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ABSTRACT

An accurate estimate of energy release rate
components (GI.GII) is crucial to understending as
well as predicting delamination-related damage in
composite laminates. The virtual crack extension

method uses the difference between the strain
energy for two crack positions to evaluate the
total energy release rate (G ). This method

supplies one algebraic eguation in two unknowns G 1
and GII.which does not provide enough information
to find these components separately. This makes it
impractical in mixed mode situations.

A new method the "Coupled Strain Energy" based
upon the coupled strain energy of two superimposed
equilibrium states is presented in this paper. 1It's
main contribution consists in provinding an
equation for G components in additjon to the
existing one supplied by the virtual crack
extension method. This method utilizes several
properties of the conservation J integral [1] and
its equality to the energy release rate for linear

elastic situations. This approach can utilize
numerically provided results as well as analytical
solutions .

Applications which utilize analytical results

obtained by the shear deformation (SD) model [2] ,
as well as numerical results obtained by the FEM
are presented. The results obtained using the
"Coupled Strain Energy" method are compared with
results obtained by different numerical based
methods and by analytical models.

I. INTRODUCTION

Currently, a considerable amount of research
activity is devoted to the study of failure
mechanisms in laminated composite structures. A
thorough  knowledge of these - mechanisms is
necessary, not only to avoid catastrophic failures,
but also to create efficient and durable
structures,

The delamination is one of the most predominant
modes of damage. It is characterized by a complex
state of stress with steep gradients in  the
vicinity of its initiation or by an energy balance

in the cracked structure in classical fracture
mechanics.

It is assumed that energy is dissipated when n
cracked surface is created in a stressed body. The
rate of the strain energy dissipation per cracked
surface is known as the energy release rate (G) and
can be obtained from energy considerations or, by
using the stress functions from the crack tip
region. It can be defined as the sum of three
particular modes of crack action which are mode 1
or the opening mode, mode II or the forward
shearing mode, and mode III, the tearing mode. If
the magnitude of Gpexceeds a critical value Gop- @
material property and fracture toughness. - crack
propagation is assumed to occur. Therefore, an
accurate knowledge of G.romponent values is needed
to analyze composite stiructure against Failure and
damage growth.

Irwin [3] showed that the elastic strain energy
released during an incremental crack extension can
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be equated to the work done in closing the
incremental crack., Based upon this formulation
various numerical methods have been developed and
utilized for G predictions in laminated composite
structures. All these methods assume an existing
cgack-like flaw in the structure [4],[5],[6]1.[7],
(81.

An alternative method that uses analytical
formulations as well as numerical results to obtain
stress intensity factors is the J integral [1].
This approach uses the stress and displacement
field distributions along a path around the crack
to obtain the stress intensity factor and is based
on the fact that the J integral is path independent
[9],[{10].Based on the J integral and the
conservation laws of anisotropic elasticity a mixed
mode crack analysis of rectilinear anisotropic
solids was formulated in [11].

An additional method that uses the forces and
the displacements obtained at‘'two opposite nodes of
an assumed crack extension to evaluate the stress
intensity factors is presented in [12]. :

A new method based upon the coupled strain
energy of two superimposed equilibrium states
follows.

1I. The Coupled Strain Energy Approach

The fundamental basis of the present approach

exploits the superposition of an auxiliary
equilibrium state to an unknown mixed mode
situation under consideration. The analysis
requires the evaluation of the coupled strain

energy between the two states. Several properties
related to the conservation integral J are recalled
and used in the present formulation. Finally,
unknown stress intensity factors or G, components
are obtained in terms of the' auxiliary solutions
and the coupled strain energy.

Consider two equilibrium  states "1" and "2"
which are denoted by the superscripts of the field
variables. From superposition, the strain energy
for the superimposed state "O" is:

(0 =y 4 (@) 4 (1:2)

)

(1.1)

where the coupling term U(l’2 comes from the
reciprocal theorem.

The identity between the J integral and Irwin's
energy release rate G can be expressed for constant
applied load as:

.. o du (1.2)
J =64

For the superimposed state, the substitution of

Equation (1.1) into Equation (1.2) yields

{0) (1) (2) (1,2)
0). gu'’) du du du
a(0). Gé B " da tda tT da

(1.3)

The J integral relation for the superimposed state
is defined in [9],[11] by:



20 L g 45D, y(1,2) (1.4)

where the coupled term M(l’z) is defined by

(1,2) . (1),(2) 1),(2 1),(2)
" = 2y KK+ “12@‘% )Kgx) * K§1)K§ )

+ 2a K(I)K(

)
22711 11 (1.5)

and by the integral equation:

augz) au(l)
NL”=]@“3Mr(ﬁ“ i, p(2) 2 )ﬂﬂ

ax i ax
(1.6)
The parameters a4 2! and a5 are related to the
roots of the %ourth-order governing  partial
differential equation in plane anisotropic

elasticity [13], and Kyand Kjpare the stress
intensity factors related to the appropriate
superimposed states denoted by the superscripts 1
and 2.The u; , ds , and the T; are the displacement
vector,an element of arc length and the traction
vector components ,respectively.

Equations (1.5) and (1.6) use the J integral
approach to relate the stress intensity factors to
the M(l.z) integral., This is donﬁ through a tedious
evaluation of the integral where
considerable difficultles accompany its
determination [11].

A direct comparison between Equations (1.3) and
(1.4) reveals

(1)
o) - 4y (a)
(2)
(1,2)
M(l’z) = U T (c)

Equation (1.7c)relates dU(l’z)/da to the stress

intensity factors given in  Equation  (1.5).
Therefore, the complexity of evaluating the
1,2) integral presented by Equation (1.6) is

circumvented.

By this formulation stress intensity factors or
the Gp components of the superimposed states can be
related to the total strain energy values. This
relation provides an additional algebraic equation
t® the existing one (Equation (1.2)) and enables
evaluation based upon only energy considerations
for mixed mode situations.

II1I. Applicationg

A brief explanation related to the superimposed
equilibrium states follows.

An auxiliary equilibrium state is superimposed
on an unknown mixed mode situation. By selecting
the auxiliary state as & pure mode I or pure mode
II situations, the final algebraic equations yield
simple relations. The unknown state, pure mode I
state and pure mode II state are denoted by the
superscripts 2, a and B, respectively. (2) By
exgressing the stre§7 intens rv factors K} ' and

I in terms of G and G Equations {(1.7c¢)
g (1-5) lead to the follow1ng relations for an
orthotropic material system[14]:

e (2.1)
1 4G§“)
(du(s,z))
da
(2) ;
GII = 4G§§) (2.2)

where Ggu) and G§?) are the pure mode I and mode II
contributions from the auxiliary solutions. The

coupled strain energy between the auxiliary pure
mode I state and the unknown mixed mode state is
u(a,2), similarly, U(B,2) represents the coupled
strain energy between the auxiliary pure mode II
state and the unknown mixed mode state.

The coupled strain energy can be obtained by
computing the work done by the forces from one
equilibrium state on the displacements from the
other. An alternative way consists in using
Equation (1.1) from which the coupled strain energy
can be evaluated as:

u(1h2) 2 g0 _ (1) @ (2.3)
Applications which utilize analytical results
obtained by the SD model, as well as numerical

results obtained by the FEM are presented in the
next two sections.

A. Shear Deformation Model Solution

The SD model and the previous approach are used

to estimate the Gq components for the double
cracked-lap-shear (DCLS) specimen (Figure 1).
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Figure 1. The DCLS Specimen-Geometry And Properties

The two superimposed states for this solution
are described in Figure 2. An auxiliary solution
was selected as a pure mode I situation, denoted by
the superscript @ . The unknown mixed mode situation

is denoted by the superscript 2 (G( ) G(Z)) while,

(“ 2)denotes the coupled strain energy between
the two states.
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Figure 2. The Two Superimposed States

In this application, the analysis is orientated
?o f?nd the variables associated with Equation
2.1
For a linear,elastic material [15] the total
energy release rate G is given as

2

=P dC
Gr=% d (2.4)
The first step is to use Equation (2.4) for the
auxiliary pure mode I situation:
6 =g, B2 gc® (2.5)
T I b da
where C(u) is the specimen compliance under a pure

mode I situation. (@)

The analytical methodology to obtain C y
using the SD model is described in [14].By
substituting its expression into Equation (2.5),
the following form is obtained:

() . _P _ _h+t * 2 )
GI = 4Ellt { No(l 4t+h) + Nlj[sach SJ-(L a)

4+ L-cosh ra] No(2t=h) (1-cosh ra)
s'mh‘2 (4t+h) sinhzra
(3=1,2) (2.6)

Summation over the index is implied in the second
term of Equation (2.6). The constants si and r-
are the roots of the characteristic equations which
represent the system of the coupled ordinary
differential equations for the sublaminate analysis
[14].The P is the applied load while N 1j are the
interlamindr force resultants obtained ¥ from the
boundary conditions.The elastic properties and the
laminate thickness are E11, h and t (Figure 1).

The second step is to evaluate the coupled
strain energy between the auxiliary state a, and
the mixed mode state 2. This is established by
computing the work done by the forces from the
auxiliary state on the displacement from the mixed
mode state. The final expression for the change in
the coupled strain energy with respect to the crack
length is

du(a,Z)= _E_.[le 1 sech? s, (L-a)- - Ay : }
da 4AH (M 12) (A11)3
(j=1,2) {2.7)

Summation over the index is implied in the first
term of Equation (2.7). The constants M,.,are the
moment resultants obtained from the™ boundary
conditions while H'(A qand L represent the
elastic properties of the sublamina%es [14]. Now

that the values for G% o) and (dU(a 2)/da) have been
found, their substitution into Equation (2.1)

yields G(Z)‘ In order to obtain the sliding unknown

mode G(Z) the the following formulation is used:

G;?) - G';'Z) - ng) (2.8)

B. Finite Element Model Solution

In this section, the coupled strain energy
approach utilizes FEM results to evaluate the Gy
components for the DCLS specimen. The strain energy
values required in the coupled strain energy
formulation are supplied as an ordinary output by
the EAL [16] program.

As in the previous section, Figure 2 represents
the equilibrium states under consideration. A very
coarse mesh was used in the FEM simulations,
exploiting the insensitivity of the strain energy
differences to the number of DOF as de-~cribed
[41,0[7].0[14]. To obtain the first equation(z.i), a
pure mode I situation is selected as the auxiliary
solution.
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Figure 3. Finite Element Representation
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Figure 3a shows the schematic representation
for this configuration. The mode II suppression is
achieved by placing a very stiff beam element in x
direction between the coincident nodes, 11 and 12.
Under the applied 1load, this stiff element
constrains the relative displacements in x
direction between these nodes. In this case, a pure
mode I situation is obtained as presented in Figure
3b. For this auxiliary case, the strain energy
ufla) ig obtained and two "runs" make possible its
derivative with respect to the crack length.This

provides the valué G ¢ . An additional finite
element simulation “is conducted in  order to
evaluate the total strain  energy for the
superimposed state. Finally, all the values

involved in G(Z) estimation as presented by
Equation (2.1)‘have been defined.

The choice of mode II supression as an auxiliary
solution causes a penetration of the upper crack
surface into the lower one, as described by Figure
3c. As a result, a contact situation is created
between the crack surfaces. In order to solve this
contact problem, an iterative solution has to be
conducted which is beyond the scope of this study.
This situation is circumvented by using Equation

(2.8).

IV. Results and Discussion

The results obtained using the coupled strain
energy approach are presented in Tables 1 and 2. A
systematic comparison with results obtained by
different numerical based methods and by analytical
models is given in these tables for the DCLS
specimen. This is done in order to compare methods
and to present the benefits associated with each
method and model.

lorm2]

Method
G| Errors Oy Errorn Gy Ervory)

DOF Remarks

lc
oupled Straln! 402 | 257, 1.5 434, 1.1 886. 00} - Uses an suxiliary equiiibrium state

Energy 1484 | 258, 1.1 432, 1.0 e88. gg | ~ CO8ree mesh
Virtus) Crack 482 - — 889 00 _jned 1o G, predictions
1484 b — ens. 0.0

- Coarse mosh

Extentlon 5490 - -  §BB. 0,0

“482 | 278. 0.8 411.5.7 eas:. 00
Crack Closwre] 1484 |269. 8.3 416, 45 e85 oo
12] 2088 | 264, 4.3 424, 2.7 ©888. 00

{ 6490 | 261, 3.0 426, 2.2 687. 0.0

« Sensitivity +|2 Torms| 254, 0.0 434. 0.0 688. a0
Approach |2 Terms 253, 0.0 435, 0.0 688, 00
L__[ll;] 4 Terms| 253. 0.0 436, 0.0 686. 0.0

- Dependent on mesh and Aa size

- Needs refinement at the erack tip

- independent of mesh and Aa size

- Neads numorical G, and Gy resulls
for application

Table 1..The Energy Release Rate Components Obtained
By Numerical Based Methods

The G component results presented in Table 1 are
obtained using numerical based methods. The wvalues
used by the different methods are achieved by using
a FEM simulation with an assumed crack extenssion
equal to 10 percent of the total crack 1length.
Lacking an exact solution, the acceptability of the
computed results is determined in this context by
comparison with the sensitivity method [147]. The
results predicted by this method are independents of
mesh size and crack extension size.
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A difference of 6 and 8 percent in G and
Gyp values, respectively, is obtained between  the
coupled strain energy method and the sensitivity
method. The difference in Gp is only 3 percent. The
same difference in Gy is obtained using the virtual
crack extension method. However, this method does
not predict the G _components. By using the crack
closure technique, these differences are within 10
percent for Gy and Gy at 482 DOF and decrease to
about 2.5 percent at 5490 DOF.

Sim?
Remarks
Gy Errors Oy Evors Gy Errork

Method Model

Coupted Strain Usas an suxillary equilibrium state

Energy

Sp [231, 8.4 457. 4.8 668. 00

Crack step size based upon boundary

. 0.0
236. 7.1 454, 4,1 669, Jayor decay length

Crack Cgmura‘ 80

Crack stap size based upon boundary

8. 0.0
220. 13.0 469. 7.5 ©689. 0O, tayor decay length

Crack Closwe] M

Limited to GT prediction

frwin's
[3] cL - — 680 0.0 et computational effort

Dealinition

Table 2. The Energy Release Rate Components Obtained
By Analytical Methods

Several remarks associated with each method are
summarized in this table. The advantage --- accuracy
and efficiency represented by the coarse mesh-- is
fully exploited by the coupled strain energy method.
This i1s clear by comparing the number of DOF
used.The results presented in Table 2 are based upon
methods which utilize analytical models to evaluate
the G components. A comparison between Gy and
Gpp values obtained by the "sensitivity" method™ and
those obtained by the coupled strain energy method
which utilizes the SD model exhibits a 8.4 and 4.8
percent difference, respectively. Almost the same
difference is observed by using the crack closure
method[16] with the SD model. However, the advantage
achieved by the coupled strain energy by eliminating
the requirement of "boundary decay length
definition” is considerable.

V. Concluding Remarks

A new method based upon the total strain energy
of two superimposed equilibrium states is presented.
It's main contribution consists in providing an
equation for Gy components din addition to the
existing one supplied by the virtual crack method.
This method utilizes several properties of the
conservation J integral and its equality to the
energy release rdte for linear elastic situations.

This approach can utilize numerically provided
results as well as analytical solutions to determine
the Gqcomponents. The total energy considerations
involved in this approach make it very attractive
for cases in which the strain energy values are
supplied by numerical methods such as the FEM. These
values are substituted in simple algebraic equations
which yield reliable estimations of Ggqcomponents.

In the cases that analytical solutions are used,
this method circumvents the need of a boundary layer
decay length definition and leads to solutions for Gp
components independent of this parameter.
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