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Abstract

This paper describes a computational approach
which uses the EFuler formulation for
dominated flowfields around highly swept wings
coupled with an algebraic model derived from the
Navier-Stokes equations to represent the viscous
physics within the vortex core.

vortex

The approach also

accounts for viscosity effects near the wing
surface through a modified surface boundary
condition. With the developed viscous model, the

Euler formulation can give better prediction of

leading edge separation,

secondary vortex formation.

vortex bursting, and
Results for several

cases are compared with those from wind tunnel

tests and Euler and Navier-Stokes computer codes.

1. Introduction

Vortex aerodynamics has played an important
role in the
aircraft in

development of high performance

Computational fluid
dynamics has been an attractive alternative to
wind tunnel testing for vortical flow research.
Many computational efforts

predict the steady vortex

recent years.

have been made to
dominated flowfield
based on the Euler and Navier-Stokes equations.(1-7)

Available simulation technologies and physical
aspects were reviewed by several authors.(®9% Some
investigators were able to simulate vortex

breakdown and generate secondary vortices.(10.i1)
Effects of grid topology and grid density on the
resulting flow solutions were also studied.(!.11,12)
While significant progress has been made, present
still have

practical applications.

technologies many limitations for

Flow phenomena associated with leading-edge
separation on a delta wing are extremely nonlinear
and viscous, and the Navier-Stokes equations must
be used to
Navier-Stokes codes, however, require grid systems
which have

characteristic length scale for viscous effects.

represent the complex  physics,

cell dimensions compatible with the
This requirement for fine grids, especially for
high Reynolds number flows, leads to large memory

and computer time  requirement, making the
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relatively expensive. The resulting

contaminated by the presence of

solutions
solutions are
numerical viscosity which is a function of the
grids used and in some cases can be greater than
the physical viscosity. The Navier-Stokes formu-
lation is also hampered by the lack of an adequate
turbulence model.

Codes which
generally less they do not
attempt = to model viscosity effects. This
advantage is partly due to the use of simpler
equations but primarily due to the use of coarser
grids than those used by Navier-Stokes solvers.
Although the Euler formulatioh can give adequate
representation of most portions of the flowfield,
it often fails to resolve the details of wvortex
If defined in the same direction

solve the Euler equations are
expensive Dbecause

cost

core dynamics.
as the physical viscosity, the numerical viscosity
in Euler codes can trigger such viscous effects as
leading edge separation and vortex bursting but
can not quantitatively.
Although Euler flow
structure similar to that of the actual viscous

represent the physics

solutions can produce a
physics, many important flow features cannot be
captured at the correct flow conditions with Euler
codes.

This paper describes a method which uses the
Euler formulation but includes the viscous physics
through a vortex core model and a modified surface
boundary condition. The approach can thus provide
an improved simulation capability for the analysis
of vortical flows including vortex breakdown and
secondary vortices at
The modified condition also
improves the ability of Euler codes for predicting
the angle of attack at which a leading edge vortex
starts to
edges.
modified for this
limitations of the

comparatively low costs.

surface boundary

appear on wings with round leading
FLO57 and ARC3D, were
study.(13:14) Capabilities and

codes for wvortical flow
first in the next
Simple viscous models are then developed

simplification of the

Two computer codes,

applications are evaluated
section.
based on analytic
Navier-Stokes Those models are next
incorporated into the Euler codes and evaluated

for several test cases.

equations.

Results are compared with
those from experiments and from conventional Euler
and Navier-Stokes solutions.



I1. Assessment of Current Euler Technology

A computational experiment was performed to
evaluate the Euler codes chosen for the intended
vortical flow study. The flowfield considered was
a simple three-dimensional domain with a wvortex
filament introduced in the direction of the free
stream near an infinitely large flat wing and a
This test case excluded the
of real delta wings such as the
vortex creation mechanism and pressure gradients.

plane of symmetry.
complications

The parameters monitored were vortex strength,
vortex location, ~vortex core size, and axial
velocity component inside the core. Computational

field grids were constructed inside a rectangular
box in a quarter space. A solid wall boundary
condition was imposed at the bottom face of the
box and a mirror image condition on the vertical
plane of symmetry.
tion of the box was given by a swirling vortex
The other
specified with farfield
The flowfield was initial-
ized with a flow identical to that at the upstream
boundary.

The upstream boundary condi-

flow added to a uniform free stream.
three
boundary conditions.

box faces were

Both codes gave essentially the same

results, revealing several concerns in modeling

vortex flows.

Numerical Vortex Core

All Euler codes include numerical viscosity
built-in through finite discretization and added
externally for computational stability. Euler
codes cannot accommodate a purely inviscid vortex
which contains a singularity at the center, unless
it is fitted.

core as in the Rankine vortex and the size of the

The vortex must have a rotational

core depends on numerical viscosity, not on
physical viscosity, in the Euler formulation. The
amount of numerical viscosity is determined by the
numerical algorithm adopted, the grid used, and
the variation of flow wvariables. Hence, there is
a limitation in the vortex core size which can be
resolved by an Euler code on a given grid. The
core size here is measured by the number of grid
cells across the core. Any core smaller than this
limit will be diffused. Numerical diffusion also
occurs in the Navier-Stokes formulation, especial-
ly when larger grid cells are wused for high
Reynolds number flows. For both Euler
tested, the acceptable
surprisingly large. The circumferential
velocity component due to the vortex was found
cells cell

containing the vortex center. When a vortex was

codes

minimum core size was

peak
about four grid away from the
introduced through the upstream boundary with the

core size smaller than this limit, the core grew
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to the 1limit size in three to five cells

downstream, In Figure 1, profiles of circumferen-
tial velocity and circulation for the limit size
obtained from the computational experiment are
compared with the Rankine vortex and the model
used by Mager.(!’ Note that the total circulation
around a vortex is constant outside the core.
Figure 2 shows that the core area which contains
significant vorticity extends at least five cells
in radius. The corresponding pressure distribu-

tion obtained is given in Figure 3.

Grid Induced Bursting

The next observation concerns the influence
of non-uniform stretched grids. Several different
stretched grids were fitted inside a rectangular
box, with denser spacing near the solid wall and
the core region. The local grid refinement along
the vortex core allowed a smaller core size. Grid
stretching and grid skewing had little effect om
flow solutions except when the vortex tube passed
through a region of the grid where the cells were
expanding. Expanding grids enlarged the vortex
core.

circulation of the

Since the flow solver preserved the total
this
growth of the core caused reduced circumferential

vortex, non-physical
velocity component and increased core pressure in
proportion to the enlargement of the cells. For a
grid with a size expansion ratio of 1.22 in the
axial direction, the resulting adverse pressure
gradient along the vortex core caused a reversal
in the axial velocity component inside the core,
as in vortex bursting.

Identical flow conditions were tested on two
different grids. Figure 4 shows the two grids.

Grid A is locally skewed but not stretched in the

region of the vortex core and Grid B is stretched
near the vortex core and expanding in the axial
direction along the core. Figure 5 compares the
axial variation of the static pressure along the
vortex core for the two grid systems, exhibiting a
negligible axial pressure gradient for Grid A and
a significant gradient for Grid B.
vectors in the vertical plane which contains the

The velocity

vortex core are plotted with arrows in Figure 6.
The solution for Grid A does not exhibit axial
flow Grid B produces a
recirculating zone.

These results demonstrate that non-physical
in Euler

reversal but large

mechanisms solvers can determine the

vortex core size and can contribute to vortex
bursting.
Navier-Stokes equations can predict pressure and
based on physics instead of
Addition of this model to

will provide a wuseful tool for

A vortex core model derived from the

velocity fields
relying on numerics.
Euler solvers

analyzing vortex dominated flows.



111. Vortex Core Model

A model for the vortex core is derived from
the steady, incompressible Navier-Stokes equations
written for the coordinate

cylindrical system

centered on a vortex core. The modeling process
is similar to that developed by Mager(!> and
Krause, (1)  but the

non-axisymmetric effects due to image vortices.

present model includes
The vortex is assumed to be slender and close to a
wing plane of symmetry. The

velocity components u,v and w are defined in the

surface and a

x, r, and 6 coordinates which correspond to axial,
radial, and directions. The
following non-dimensional parameters are defined:

circumferential

6rn/
€ 3
U.L
Re = P
u

where L is the reference axial length scale of the
vortex and 6,,,, is the reference vortex core radius
at x = L. P and U are density and viscosity of
the air respectively and U, denotes the freestream
velocity. Length, and pressure are
normalized by L,U/,, and pl/2 respectively.
the boundary layer equations, the radial coordi-
nate and its velocity component are scaled by the

velocity,
As in

small parameter ¢ .

The vortex core diameter is assumed to be of
the order of the square root of the Reynolds
After eliminating the terms which become
negligible for large Reynolds numbers and the
terms involving in the circumferential direction,
the equations of motion become:

number.

“%”’?‘; '3_5+R:e2<%:—r(r%%)> (e
) )
i - st o

The above equations are integrated alge-
braically by defining axial and circumferential
velocity profiles within the vortex core.

the velocity profile

Here

implies the shape of the

velocity distribution in the radial direction. As
seen in Figure 1, the velocity profile defined by
Mager(!) matches well with those obtained from
Euler solutions and is adopted for the integra-
tion. Also included is the influence due to the
image vortex filaments associated with the wing
surface boundary and the plane of symmetry. For
this purpose, the Cartesian coordinate system is
used with X, Y, and Z as streamwise, spanwise, and
vertical coordinates respectively.
dinate system,

In this coor-

two non-dimensional distances and
two angles are defined as follows:

Ycoro - Ywing zZ cora Zsymm

ly = —— l, = —

6re)‘ 6ra/

dly di,
tan™!| — = tan"'| =— |.
(dx) b2 (dx)
First, with the specified circumferential wvelocity
profile, equation (lc) is integrated from the core

center, r = 0, to the edge of the core, r = §.
Then the pressure at the vortex center can be

¢y

given by

2

P(x.0) = p(x.0)-K, —+K[I?Cp. ()

The vortex core area @ and the circulation [ are
defined as

a = nb6? and I = 2nbuw,

respectively, 6 denotes the
In equation 2, C, is

the influence of the image vortices given by

where the subscript
value at the core boundary.

cos¢, Cos¢, COS¢,C0S¢,
4+ -

c
¢ 1} 13 13+13

3

The coefficient K, depends on the choice of the
circumferential velocity profile and K, accounts
for the influence of image vortices.

It is assumed that the velocity profiles are
gimilar in the axial direction, with the core
diameter 6 and the core edge axial velocity U, as
the similarity parameters.
ters,

Using these parame-
the radial velocity profile can be obtained
by integrating equation (la) with respect to the
radial direction. With the three components of
velocity profiles known, equation (1d) is then
integrated over the area of the wvortex core to
obtain:

K,dr Kydus K3
- PO i )
I'dx usdx Ree’au,

lda
adx

1439



where the values of K,, K,, and K; depend on the

velocity profiles chosen. For the Rankine vortex

circumferential velocity profile, K, and K; are

zero and K; is one. In this case, equation (&)
gives

a « [, (5)
For complex wvelocity profiles, it is more

difficult to integrate equation (4). If the last
term in equation (4) is assumed to be independent

of x, then it can be integrated to give:
Ko—(x-x,) (6)

where K, is a core growth parameter which depends
primarily on the product Ree?
the integration constant.

and x, comes from
Equation (6) serves as
a model for the growth of the physical vortex core
based on velocity profiles and parameters measured
from the Euler solution.

Next, the circumferential velocity profile is
assumed to be close to that of the Rankine vortex
in order to approximate the radial distribution of
pressure with

2
p(x,r)=p(x,0>+(g) (P(x,6)-p(x,0)). (7)

Using equations (2) and (7),

integrated over the area of the core to get the

equation (1b) is

one-dimensional relation along the vortex core to
give

u duo+dp0
*dx dx

dr . I'’da, I?*dC
+K| F==Cym e Cpt =2 (8)
dx 2adx 2 dx
where the subscript 0 designates core center
values.
It 1is worthwhile to point out that the

contribution of the viscous term disappears in the
if the axial wvelocity profile is
defined with zero slopes at the center and the
edge of the core. Note that the coefficients K,
and K, are functions of the velocity profiles and
the location of the vortex core. If the velocity
profiles of the viscous core and those in Euler

integration

solutions are similar, then the major discrepancy
of the Euler formulation is primarily due to the
non-physical estimation of the core size and the
core rate. Therefore, the

growth non-physical

vortex core in Euler solutions can be replaced
with a core that is derived from viscous physics,
This 1is in effect
addition of the difference

between the model and the Euler solution as a

as given in equation (8).

equivalent to an

source term into the Euler formulation. The
difference can be given as:
due dpo duy, dpo
- +
(uodxqux) (uodx dx)E
c [rar(_a r’fda a’da;
- “ladx ag) a?\dx aidx
r: da adas)
-K. ~—C. | =—-— 9
‘2a °(dx az dx &

flow quantities
Similarly, the

where the subscript E denotes

measured in the Euler solution.
correction to pressure at the core center is given

by
r? a\?
a (e 3

+1<,.r2(1—i>c,.
ar

p(x,0) -p(x,0); =

(10)

Equation (9) provides a momentum source
term for use in the axial momentum equation in the
Euler solver. Again the control parameters K, K,
and K, depend primarily on the velocity profiles
of the physical vortex. Equation (10) provides a
correction to the vortex core pressure in the
Euler solution based on the ratio of the size of
the model core to the size of the core in the

Euler solution.

1V, Surface Boundary Condition

Leading edge vortices are created by boundary
layer separation near the leading edges of highly
swept wings. Without viscous models for the shear
layer of the three-dimensional separation, Euler

solvers create the leading edge separation by
numerical diffusion, which is again a function of
Also, the strength of
vorticity depends on the location of separation,

which cannot be determined a priori for wings with

grid quality and grid size.

round leading edges.
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The momentum equations for the control volume
next to the wing surface require the knowledge of
pressure on the different
methods for estimating the pressure on the wing
surface were tested. The first method uses the
normal momentum equation from the Euler Fformula-
tion to extrapolate pressure from the cell center
down to the wing surface. When this method is
used, the appearance of leading edge vortices in
the flow solution was delayed to higher angles of
attack than those obtained from wind tumnel tests.
The second method equates the pressure at the wing
surface with the pressure at the center of the
boundary cell,

wing surface. Two

by assuming zero normal pressure
When this
the vortices start to appear at
lower angles of attack.

gradient as in the boundary layer.

method is used,
Figure 7 compares wing
surface pressure contours for a range of angles of
attack measured in a wind tunnel!”) with contours
from Euler solutions different
When coarser grids are used,
the difference between the computational results

and the wind tunnel results becomes even larger.

using the two
boundary conditions.

The flow phenomena inside the viscous shear
layer involving leading edge separation are too
complex to model with simple physics. The
flowfield involves many difficult features includ-
ing the mechanism for creation of leading edge
vortices, reattachment of the primary vortex,
appearance of a secondary vortex separation, etc.
Instead of attempting to model the difficulties, a
simple model is used in this study to include a
characteristic influence of the
effects near the wing.

viscosity
Two major characteristics,
shear layer thickness and wall shear stress, are
identified and modeled with the formula borrowed
from the incompressible turbulent boundary layer
That 1is,
thickness and the skin friction coefficient are
defined from

on a flat plate. the wall shear layer

K5l
wall ——_*5_75 (11)
(Relacal) ' ‘
K
c, = %3 (12)
(Relocal) '

where Rej,., is the local Reynolds number based on
the distance [ measured from the apex of a delta
wing., The coefficients Ky, and K, are input
specified constants with values of 0.37 and 0.074
respectively for the flat plate. The shear stress
effect is added into the momentum equations in the
direction of the surface velocity vector as source
effect is
accounted for in the surface pressure estimation

by using

terms. The shear layer thickness
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dp
P uan pcell’a‘;(d—bwall) (13)
where p.., is the bressure at the neighboring

boundary cell, dp/dn is the pressure gradient in
direction, and A is the

distance between the two points. If

the normal normal

6,qn is set
that the wall
purely inviscid

to zero, the equation implies
pressure is obtained through a

calculation.

V. Results

Model Implementation

The vortex core model was incorporated into
the Euler solvers as. a éeparate subroutine and
accessed periodically. The total circulation or
vortex strength and the Euler vortex core size are
determined from Euler solutions at each axial
location along the vortex.
obtained by
through the
them.

from the cross sectional areas of the cells which

The vortex strength is

evaluating the vorticity fluxes

surfaces of each cell and summing
The area of the vortex core 1is measured
contain vorticity of above a
threshold level. The center of the vortex at each

axial station is identified as the cell with a

strength given

local minimum static pressure and a local maximum

vorticity flux. Locating the ~vortex center
establishes the values of C‘,, in equation (3).
The momentum source term in the axial

momentum equation and the correction  to the
pressure at the vortex center are obtained from
equations (9) and (10). These quantities are added
to the flow solver for subsequent iterations. To
avoid destabilizing the solution process, the
momentum source terms are not just applied to the
The source terms for

scaled in accordance

cell at the vortex center.
the neighboring cells are
with their distance from the center following a
profile similar to the axial velocity profiles
used by Mager.
costs, these corrections were updated every 30 to

In order to reduce computational

50 iterations.
model for the surface

boundary condition was also incorporated into the

The viscous layer

Euler solver. surface was
defined using equation (13) to include the viscous
effect. The shear stress 'in
defines terms for the
The source terms are added into
in the direction which 1is

The pressure at the
layer thickness
equation (11) source
boundary cells.
the Euler equations
approximated as being parallel to the surface
velocity vector. ‘As in the vortex core model, the
corrections for the surface boundary condition

model were updated periodically.



Model Evaluation

The effectiveness of the vortex core model
was evaluated for the test problem discussed in
Section 1II.

As seen in Figure 6, a non-physical

flow reversal in the axial direction was
experienced when a vortex flowed into grids with
steadily increasing cell size. The developed
model can eliminate or minimize the grid
dependency of flow solutions. Figure 8 shows
axial velocity vectors obtained from the Euler

solver with the core model, on the same grids
When a zero rate of growth of
the physical core was assumed, the Euler code
alone produced axial flow reversal on Grid B due
growth. The
eliminated the

velocity defect,

shown in Figure 4.

to grid-induced core vortex core

model has grid-induced axial

by 1linking core pressure to
physical core size instead of grid dependent core
size.

On the other hand,
that, sufficient rate of

growth of the physical core is assumed, the model

the experiment with the
model suggests if a
could produce axial flow reversal which cannot be
captured with the Euler

also

formulation. Figure 8

illustrates a successful demonstration of
Unlike
the Euler code with model

can produce a flow reversal depending on parameter

this capability on a uniform grid, Grid A.
the Euler solver alone,

values which determine the viscous core.

Swept Wing Analyses

THe developed core model was implemented to
ability
bursting on four different delta wings.

assess its in predicting the onset of
A grid
with H-O topology was used around flat plate delta
wings with sweep angles varying from 55 to 76
degrees. Figure 9 shows a typical grid used for
the test. Figure 10

versus angle of attack curves for the Euler solver

shows bursting location
with the vortex core model for four different

wings, compared with results from wind tun-

nels, (3819 Fuler solvers alone, and Navier-Stokes
For all these tests,
K, K, and K, were held constant.
tested,

produce

solvers. (20 the parameters
For each wing
able to

in closer agreement

the Euler code with model was
results which were
with the wind tunnel tests and the Navier-Stokes
codes than did the Euler solver alone. Figure 11

shows spanwise surface pressure coefficient
distributions at the midpoint of the root chord of
an aspect ratio 1 delta wing at 20.5 degrees angle
of attack. At this angle of attack,

does not burst over any part of the wing.

the vortex
The C,
curve predicted by the Euler solver with the core
from the Euler
solver alone and from Navier-Stokes simulations(20)

model 1is compared with curves
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and wind tunnel tests.(?!) Note that neither Euler
solvers captured the secondary vortex influence on
the G, curve which is evident in the wind tunnel
data and Navier-Stokes solutions. However the
vortex core model does allow the modified Euler
code to predict the peak of the G, curve in closer
agreement with experiment. Figure 12 compares
velocity vectors in the horizontal plane contain-
ing the vortex for the same wing at 40 degrees
The result from the Euler code
alone shows the bursting point at the axial
station about 70% root chord downstream of the
wing apex. The Euler code with model gives the
bursting point at about 30% root chord, which does
agree better with Navier-Stokes results. Figure
13 compares the corresponding Cp curves for the
two solutions at 50% root chord. The vortex at
that station has burst in the Euler with model
solution, but not in the Euler alone solution.
Note the flattening of the Cp curve when bursting

has occurred.

angle of attack.

Next, the surface boundary condition with the
viscous layer model was tested on the arrow wing
used for the evaluation of the limitations of
existing boundary conditions. 14 illus-
trates the effect on surface pressure distribution
of changing K, while holding the Reynolds number
based on the root chord equal to the Reynolds
A value of 2.1
Figure

Figure

number of the wind tunnel tests.
for K, appears to give the best results.
15 compares surface pressure plots from wind
tunnel tests with those from an Euler solver with
the viscous layer model surface boundary condition

for a range of angles of attack.

A preliminary test was conducted using the
simple shear stress model discussed in Section IV.
In the model, effects of velocity defects in the
layer were included as momentum source
terms in boundary cells. Figure 16 compares two
crossflow velocity vector plots for a 65 degree
swept delta wing with round leading edges. Figure
16a is for the original Euler solver, while Figure
16b is for the Euler solver with the wall stress
shows the of a

viscous

model. Figure 16b
secondary vortex in the flowfield.
and strength of this

agreement

appearance
The location
secondary vortex are in
with

and wind tunnels.(V

qualitative results from
Navier-Stokes
Because such secondary vortices are not normally
seen in Euler solutions® %, these preliminary

results are encouraging and further investigation

solutions(20)

of the viscous layer model concept is required.

Conclusions

A computational approach has been developed
which incorporates a viscous model for vortex core



dynamics into Euler solvers. The model provides
to the flow quantities in Euler

The corrections are added into the
Euler equations as source terms.

corrections
calculations.

The combination
of Euler code and core model has been shown to
give predictions of vortex bursting points on
delta wings which are in better agreement with
wind tunnel tests and Navier-Stokes solutions than
can be achieved by an Euler code alone.
pressure predictions are also improved.

reduces the effects of grid
artificial wviscosity which
bursting in Euler solutions
bursting

Surface
The model
stretching and

may cause vortex
and catches wvortex
in Navier-Stokes solutions. These
capabilities are achieved at a very modest cost.

A simple method has also been developed to

include viscous physics

as

in the surface boundary
condition used in Euler solvers. An approximation
of the total pressure loss in the viscous layerxr
near the provides a boundary
condition which is closer to the actual physics.
Prediction of leading edge separation and vortex
rollup on highly swept wings with rounded leading
edges is also improved.

wing surface

The use of a more refined
model for the viscous layer would further enhance
the performance of the method.
demonstrated that

It has also been
inclusion of momentum defect
the
Euler

effects near the wing surface can lead to
appearance of a secondary vortex in the
solution.

The technology discussed here is well suited
for additional development. Further refinement of
the present models and fine tuning of the control
parameters ongoing. The be

extended to include higher order effects.

are models can
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Figure 1. Circulation and circumferential velocity profiles.
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Figure 2. Crosflow plane circulation contours.
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Figure 3. Crossflow plane pressure contours.
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Figure 5. Comparison of axial pressure distributions for Euler solutions with
identical initial and boundary conditions but different grids.
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gure 6. Side views of velocity vectors in the vertical plane containing the
rtex axis for identical flow conditions on the two grids of figure 4.
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Figure 7. Comparison of surface pressure contours on an arrow wing for wind tunnel tests

and two Euler solutions with different surface boundary conditions.
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1 delta wing at 20.5 degrees angle of
attack.
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Figure 14. Wing surface pressure contours for a range of values of the
viscous layer growth parameter compared with wind tunnel data. Angle of
attack is 4 degrees.

1443
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Figure 15. Comparison of wing surface pressure contours for wind tunnel tests
and results from the Euler solver with modified surface boundary condition.

(A) Euler

(B) Euler + Model

Figure 16. Crossflow plane velocity vectors at X/C = 0.5 on 65 degree round
leading edge delta for Euler alone and Euler with velocity defect model.
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