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ABSTRACT

A robust and accurate upwind scheme based on
flux~-difference splitting for three~dimensional,
incompressible flows in general coordinates is
described. Viscous effects are included through a
thin-layer approximation to the Navier-Stokes
equations. Turbulent flows are simulated with
extensions to the Baldwin-Lomax turbulence model.
Central differencing of the viscous shear fluxes
and a total variation diminishing (TVD)-like dis—
cretization of the inviscid fluxes yield second-
order spatial accuracy. Fairly rapid convergence
to steady-state solutions is achieved with a hy-
brid technique which combines approximate factor-
ization (AF) with relaxation. The effects of
accuracy and gridding on the computed flow field
results are assessed. The results obtained from
the code for vortical flows over a delta wing, a
double delta wing, and a tangent-ogive forebody
compare well with experimental data.

I. INTRODUCTION

Following conventional wisdom (cf. refs. 1-3
and 4-6), before a production version of a numeri-
cal code is worth pursuing, it has to prove its
mettle in various stages: (i) algorithm develop-
ment, (ii) numerical experiments on accuracy, sta-—
bility, and convergence, and (iii), perhaps most
important, code validation using well-documented
experiments and/or calculations. After having ex-
tensively and almost completely documented the
first two stages [7-9] including some show case
calculations [10,11}], here we will concentrate on
the validation phase of an implicit high resolu-
tion upwind scheme by Hartwich and Hsu [7] for the
three-dimensional, incompressible Navier-Stokes
equations in their thin-layer approximation.

This paper is structured as follows: first,
we will briefly review the salient numerical
ingredients of the numerical scheme. We will
highlight the major enhancement to that scheme,
that is the implementation of the algebraic
turbulence model by Baldwin and Lomax [12], and
its extensions to accommodate flows with massive
separation. After some comments on gridding and
boundary conditions, we will discuss numerical
flow field results for vortical flows around a
thin (t/c=0.021), slender (AR=1) sharp edged delta
wing [13], around a thin (t/c=0.006) round edged
double delta wing (AR=2.05) [14], and over a 3.5
caliber tangent-ogive forebody [15-17].

I1. DIFFERENTIAL EQUATIONS

The governing equations are the Navier—Stokes
equations in their thin-layer approximation for
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three~dimensional, incompressible flow. They are
written in generalized curvilinear coordinates

3,.(Q/3) + B E+BF ¥ 3, (6=C)) = 0 (2.1)
with
Q= (pru,v,w)"
E = (8U, uU+§Xp, vU+;yp, wU+;zp)T
F = (gV, uV+5xp, vV+gyp, wV+gzp)T
G = (8gW, uw+nxp, vw+nyp, ww+nzp)T
0
Gv - (ReoJ)‘l wlun * wZ”x
len + wzny
wlwn * w2nz
where

2 2 2
= = + 3

g =+ n, + b, (nxun v nzwn)/
U = cxu + ;yv + czw V= Exu + gyv + Ezw

W=nu+nv+nw
X y z

J"1 = x;(ygz“—ynzg) + XE(Yan‘yCZn)
* Xn(yczi_yizc)
&, = (ygzn—ynzg) & = "(ngn"xnzi)
g, = (xgyn—xnyg) £, = (Ynzc"yczn)
gy = —(xnz;—xgzn) £, = (xnyc-xgyn)
n = (yczg-ygzc) ny = “(XCZE‘XEZC)
n, = (xcyg-xgy;)-

The parameter B gives a measure for the amount of

artificial compressibility, which couples the
equation of continuity with the equations of
motion. That, in turn, allows to integrate (2.1)

1ike a conventional set of time-parabolic set of
partial differential equations. Equation (2.1)



recovers the governing equations for truly
incompressible flow for large B or in the asymp-
totic limit pt+0 for t+w, We will present only
steady state solutions of (2.1), for which g=1
turned out to be quite a good choice [7,8].

The equations are nondimensionalized, where
the Cartesian coordinates are scaled by some
reference length, the Cartesian velocities by the
free stream velocity V_, and the pressure is
written as C_/2. All terms in (2.1) are divided
by the constant density p, and the dimensionless
time is non-dimensionalized - with V_ and the
reference length. The effective Reynolds number
is defined by

-1 -1 -1
Re = Re + R

lam €turb (2.2)

The “"turbulent” Reynolds number, Returb’ comprises
the eddy viscosity u_, which is computed from the
two~layer, algebraic turbulence model by Baldwin
and Lomax [12]. Using their model with a non-
dimensional notation yields

-1
-1 (Returb)inner’ y s Yerossover
Returb = (2:3)
-1
(Returb)outer’ y > ycrossover

where y is the local distance normal to the body

surface and ygﬁ?ssover is thegfmallest value of y

for which (Returb)inner = (Returb)outer' In the
inner region
-1 2
(Returb)inner = 27w (2.4
where
; +, +
¢ = ky{l-exp{-(y /A )1} (2.5)
with

o Ten —o Y2arw o 2are o N271Y
|| = [(uy v HY, wy) +w_-u )] (2.6)
and the law-of-the-wall coordinate

+ 1,
y = y(Relamoau/By]wall) (2.7)

For attached boundary-layer flows, the "turbulent”
Reynolds number in the outer region is defined as

(Returb)outer =K CchwakeFKleb (2.8

K and C are constants, and F is the
Klebanoffcfhtermittency factor, and Kleb

F = min(cwx-(AV)z-y /F 5y F ) (2.9)
wake max’ max’ “max max

where
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2,2 2\
- (u v w )min

and F is the maximum of the function
max
F(y) = |wje/k

with y = y(F ). The constants are given in

Ref. 132% max

III. METHOD

The derivation of the up to third-order
accurate high resolution schemes and an evaluation
of their coupling with various implicit algorithms
are found in Refs. 7 and 8. Here, we shall dwell
only on areas which are pertinent to our applica-
tions.

A. TImplicit Algorithm

The implicit finite~difference algorithm
applied to Eq. (2.1) results in an hybrid scheme
where a symmetric planar Gauss-Seidel relaxation
is used in g~direction and approximate factor-
ization in &~ and n-direction.

- + np ~1l.n
[M_Bj+ 1/2 Aj+ 1/2 + Bj... 1/2 Aj_ 1/2 ] L ]

- -+ n n
[u-(C +Z)k+ 1/2 by 1/2 +(C +Z)k~ 1/2 - L. 4Q

n n+l

= -RES(Q ,Q ) (3.1)

where

+
= ) i tri
M= (I/tJ) + Ai+-V;Ai~ %& , (I: identity matrix)

and
n n+l

n = -
2" = Q™0 a1 0= 0470

The residual RES(Qn,Qn+1) comprises the
difference approximations to the spatial deriva-
tives in (2.1), and it is nonlinearly updated
while sweeping back and forth in z-direction. The
steady-state solutions are independent of the time
step size T due to the delta form of (3.1). Each
of the one~dimensional implicit factors requires a
block tridiagonal inversion in each crossplane.
This algorithm gives the best of both worlds: it
is unconditionally stable for linear systems like
a line-relaxation method, and it is vectorizable
like a three-dimensional AF scheme.

The Jacobians A*, B*, Q* stem from the
coefficient matrices A, B, and C, which are ob-
tained from (8E/3Q, (3F/9Q), and (3G/3Q), respec-
tively, and they are written as



0 ag bg cB
a aut bu cu

A,B, or C = b av bv+8 cv -2
c aw bw cwtd

where g=autbv+tcw, and, for example, to obtain A,
asg, b=z _, esg, . It is easily shown [7,8,18,19]
that (3.2¥ has a complete set of real eigenvalues

A= diag(xl,lz,x3,ké) = diag(6-5,6+S,6,8) (3.3)
(diag: diagonal matrix)
where S=[e2 + 8(a2+b2+c2)]1/2. Consequently, the

matrices A, B, and C can be split according to the
sign of their eigenvalues, for instance

- - + +
A, = (R R = .
i+ §& (RA L)l+ %& and Ai* %& (RA L)i— bb (3.4)

with 2% = ([a]xn)/2.

The columns of R and the rows of L are the
linearly independent right and left eigenvectors,
respectively, and for simplicity, they are defined
to give an orthonormal set, that is RL=I. An
implicit algorithm always benefits from such a
splitting since it allows to use one-sided differ-
ences which augments the diagonal dominance of the
coefficient matrices in (3.1). Various splitting
concepts [20,21] can be employed to accomplish the
splitting sketched above for incompressible flow.
We have been advocating the flux difference split-—
ting concept by Roe [21] for reasons which will
become apparent in the next section.

The implicit
also a Jacobian,
shear flux G_.

. s v
is derived as

formulation is (3.2) contains
Z, which stems from the viscous
Applying Steger”s [l] arguments, Z

0 0 0 0
o 0 %22 32 %42
Z = (Re+J) (3.5)
0 23 233 %43
0
242 243 244
with
2 2 2 2 2 2
Zyy = 4nx/3 + ny + n, Zgy = N + 4ny/3 + n,
z32 = nxny/3 243 = nynz/3
- 2 2 2
240 = N,73 Zhe T Mty ¥ 4n,/3
B. Spatial Differences

We discuss first
viscous shear fluxes.

the differencing of the
Using second-order central
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differencing,
reads

the second term in Gg,for example,

_1 .
ReDyy 1 (0 by s 1+ V2 a1, Ny a Uy )

with

ey ™ Ui Uy Bt 1% Ny ke Uy Bka 1y ¥

+ .
nz,ki 1/2 Ak:!: 1/2 w)/3

The metric quantities at the half points are
computed from arithmetic averages of the values at
the neighboring full points, where they are calcu-
lated using a special averaging procedure [7,8] to
maintain free stream.

The flux difference splitting (FDS) is based
on Roe”s [21] approximate Riemann solver which '
computes approximate solutions to a Riemann
problem by finding exact solutions to an approxi-
mate problem

BtQ + SXH = BtQ + D(QL,QR)BXQ =0 (3.6)

where the subscripts R and L indicate the right
and left states of a Riemann problem. Although
(3.6) looks like a nonconservative formulation, it
can be made conservative just by using appropriate
averages D(QL,Q ) for compressible [21] and
incompressible ffbw [7,8]. This is an important
feature recalling that

DBXQ = BX(DQ) = BXH

does not apply to incompressile flow, since its
fluxes are not homogeneous of degree one in Q
[20]. Furthermore, Roe”s FDS accounts for all
different waves by which neighboring states of a
Riemann problem interact, which gives it an edge
in accuracy over competing splitting concepts
[22].

We found these features of FDS attractive
enough to employ it in the discretization of the
inviscid fluxes. Although not the optimum
[7,8,23,24], the FDS 1is adapted to multi-
dimensional problems by applying it independently
in each coordinate direction and then summing up
over all spatial differences. Up to third-order
accurate upwinding is achieved by using TVD-like
discretization techniques {7]. Here, we use only
second-order accurate upwind differences for three
reasons: (i) they are simpler and computationally
slightly less expensive, (ii) the overall accuracy
of the scheme is of at most second order due to
the differencing of the viscous shear fluxes, and
(iii) test calculations confirmed that results
obtained with the second-order and the third-order
upwinding differ only marginally [7].

The backward difference formula to obtain,

for instance, (E?_ Y, ), is



n +

(Ei— 1/2 )

n + -+ n
= R,_ 1y, {r Y, [1+0.5(¢i-<1>i_1)]}

wn

SV (3.7a)

with the change in the characteristic variables

given by

0 n n
Ai— 1/2w = Li-— 1/2 Ai— 1/2 Q

The corresponding forward difference formula

.0 -
for (Ei+-V2) reads

I - _ 0 - - - _.t n
Ep1y,) = Ripyy (A, (170-5(2 =01
n
* b l/2w (3.7b)
where @# = diag(¢i,¢§,¢§,¢t)i are modified min mod

limiters [7]

+ ¥
bt = max (0, min(l,rm,i,Zrm’iﬂ)) (3.8)
with
n nykl n
. (Ai_ 1/2 wm/Ai+ 1/2 wm) for Ai& 1/2 wm#:O
r ., = (3.9)
m,i n
0 for L 1/2 wm=0
C. Implementation of the Turbulence Model

Since the conventional turbulence model by
Baldwin and Lomax [12] is too dissipative for flow
calculations with massive separations [25], we
modified this algebraic turbulence model in the
spirit of Degani and Schiff [25].

For the delta wing calculations, we monitor
the solution in each crossplane by marching from
the upper and lower half of the symmetry plane
toward the leading edge. Along each radial line j
(lower surface) and jmax+l-j (upper surface), we
compute F(y) and take its first maximum off the
body surface to make sure that Fm is truly
associated with the boundary layer ?fbw and not
with its too large value in the core of the
primary or secondary vortex. That relative
extremum of F(y) is detected when F(y)<0.9F ax for
y>ymax. To assure spanwise continuity in tﬁe eddy
viscosity, we specify a cutoff distance Yeutoff. 3
with y o ooce =15y 0o along the {o&%t
surface; an ’%nalogous’Jformula is employed along
the upper surface. Transition is modeled in an
ad-hoc fashion.

For the body of revolution computations, we
employ a different strategy: we invoke the Degani-
Schiff turbulence model only in regions of massive
crossflow separation. To this end, the solution
is monitored in each crossplane by marching from
the windward toward the leeside meridian along a
circumferential grid line a few step sizes off the
body surface. The onset of massive crossflow
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separation is detected by the first occurrence of
a negative product of two consecutive crossflow
velocities., Let that location be defined by
(1, ) pe- For i<i and/or K3y the flow is
assumei to be either laminar or turbulent; in the
latter case the Baldwin-Lomax model 1is turned
on. The transition from laminar to turbulent
attached flow is estimated using the Esch factor
which approximates the effects of angle of attack
on the streamline length [26].

D. Implementation of Boundary and Initial
Conditions
The boundaries are treated explicitly. This
leads to a flexible scheme where subroutines

setting the boundary conditions can be plugged in
or pulled out of a code to (i) account for the
various mesh types (e.g., C$-0-, or O-O-type
grids), and (ii) to avoid major changes in the
implicit algorithms. We abandoned implicit imple-
mentations of the boundary conditions because of
their complexity and since they failed to signifi-
cantly improve the convergence performance. Except

for one implicit algorithm [27], which we have
dropped 1in the meantime, all variants of our
scheme showed little to no sensitivity to the

implementation of the boundary conditions.

At the
values are specified,

field boundaries free stream
except along the outflow
boundary where a first-order extrapolation 1in
combination with p=const=0 is used. Along the
symmetry plane, reflection conditions are speci~
fied. On the body surface u=v=w=0, and the
pressure is computed from a limiting form of the
Navier-Stokes equations taken at a solid surface

far

-1

R 3.10
e v ( )

Py =

with v and y assumed to be normal to the surface.
Equation (3.10) is evaluated using second-order
accurate finite-difference approximations. In
case there is a wake cut, averaging across the
wake ensures continuity. The limiters Qf (2=1i,j

or k) are set to =zero along all boundaries,
leading to a first-order error at the
boundaries. The intermediate boundary conditions
during the implicit solution are set to zero. The
initial procedure is to use uniform free stream
flow with u=v=w=0 along the body surface.

IV. RESULTS

Solutions are shown for a sharp-edged delta
wing, for a round-edged double delta wing, and for

a tangent-ogive forebody at various Reynolds
numbers and angles of attack. The CPU time per
grid point and per iteration 1is about 35 (70)

microseconds on a CYBER 205 vector computer with
four (two) pipelines using 32-bit word arithmetic;
it is about 90 microseconds on a Cray 2 computer

in single processor mode using 64-bit word
arithmetic. Reasonable results which show the
basic features of the vortical flow around the

aforementioned geometries are obtained on grids
with 100K to 250K grid points after 300 to 500
iterations, which translates to computing times
ranging from 20 minutes to three hours.



A. TFlows About a Delta Wing

The wing geometry is taken from Hummel”s [13}
wind tunnel model. The flow field is discretized
using an H-C grid (H in chordwise, C in spanwise
direction). Three crossplane grids are generated
at the apex, at the first station downstream of
the apex, and at the trailing edge as solutions to
elliptic systems [28]. All other crossplane grids
are generated from extrapolation and interpola-
tion. The cross-sectional grids are adapted to
the actual wing thickness distribution through
shearing. The crossplanes are clustered in the
apex and in the trailing edge region, whereas they
are spaced with Ax/c=0.1 for 0.3<x/c<0.7. The
circumferential spacing of the radial lines is of
minor importance as long as it does not introduce
too strong a curvature of the radial lines, for
instance, close to the leading edge. A geometric
progression is used for the radial stretching with
the ratio between the minimum and maximum step
size being restricted not to exceed the common

bound [2,7,8,29,30] of about three orders of
magnitude.

Figure 1 shows a comparison between a compu-
tational and an experimental surface oil flow
pattern [13] which are very similar to each other.
The angle of attack is 20.5 degrees, and Re=0.9
million. The flow separates along the sharp
leading edges and rolls wup into the primary
vortex. The induced flow reattaches close to the
centerline and is directed outboard, forming a
secondary separation at about 2/3 of the 1local
semispan. The flow induced by the secondary
vortex reattaches very close to the leading edge
where it partly merges with the shear layer
forming the primary vortex, and partly it is
directed inboard, separating for a third time.

Figure 2 illustrates some grid effects on the
computed flow field results for a=20.5 degrees and
Re=0.9 million. Computed (lines) spanwise surface
pressure distributions are compared with experi-
mental data [13] (symbols) at x/c=0.3, 0.5, 0.7,

and 0.9. The computations are carried out on
grids with 49x49x37, 65x65x37, and 97x97x37 grid
points in radial, circumferential, and longi-

tudinal direction, respectively. The number of
crossplanes has been varied between 37 and 78
without noticing any discernable differences in
the cp~distributions for a given number of grid
points per crossplane. The integration domain has
the shape of a half cylinder with radius R___/e=2
> ma
and it extends from one root chord upstream o? the
apex to one root chord aft of the trailing edge,
the grid extent is of minor importance (see
below). We consider the results calculated on the
97x97x37 grid as spatially converged as indicated
by a comparison with computations on a 65x97x37
(cf. Fig. 3) and a 97x129x37 grid (not shown
here).

The necessity to account for transition which
was observed in the experiment [13] is demonstra-
ted in Fig. 3. The flow is assumed to be fully
laminar along the 1lower wing surface and for
®/c<0.6 along the upper surface. The effect of
turbulence is clearly seen for x/¢>0.7: the fully
laminar calculation (Fig. 2c¢) considerably over-
predicts the strength of the secondary vortex
while the transitional computation is in much
closer agreement with the experiment [13].
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The representative convergence history in
Fig. 4  highlights two issues: (i) converged
results are obtained after 300 to 500 iterations,
and (ii) cross-sectional grids with 65x65 grid
points already suffice to obtain a basically
converged asymptotic lift.

The predicted "~ 1ift agrees quite well with
experimental data over a wide a range (Fig. 5).
The computed loads with the turbulence model being
invoked differ only marginally from those in Fig.
5. The delta wing produces negative 1lift at o=0
degrees because of its negative camber. Maximum
1lift occurs between 30 and 35 degrees in both
experiment and computation.  This peak is associ-
ated with the onset of vortex breakdown at the
trailing edge. For a=40 degrees, the vortex burst
occurs at 0.4<x/c<0.45 in good agreement with
similar experiments [31,32] (Fig. 6). As in
experiments [33], we observe a smooth transition
from the confined flow along the primary vortex
core upstream of the vortex breakdown into the
bubble~shaped region of reversed flow.

B. Flows Over a Double Delta Wing

Vortical flows are computed around a round-
edged double delta wing [14] with an aspect ratio
of 2.05 and a maximum thickness of t/c=0.006. The
leading edges of the strake and of the wing have
an 80 and 60 degree sweep, respectively, with a
leading-edge kink at x/c=0.5. The integration
domain is discretized by using grids of H-C topol=-
ogy with 53 to 81 crossplanes perpendicular to the
longitudinal wing axis. Shape and extent of the
integration domain are similar to the one used in
the delta wing calculations. The cross-sectional
grids are again generated as solutions to elliptic
systems [28] with the same constraints as for the
delta wing. Figure 7 shows a comparison between a
computed (line) and a measured (symbols) spanwise
surface pressure distribution for x/c=0.75, a=12
degrees, and Re=l1.3 million. This calculation was
done on a grid with 53 crossplanes, each consis-
ting of 97 by 167 grid points in radial and cir-

cumferential direction, respectively. Even when
using such fine cross-sectional grids, the
computed pressure “footprints™ of the strake and

the wing vortex indicate that either even finer
grids are needed or that the accuracy of the
scheme needs to be enhanced, to match not only the
location but also the suction of the experimental-
ly observed vortices. Nevertheless, it is already
possible to trace the interaction of the strake
and wing vortices over the entire wing as indi-
cated by the total pressure contours for various
root—chord stations in Fig. 8.

Figure 9 shows the convergence histories for
computations on a 65x101x8l grid with a = 12, 20,
and 40 degrees, and Re=1.3 million. The more
complex double delta wing calculations require
between 50 and 100 percent more iterations than
the delta wing computations.

The measured variation of 1lift with angle of
attack [l4] is compared with an calculation by
Fujii and Schiff [34] and with present results in
Fig. 10. Up to maximum 1lift at about a=25
degrees, both computational results match the
experimental values quite closely. Beyond CL,max’
only the present calculations compare well "with
the experiment. Again, Cp is associated with
the onset of vortex breakdown at the trailing



edge. A flow field result with a simulated vortex
breakdown is depicted by means of particle traces
in Fig. 11 for o=40 degrees. As before, this
result suggests that a vortex breakdown is not an
abrupt event but that it is more of a smooth,
gradual nature.

C. Flows Over a Tangent-Ogive Forebody

C-0O-type meshes are used to compute vortical
flows around a 3.5 caliber tangent ogive, mounted
on a circular cylinder [15,16,17]. The radial
grid lines are equiangularly spaced with the same
radial stretching as used for the delta wing
calculations. Figure 12 shows the effect of the
integration domain extent and of cross—sectional
resolution on normal force. The baseline gird in
Fig. 12(a) consists of 65x73x40 grid points
corresponding to Rmax/d=28' Retaining the same
grid density, the computational domains of lesser
extent are obtained by dropping radial points in
the far field (i.e., Rmax/d=13'22 corresponds to
a 58x73x40 grid, etc.). We recognize a second-
order accurate convergence of the normal force
when correlateq with the representative step size
h=(imaxsjmax)” 2 , where imax and jmax give the
number of grid points in vertical and circum-
ferential direction. We consider this quasi two-
dimensional apporoach in the grid refinement study
justified since the number of crossplanes has been
varied from 40 to 105 without detecting any dis-
cernable changes in the loads or in flow details
like the surface pressure distribution. The
length of the circular cylinder has been changed
between 7 and 35 base diameters. For the after-
body exceeding x/d=20, we encountered difficulties
in converging our solutions to a stable steady
state. We identified two sources for this problem:
(1) unsteady vortex shedding along the afterbody,
and (ii) an insufficient resolution of these body
vortices due to the longitudinal stretching of the
grid. The effects of gridding on the convergence
performance and on the normal force development is
illustrated in Fig. 13 for the four cases shown in
Fig. 12.

Figure 14 shows comparisons of measured and
computed surface pressure coefficients for four
axial statioms: x/d=0.5, 2.0, 3.5, and 6.0 dia-
meters downstream of the body apex. Three dif-
ferent calculations are shown for Re=0.2 million
and a=20 degrees. First, the computations with
our modifications to the turbulence model are
shown by the solid 1line. Second, a completely
laminar computation is shown for comparison by the
dashed line, and third, a more sophisticated, but
still conventional approach is employed by using
the Degani~Schiff modification of the Baldwin-
Lomax turbulence model. For x/d<3.5, the flow is
apparently laminar, and all calculations match the
experimental pressure data quite closely. The
turbulence models are invoked for x/d>3.0. For
x/d>3.5, the laminar calculation clearly overpre~
dicts. the influence of the primary vortex im the
pressure distribution and locates its position at
too low an azimuthal angle. The third approach
still gives too strong a primary vortex at too low
an azimuthal angle, and it fails to capture the
laminar separation bubble in the equatorial
regime. With our modified turbulence model, the
position of the primary vortex is less than five
degrees off, its suction 1is of comparable
(x/d=3.5) and equal (x/d=6.0) strength, and the
effect of the laminar separation bubble on the
equatorial Cp—distribution can be clearly seen.
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Our extension to the Baldwin-~Lomax turbulence
model works also successfully for other flow
conditions as indicated by the results for Re=0.8
million and a=30 degrees in Fig. 15.

CONCLUDING REMARKS

A numerical method to solve three—
dimensional, incompressible viscous flow problems
have been demonstrated for complex vortical flows
over simple aerodynamic shapes. Such flow field
studies are interesting in their own right, as
they show the current major hurdle in routinely
predicting such flows: the lack of dependable
turbulence and transition models. Since it is
relatively fast and proved to be quite accurate in
several instances, the present scheme appears to
be a viable choice for a research code to work
these problems. When being more oriented towards
production code development, a multiblock
capability needs to be incorporated to handle
complex geometries.
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experiment

Surface oil flow patterns; a=20.5,
Re=0.9 million.



1.50—
x/c x/c
1.25}— [F'¢) 1.25}— 0.3
1.00 1.00 o
.75
.75
o N 0.7
1 -50 L|J .50 0.9
29 2
0 0
-2 -2 —
ﬂsol, -.50
0 25 75 1.00

1.50

1.25

1.00

75

~Cp
o
[=]

.50
SEMISPAN
Fig. 3. Experimental (symbols) and computational

(lines) spanwise surface pressure

distributions - computation for
transitional flow; a=20.5 degrees,

1.50

1.25—

x/c Re=0.9 million.
10" — 1.2
100 }— 1.0 F
=
& 10-t E .8
z 3]
& i
< 10 ‘g &
2 = N
w107 O 4 grid
49x49x37
10-4 }— 2 65x65x37
— -—- 97x97x37
10 | I T T | B N
x/c 0 150 300 450 600 O 150 300 450 600
ITERATIONS ITERATIONS

0.3

Fig. 4. Convergence summary for delta wing
calculations; a=20.5 degrees, Re=0.9
million (laminar).

1.4
1.2—
O computation
1.0— P !)/e"("‘—‘ )
@ experiment /./
81— O
g et

Fig. 2.

K]
.50 75 1.00 /./
SEMISPAN A ‘/e
O

:——O./Q
i

0 5 10 15 20 25 30 35 40
Experimental (symbols) and computational ALPHA (DEG.)
(lines) spanwise surface pressure
distributions ~ computations for laminar Fig. 5. Variation of 1lift with angle of attack
flow; 20.5 degrees, Re=0.9 million. for a delta wing; Re=0.9 million.

1424



v
o

= £
LT % ./f’;?“ ! B =
side view JA vfﬁ@%ﬁg ', x/c 0.75
s e Y | I ] ]
SIS S e -1
LA FT - ZZ 0 .25 .50 .75 1.00
SEMISPAN
Fig. 6. Flow over a delta wing with a vortex Fig. 7. Experimental (symbols) and computational
burst (particle traces); a=40 degrees, (line) spanwise surface pressure
Re=0.9 million (laminar). distributions ~ computation for laminar
flow; a=12 degrees, Re=1.3 million.
- 2 2 2
042 — Coy = cp+uz+v2+wz 127 — Cpp = Cptutsview
_ (¢ ') = 0.9
x/c = 0.35 (de)mox = 0.9 x/c = 0.75 'cp f)mcx = -0.1
(Cyda = =0-1 Codn = -0
- AC,, = 0.1
021 — AC,, = 0.1 .064 ot
N g
0 0=
-.021 1 | l | -.064 | L | ]
0 .021 .042 .063 .084 0 .064 127 191 .255
Y/C Y/cC
070 — Cot = Cp+u2+v2+w2 4185 — Cop = (:p-¢~u2+v2+w2
(Cw)mx = 0.9 (Cp',)mx = 0.9
= 0.55 -
X/c (cp.?)mln = -0.1 X/C - 0.95 (Cp,i)mln = -0.1
035 b AC,A = 0.1 092 }— ACP', = 0.1
N O
N N
0 =
-.035 | I l ] -.092 | | I I
0 .035 .070 .105 .139 0 .092 .185 277 .370
Y/C Y/C
Fig. 8. Cross-section total pressure distribu~

tions for a double delta wing; oa=12
degrees, Re=1.3 million (laminar).

1425



10° r 24—
107" — 20—
E1ep—
]
o
™
R
o
o
[
L
=5 8
a = 20°
4
a=12°
L) S N N S S I R
0 250 500 750 1000 0 250 500 750 1000
ITERATION ITERATION
Fig. 9. Convergence summary for double delta wing
calculations; 65x101x81 grid, Re=1.3
million (laminar).
1.50
1.25—

g2 ™gp oo
%o a A A

1.00 — Al Ab
x

g s— &
(o]
- a
-50 O experiment, ref.14
o O present solution
28— @ A num. solution, ref.34
(o]
% | | | | J
10 20 30 40 50

ALPHA (DEG.)

Fig. 10. Variation of 1lift with angle of attack

for a double delta wing; Re=1.3 million.

Fig. 11. Flow over a double delta wing with a
vortex burst; a=40 degrees, Re=1.3
million (laminar).

Re, x107 a, deg
30— o 0.2 20
o 0.8 30
25—
O--=--- 0= o
J20—
a) grid extent
1.5(—
ey o
1.0 | I | |
0 7.5 15.0 225 30.0
Re/d
Re, x10™®  a, deg. M
O computation 0.2 20 0
@ experiment 0.2 20 0.21
O computation 0.8 30 0
25 MW experiment 0.8 30 0.27
”‘D
”‘D-”’ )
20— _,—"D
o-
S »
15— b) grid densly " h=(Imax+jmax)™'/?
O
it
'
| | I l J
"% 1 2 3 4 5
h*10™

Fig. 12. Grid effects on computed normal force
for a tangent ogive forebody.

10" — 2.00
1.75
(-
100 &i1.50
[&]
g i
1.25
=z o]
° 3}
< qor L 1.00
z L
c bl
z|N ".é 29 grid
_J E 49x49x40
Ly - | S 49x73x40
| —-—-  65x73x40
25 —--—  97x91x40
10 I I I [ I
0 150 300 450 600 O 150 300 450 600
ITERATIONS ITERATIONS

Fig. 13. Convergence summary for tangent ogive
calculations; a=20 degrees, Re=0.2
million (transitional).



x/d
6.0
3.5
e 2.0
0.5
present furbulence model
------ laminar flow
-25 ~—-~—- turbulence model by =25
Degan! and Schiff, ref. 25 -.50
- I T N N N A | -7
20 40 60 80 100 120 140 160 180 0
8, circumferential angle, deg
Fig. l4. Experimental (symbols) and computational Fig. 15.

(lines) circumferential surface pressure
distributions; a=20 degrees, Re=0.2
million.

Copyright © 1987 American Institute of Aeronsutics and
Astronautics, Inc. No copyright Is asserted in the United States
* unmder Title 17, U.S. Code. The U.S. Government has a
yalty-free license to ise all rights under the copyright
d herein for G 1 purp All other rights are
reserved by the copyright owner.

1427

[ 1 L | 1 | [ |

20 40 60 BO 100 120 140 160 180
8, circumferential angle, deg

Experimental (symbols) and computational
(lines) circumferential surface pressure
distributions; a=30 degrees, Re=(0.8
million.



