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Abstract

The physics of delta wings moving in an
inviscid medium is discussed. Numerical
simulation of the flowfield around a
closely coupled canard-delta wing configu-
ration is performed for a range of angles
of attack in subsonic and transonic free-
stream conditions. These results are com-
pared with calculations for the delta wing
without canard to illustrate the influence
of the canard on the flow. Subsequently
the physics of the flowfields with vorti-
cal flux lines is analyzed in detail. The
origin of total pressure losses inside the
spiraling vortices and the onset of vortex
breakdown at higher incidence are dis-
cussed.

1. Introduction

The flowfield of a delta wing moving in
an inviscid medium is a prime candidate
for modelling with the Euler equations, as
a large part of the crossflow field is
involved in producing spiraling £flow
around the wing which causes additional
vortex 1lift. The rolled up vortices of
delta wings have been the subject of in-
tensive research for 30 years - with much
effort having been put both into theoreti-
cal and experimental treatment of the
problem.

The first theoretical treatments were
made using simplified analytical methods
[1] to (6], followed by numerical proce-
dures based on linearized theories [7].
Numerical methods based on the full poten-
tial eguation found thereafter some lim-
ited applications as cited in [8]. A large
number of contributions have been made
recently on this topic, some solving the
Euler egquations [9] to [13], and a few
using the Navier-Stokes equations [14] to
investigate secondary phenomena. A number
of essential questions about physical
aspects of such flowfields and their nu-
merical modelling remain open and research
effort is currently being put forth in the
field.

For the validation of theoretical re-
sults concerning the flowfields and aero-
dynamic derivatives of delta wings a large
number of experimental results from older
Copyright © 1988 by ICAS and AIAA. All rights reserved.
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as well as from some
[19]

sources [15] to [18]
recent tests at higher Mach numbers
to [23] is available.

In the present paper the numerical
treatment of the flowfield of a delta wing
with canard is described. The solution
procedure used is a finite volume Euler
solver with a cell vertex discretization
scheme. These results are compared with
calculations for the delta wing alone to
obtain an understanding of the influence
of the canard on the flow.

A second objective of this work is the
analysis of essential physical phenomena
in the spiraling vortical flow of the
inviscid medium. Some basic considerations
on bound and free vortices and their ef-
fect on total pressure loss are discussed.
An analogy with electromagnetic field

lines 1is presented to describe vortex
bursting.
2. Governing Equations and Solution
Scheme
The three-dimensional unsteady Euler

equations for compressible, inviscid flows
may be written in integral form as
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for a region £ with boundary 9Q. o is the
unit outward normal to 8R. In cartesian
coordinates, the solution vector W and the
tensor of flux density F are given by
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where lx'l are the cart951an unit
vectors an% q = le + v, + wl_ is the
vector velocity. This systgh of f&rst -oY-—
der partial differential equations in the
five unknowns p, 4, v, w, E is closed by
the equation of state for a perfect gas,
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in which y is the ratio of specific heats
cp/cv.

The basic solution scheme is a finite-

volume spatial discretization with a
Runge—-Kutta integration in time, as de-
scribed by Jameson et al. {[24,25]. This

has been implemented in the DFVLR Euler
code CEVCATS as a cell-vertex discretiza-
tion [26,27], in which the solution vector
W is evaluated at the vertices of the mesh
cells, i.e. at the ¢grid points, with a
distribution formula for the cell fluxes
as proposed by Hall [28]. Since the equa-
tions are discretized using a central
difference scheme, artificial dissipation
must be added in order to damp out high
frequency oscillations. The inclusion of a
blend of second and fourth differences as
dissipative fluxes allows the convergence
of the procedure to a smooth solution. As
we are only interested in steady-state
flow flelds, the integration in time is
used exclusively to advance the solution
toward the steady state. To this end sev-
eral convergence accelerating techniques
are employed: successive grid refinement,
local time stepping, enthalpy damping, and
implicit residual averaging. The applica-
tion of these technigues has been shown to
produce a significant reduction in the
number of iterations required to obtain a
solution [29].

CEVCATS 1is a block-structured code,
i.e. it allows the subdivision of the
computational domain into several blocks.
This may be necessary because of the grid
topology, or because of limitations in
storage capacity of the computer. Each
block consists of a regular array of hexa-
hedral cells. Boundary conditions are
imposed on the faces of the blocks or on
rectangular subfaces, i.e. patches of m by
n cells. Four types of boundary conditions
have been implemented: 1) symmetry across
a constant coordinate plane, 2) far field,
using characteristic wvariables, 3) solid
body, at which no flux is allowed through
the bedy, and 4) internal cut, .which is a
cut in the interior of the solution do-
main. An internal cut may be a cut between
two Dblocks which have been separated for
storage requirements, may represent a
periodicity condition, or may be required
in the transformation of the geometry of
the solution domain into a set of regular
blocks. The solid body condition requires
the generation of a body-fitted mesh
systemn.

The CEVCATS code has also been extended
to allow handling of grid singularities.
These may occur when one physical point is
represented by multiple grid points as in
a polar singularity, at which many grid
lines radiate out from the polar axis, or
when a single g¢grid line branches into two
lines, as happens when an H-cut comes to a
solid surface. In the latter case, one
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point next to the branch point will also
have to be handled specially because of
the five-point operator used in computing
the fourth-order dissipation. Each of the
grid points involved in a singular point
is updated identically. The convective
flux 1is calculated by summing the flux
balances for each of the mesh cells adja-
cent to the singular point. The dissipa-
tion is simply calculated as the average
value of the dissipation in each of the
grid points.

3. Grid Generation

The configuration modelled in this
investigation is that used in the US/Euro-
pean Vortex Flow Experiment. This consists
of a 65° swept sharp leading edge delta
wing with a cropped tip (Figure 1). The
canard is aligned with the wing centerline
in the x-y plane and has a leading edge
sweepback of 60° and a trailing edge
sweepback of 35°. The canard also has a
cropped tip. Both wing and canard have a
symmetric cross—-sectional profile. No
fuselage was modelled in any of the calcu-
lations, and the cropped tips were some-
what rounded in all the grids.
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Geometry of the VFE canard-delta

Fig. 1 :
configuration,



Previous calculations for the flow
field over the wing alone have been per-
formed in this institute on an 0-0 mesh
[{30]. This mesh has a size of 96x48x24
cells. The O-grid topology tends to give a
better resolution at areas of interest in
the solution domain when compared with an
H-grid topology. When working with compli-
cated geometries, however, it is often
necessary or desirable to use H-grids.
This proved to be the case for the inte-
gration of the canard into the grid. Other
investigators [31] have modelled similar
configurations with a canard farther for-
ward of the wing inserted in a slit in an
0-O-mesh, forming an H-H-mesh around the
canard. In the present investigation,
purely H-H structure was used around both
the wing and canard. This has the advan-
tage of simplicity of construction and
uniformity in handling of the wing and
canard.

[+

The present mesh 1s divided into two
symmetric blocks, one for the upper region
and one for the lower region of the flow
field. The upper surface of the delta wing
is discretized into 48x48 cells, with 24
cells in the direction normal to the wing.
This is analogous to the 0-0 mesh. Fur-
thermore, the canard is divided into 32x20
cells. Fifteen cells each lie upstream and
downstream of the canard-wing combina-
tions. Between the canard trailing edge
and the wing leading edge are twenty

a = 20°
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Fig. 2 Symmetry and water line planes of
the mesh.

cells. This creates a singularity at the
wing apex, due to the close-coupling of
the canard. The total mesh consists oﬁ 2
blocks with 118 cells in the streamwise
direction, 72 cells in the spanwise direc-
tion, and 24 cells normal to the wing, for
a total of 407,808 cells. The mesh was
generated via tranfinite interpolation. A
view of the mesh is shown in Figure 2.

Fig. 3 Comparison of upper surface isobars, M, = 0.4.
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4. Numerical Results

The flow over the VFE canard-delta
configuration has been computed for vari-
ous angles of attack for Mach numbers of
0.4 and 0.85. A comparison of ¢, distribu-
tion on the upper surface of Ehe canard-
delta configuration with that of the delta
wing alone is shown in Figure 3 for two
angles of attack at a Mach number of 0.4.
For both configurations the low pressure
region induced by the leading edge vortex
moves up the leading edge toward the wing
apex with increasing angle of attack. The
influence of the canard vortex, however,

causes this low pressure region to be
shifted downstream. A consequence of this
shift 1s that vortex bursting, which
occurs over the wing at 30° angle of
attack, 1s moved off the wing when the

canard is present. Indeed, loss of 1lift
due to vortex bursting is just beginning
to be noticeable at a = 35° (Figure 4).

1.2

1.0
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.8

Lift

Ry

O M = 0.4 without canard
A M = 0.4 with canard
+ M

'o L] LA L}
0 10 20 30 40
Angle of Attack
Fig. 4 1Influence of angle of attack on

lift,

Quantitative comparisons of ¢, distri-
butions and ¢y, values are diféicult to
perform for the two configurations due to
differences in the meshes. Kumar and Das
[30] have observed that the determination
of total lift is strongly dependent on the
mesh. It was not possible in this study to
refine the mesh until a definitive value
for ¢; was obtained. Furthermore, the
calculations for the delta wing alone were
performed on the 0-0 mesh used in [30],
whereas the canard-delta configuration was

calculated on the H-H mesh described
above. One calculation of the the delta
wing alone was performed on an H-H mesh
generated analogously to the canard-delta
mesh., This produced a slightly lower value
of cy,, which indicates that the applied
H-H mesh does not resolve the flow near
the surface as well as the 0-0 mesh. None-
theless, comparison of sectional p dis-
tribution confirms the observation  [31]
that the effect of the canard is to reduce
1ift production in the inner part of the
wing. (Figure 5). The sharp suction peak
at the leading edge of the wing is an
artificial effect due to the treatment of
the leading edge singularity.

solid: with canard
dashed: without canard

Fig. 5 1Influence of canard on sectional
Cp distribution.

Examination of simulated particle

traces (Figure 6) indicate that the

leading edge vortex from the canard rises
and moves slightly inboard as it travels
downstream. This is also indicated by
examining crossflow velocities and total
pressure losses in a plane perpendicular
to the wing water line (Figures 7, 8).

simulated particle traces for the

Fig. 6
canard-delta, M, = 0.4, a = 20°.
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Fig. 7

Previous investigators [14] have deter-
mined that the loss of total pressure in
the vortex core 1is well predicted by an
inviscid code. Figure 9 illustrates the
dependence of this value on angle of
attack, Mach number, and also the influen-
ce of the canard. The total pressure loss
increases with increasing angle of attack
and Mach number, until bursting occurs.
The influence of the canard effectively
reduces the strength of the vortex and
hence the total pressure loss.

Comments on the Simulation

Although the results of the computa-
tions are satisfactory, there remain a few
points which require further investiga-
tion. The handling of the sharp H-grid
singularities at the leading and trailing
edges seems to introduce a very localized
disturbance which did not occur in in-
vestigations for rounded edges. This is
certainly an effect of the dissipation, as
convective fluxes are correctly treated.
The tiny cells at the apex singularity
require very small timesteps for stabili-
ty, and thus converge very slowly. They
are necessary, however, 1if the leading
edge is not to be on a block boundary or
at a discontinuity in slope of the grid.
Furthermore, computational effort could
have been saved by using a C-grid struc-
ture at the wing trailing edge and the
canard leading edge. This probably would
have had 1little effect on the results.
Lastly, the treatment of the tip edges in
the canard-wing was very coarse and could
be modelled more accurately.

Fig. 8 Total pressure contours,

60% root
chord, M,= 0.4, a = 20°.
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5. Analysis of the Vortical Flow Fields
Around a Delta Wing Moving in an
Invigscid Medium

An inclined surface moving through a
medium at rest gives rise to a dipole
distribution, which occurs due to the
downward momentum imparted to the parti-
cles of the medium. The resulting flow
picture resembles that of an electromagne-—
tic field with flux lines going round the
edges of the moving surface. The surface
distribution of dipoles of varying
strength can be represented as equivalent
bound vortices on the wing. The interrela-
tions between dipole strength, bound vor-
ticity and the imparted downward momentum
%§Z]the medium have been elucidated in

Tpe nature of the bound vortices on the
wing surface and their changes with inci-
dence

The flow around a delta wing with
rolled up vortices has been calculated and
the flow vectors on the wing surface used
to determine the bound vortex lines. These
are shown in Fig. 10 for a = 10° and q =
20? at a Mach number of 0.85. Due to the
spiraling flow around the leading edges
the bound vortices of a delta wing become
highly curved and hence they differ widely

from those of a high aspect ratio straight
or swept wing.

0.5

1.0

a=z10° «=20°

—_— U
L Lger:: > Surface

10 Shapes of the bound vortex 1lines
on the surface of an inclined
delta wing moving in an inviscid
medium.

Fig.

At small angles of incidence (a < 10°)
the bound vortices on the upper and lower
surfaces of the wing have almost identical
shapes in the forward part of the wing, as
predicted by linearized theory [4]. How-

ever at higher incidence, with increasing
strength of the spiraling flow on the
upper surface, the bound vortices on the
two surfaces differ more and more from
each other. The bound vortices become
highly curved with increasing angles of
incidence and some of them terminate at
the trailing edge and leave the surface to
continue as free vortices in the down-
stream flow.

It is quite evident that in the case of
back flows at the rear part of the wing
the bound vortices can curve around and
terminate with both ends leaving the
leading edge. A numerical field solution
of this type can only be expected if
Navier-Stokes equations are applied.

The vorticity in the flow field and

the resulting total pressure losses

The bound vortices on the upper and
lower surfaces of a delta wing will usual-
ly leave from the leading edge and take up
spiraling motion in the flow field as free
vortices. The strength of the vorticity
shed from the leading edges can be deter-
mined from the surface vorticity of the
wing. Using the momentum equation, denoted
as the classical Euler equation in fluid
mechanics, one can calculate the pressure
field which creates the vortex structure
and also the total pressure losses in the
rolled up vortices inside the spiraling

1.0
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0.4 1
0.2
3-10%
ar
T M=0.8
2
1 0.4
0 200 30°
R — e 3

Fig. 11 vVortex shedding in the spiraling
flow  at the 1leading edges of a
delta wing and the total pregsu;e
losses arising in the inviscid

medium.
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flow. The interrelations of surface vorti-
city at the leading edges, the pressure
field and the total pressure losses in the
vortex core are given in Fig. 11. The
pressure gradient and the vorticity in the
flow are related to the change in total
pressure Apo through the second law of
thermodynamics. The total pressure loss
increases rapidly with the increase in
éncidence angle and the onflow Mach num-
er.

The change of the flow field structure at
higher incidence causing vortex break
down

The nature of vortex roll-up around the
leading edges of a delta wing is shown in
Fig. 12 for a = 20° and a = 24° at an
onflow Mach number of 0.85. While a typi-
cal coiling of the rolled-up vortices
takes place at a = 20°, the presence of
high radial velocities in the region of
the vortex sheet is c¢learly indicated in
the case of a = 24°. Thus for a > 24° no
high surface velocity due to the spiraling
vortex flow can come into being in the
region concerned and this initiates a fall
of the vortex lift.

M, = 0.85 & = 0.80

N 0
= ‘ TR '
2
I
PLLa

/

Fig. 12 Spiraling flow with vorticity
arising on the lee side of an
inclined delta wing moving throudgh
an inviscid medium.

The sudden origin of high radial velo-
cities in the flow field can be attributed
to counter-rotating vortices in the spi-
raling flow. This can be seen by analogy
in the case of the electromagnetic flux
lines generated by co-rotating and coun-
ter-rotating currents in a pair of coils.
It is evident from Fig. 13 that in the
counter-rotating flow case very intensive
radial flux and high back flux come into
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being, thus totally destroying the normal
field structure which prevails at moderate

e
E

Counter-Rotating

Co-Rotating

Fig. 13 Electromagnetic field lines around
a series of ring coils with co-
rotating and counter-rotating flow
of currents.

In the case of the delta wing, the
counter-rotating vorticity lines can come
close together in two different ways when
the Euler equations are solved and in
three different ways when the Navier-
Stokes equations are applied, in which
case back flows and turning of the bound
vortices on the wing surface can be ex-
pected. The three cases are illustrated in
Fig. 14 with a and b arising from solution
of the inviscid equations and &, b and ¢
from the numerical method using Navier-
Stokes equations. These types of encoun-

|

Fig. 14 Types of counter rotating vortices
shed from delta wings causing
vortex break down.



ters of vortex lines with counter- rota-
ting vorticity are clearly observed both
in numerical and experimental results.

6. Conclusions

The flowfield of a delta wing with
canard has been simulated using the Euler
equations. The H-H topology of the mesh
enables uniform handling of leading and
trailing edges. Comparison with calcula-
tions of the wing alone indicate that the
influence of the canard leading edge vor-
tex 1is to stabilize and reduce the
strength of the wing leading edge vortex.

The interrelations between dipole dis-—
tribution on the wing surface, the bound
vorticity arising therefrom and the vortex
shedding from the leading edges provide
the necessary data for determing the total
pressure loss in the rolled up vortices.
The vortex breakdown phenomena can be
directly attributed to the coiling up of
counter-rotating vortices in the flow
field, as they lie close to one another.
The high radial velocities arising there-
from cause a marked swelling of the rolled
up vortex sheet and destroy the spiraling
structure of the flow.

Further research needs to be performed
over a (greater range of Mach numbers and
angles of attack. Comparisons of canard
on/canard off calculations would be better
on meshes which are the same in both cases
in the region of the main wing.
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