results obtained
using a large grid compuation (i.e., 51 x 26 x 31). It is
evident that good agreements are achieved when ab-
sorbing boundary conditions are used on a smaller grid
(i.e., 51 x 26 x 21). In contrast, considerable differ-
ences in the real part of Cj coefficients are observed
when the standard reflecting boundary conditions are
imposed for a small grid calculation. An attractive fea-
ture on applying absorbing boundary conditions to a
smaller grid calculation is that the computing time is
significantly reduced. About 30 - 35% saving on the
computing time is achieved by the application of the
new absorbing boundary conditions. For the wing un-
der consideration, Figure 4 shows the spanwise unsteady
ACp distributions.



4. Application to Flutter Analysis

The UST3D code has recently been implemented
into the NAE flutter analysis program. Some prelimi-
nary results are presented herein to illustrate the valid-
ity of the code by comparison with results using the dou-
blet lattice method.!*) Some fine tunning of the code
is in progress. The results given are for a fighter type
aircraft and for illustration purposes in the flutter cal-
culations, only the two flutter modes are considered.

Figure 5 shows the two mode shapes computed
from NASTRAN. The bending mode at 8.32 Hz has a
significant plunging component. Similarly, the torsion
mode at 9.15 Hz has a large pitching component.

Each mode is separated into its plunge and pitch
components along the wing elastic axis and a separate
unsteady aerodynamic calculation is carried out for each
of these components. This modelling of the wing as-
sumes no chordwise bending. A virtual work calcula-
tion using the original modes is performed to obtain
the generalized aerodynamic forces for flutter analysis.

In the present model the aircraft wing is divided
into 18 spanwise sections. The spanwise distributions
of Cp, and Cjy for the pitch component of the torsion
mode are shown in Figure 6 at M = 0.85 and reduced
frequency k based on mean chord of 0.18. The doublet
lattice results are also included for comparison purposes.
The ACp distributions for the same mode and pitch
component are shown in Figure 7 for two spanwise lo-
cations. At this Mach number no shocks are formed on
the airfoil. For this configuration the agreement with
the doublet lattice results is fairly good.

As an example of using the UST3D code in flut-
ter analysis, the damping and frequency plots with air-
speed in knots are shown in Figure 8. The version of
RAE method, without lining up values of frequency
and speed, is used and the value of k is 0.18. The
flutter speed determined when damping goes to zero is
about 700 knots. The flutter speed using doublet lattice
aerodynamics is very close to this value.

5. Conclusions

In this paper, the development of a three-dimensional
unsteady transonic aerodynamics computer program for
an isolated wing is described. The simulation code is
designed primarily for flutter calculations. The perfor-
mance of the computer code has been illustrated by the
computational results reported in the paper. The com-
puter code is efficient and requires a modest computing
time.
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Figure 5. Mode Shapes
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