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Abstract

A rigorous theory of the scattering of
normally incident longitudinal wave by a
penny-shaped interface crack in multi~lay-
ered composites is presented. Made use of
Hankel integral transform, a transfer ma-
trix has been obtained, and the problem is
reduced to a set of dual integral equations
in matrix form, which are then reduced to
a set of singular integral equations
treated numerically by Jacobi polynomials,
As an example, the scattering of elastic
wave by a penny-shaped interface crack in
one layered half space has been investi-
gated in more detail., The scattered field
is derived in far field case by means of
the contour integral technique and sta-
tionary phase method. The theoretical re-
sults have been shown that at large dis-
tance from the crack, the scattered disp-
lacements in the layer are composed of Ray-
leigh-Like~-Mode waves predominantly, and
the P wave and SV wave are predominant in
the half space. The scattered amplitudes
of displacements for the first two modes
are plotted versus the incident wave fre-
guency, and it is observed that the multi-
resonances occur at some frequency.

I. Introdution

Recently, the theoretical problem of the
scattering of elastic waves by crack has
received considerable attention. Authors,
working in many different areas, such as
applied mathematics, applied mechanics,
geophysics, seismical engineering and quan-
titative non-destructive evaluation (UNDE),
have contributed to the aknowledge of this
subject.

This paper is concerned with the scat-
tering of time harmonic, normally incident
longitudinal wave by a penny-shaped inter-
face crack in multi-layered compositeds.
The scattering of elastic wave by a penny-
shaped crack located in an infinite isoT
tropic medium has been considered by Mal ,

Matin?

al.4 have investigated the interaction of
longitudinal wave with a penny-shaped crack
at the interface of two bonded dissimilar
elastic solids, The papers related to the
problems are refered to those of Neerhoff)

s Matin and uickham3. Srivastava et

Yang and Bogyé, Angel7. The problem of this
paper is more complicated and difficult
ocne.
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The formulation of the problem is pre-
sented in section 2. The total field in the
cracked layered media is analyzed as the
superposition of the incident field and
scattered field., Thegincident field has been
given by Eeing et al., and scattered field
can be changed into mixed boundary value
problems.

Hankel transform is used in section 3 to
obtain a suitable general solution of the
wave equations., The transfer matrices are
obtained, and the problem is reduced to a
set of dual integral equations in matrix
form,

As an example, the scattering of elastic
wave by a penny-shaped interface crack in
one layered half space has been considered
in section 4, The discussion of numerical
results are presented in section 5.

11. Formulation
Consider n layers and a half space are
bonded together perfectly, except in the

regin Osr<l, z=0, where is a penny-shaped
crack, as shown in Fig.1.
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Fig.1 Incidence of a longitudinal wave in
multi-layered composites on a penny-~
shaped interface crack

Suppose the layers and half space are oc-
cupied by homogineous isotropic materials
with different properties and a incident
wave is harmonic longitudinal wave which is
impinging at the crack normally. The face



of the crack is free of tractions. Thus,
the problem is reduced to an axisymmetric
elastodynamic problem.

The total field can be divided into the
sum of the incident field and scattered
field according to:
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in which,
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which is assumed to be known,
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and
the scattered field, i. e.,

the modification to the incident field due
to the presence of crack, For the scattered
field one should solve the following boun-
dary value problem ( superscription s and

the time factor exp(-iwt) have been sup-
pressed):
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Pj-—-—the density, Aj,Mj—the lame cons-

tants, KLj and KTj are the P wave and SV

wave numbers, respectively. The subscrip-
tion j (3=0, 1, 2, ***, n ) represents the
half space and the layers.
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The boundary and continuous conditions are
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uhere'(;; is knoun.,

In addition, the scattered field Wu§t
satisfy the following radiation condition:

[

(7)
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where R:(r2+22)%, K is wave number vector

modulus,

III. Integral Equations

Applying Hankel integral transfo;m tq
wave motion equations (2), and taking into

account of radiation conditfon (7), we ob=-
tain formulae as following:
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in which, dJo(£€7) is zero order Bessel

function, A (t), Bj“)’ci@)and D) are

unknown functions,
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The following two basic unknoun func-
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Taking the Hankel integral transform for
the boundary and continuous conditions (5)
(6), one obtain transfer matrices of Aj(t),

Bj(%), C;(8) ana D;(1).
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where T., Qo' Qqs By F and Qn are known

J 9
matrices, which can be refered to Ma”.
Then, made use of the surface ccnditigns
of the crack, the integral equations in
matrix are obtained as following:
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The equations (15) are a set of dual in-
tegral equations for the scattering of
elastic wave by a penny-shaped interface
crack in multi-layered composites. The de-
rivation in more detail could be refered

to Ma®.

1V, Example

As an example, the scattering of elastic
wave by a penny-shaped interface crack in
one layered half space has been considered,
i.e., dy=d, d =0 (k=2,3,00e9n). The set of

dual integral equations (15) can be reduced
to a set of singular integral equations by

means of Abel integral transForm§O and the

results of Lowengrub and Sneddon ~:

1

r 0 iRm “Jl 0 ——=lrum
—— du
0 —B) \s@) w gl 1 0

S (w)
U X
1! Ky(wsx) —iKgz(®wsx) R@m}
+_y du
) - [1K;(wsx) —K, (us>) S (w)
- {¢° l=] <1
:[._(ir_)_ (16)

Mg

where oy B» Cy» f(x) and Kj(u,x) (3=1,2,3,
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4) are given in Nag, R(x) and S(x) are the
unknown functions., Following the method

of Erdogan11, and expanding the unknown
functions as an infinite series in Jacobi
polynimals, the singular integral equations
(16) can be reduced to a set of ajgebraic
equations which are refered to Ma’.

The expandation can be expressed:
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where ¢,  and Con (n=0,1,2,...) are under-

mined constants which can be solvee by the
algebraic equations, and Pl (n=0,1,2,...)

is Jacobi polynimals.
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Upon the constants Cq, @nd cy (rn=0,1,2,

..s) are obtained , using the equations
(8)-(14),(4), displacements can be exp-
ressed in integral form, making use of
contour integral technique and the some
asymptotic analysis methods, the surface
scattered displacements in the layer at
large distance from the crack are presented
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where Tin(Kj) (m=1{2,n=1,2) and A (Ki)

are given in ma®, Kj(j=1,2,,..,N) is root
from the generalized Rayleigh function
A (K )

The scattered displacements for the half

space at large distance form the crack are
obtained:
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GL(¢"") and G (B>w) are given in ma®.

From the formulae (19) and (21), it can
be seen that the scattered displacements
in the layer are composed of Rayleigh-lLike
Mode waves predominantly, and the P wave
and SV wave are predominant in the half
space.



V., Discussion of Numerical Results

Numerical results are presented in Figs.
2-5, These results were computed for two
groups parameters,

1) the layer is AL, and the half space
is NI:

d=0.3 or d=0.6, ,=26.5x10°(N/m%),
P1=2.7x10%(kg/m>), A ,=56.3x10% (N/m?)
M0=66.5x109(N/m2), €0=8.8x103(kg/m3)
A,=108.5x10%(N/m?)

2) the layer is AU, and the half space
is AL:

d=0.8, a,=28.0x10%(N/m?)
P1=19.3x103(kg/m3),?\1=147.Dx109(N/m2)
My=26.5x10%(N/m?), P ,=2.7x10° (kg/m°)
A =56.3x10° (N/m?)

For the layer -half space combination—
the first groups parameters which are said
to " stiffen" case ( Ve >V, ), there 1is

only one scattered Rayleigh-Like-Mode wave
in the layer. Figure 2 and fFigure 3 shou
the modulus of the ratios of coefficient

A1 and B1 to incident P wave amplitude AO

versus the freguency, respectively, For u=
0, there is no scattered field in the solid.
The several resonance peaks can occur in
some range of frequency. The resonance am-
plitude decreases as d increases.

However, for the other layer-half space
combination——the second groups parameters
which are said to " loading " case Vt1<:

Vi )y thers are multi-scattered Rayleigh-

Like -Mode waves in the layer, The first
two mode Rayleigh - waves occur with the
range of the frequency of ¢his paper. fig.
4 and Fig.5 represent the first mode and
the second mode of Rayleigh wave, respec-
tively. The resonance peaks in fig,4-5
appear also, The numerical results show
that the first mode amplitude is larger
than that of the second mode.

The computations have been performed on
the SIEMENS 7570c computer of the computing
centre of Harbin Institute of Technology.

Finally, it is pointed out that the method
used in this paper can be applied to the
scattering of elastic waves by multi-cracks
in multi-layered composites.
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