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Abstract

In this paper motions of composite cylindrical
panels in a gas flow are considered. It is shown
that the main factor contributing to large static
deformations is a nonuniform aerodynamic heating,
while aerodynamic pressure is of secondary impor-
tance, at high Mach number.

It turns out that the main factor resulting in
the increase of deformations is the nonuniform
distribution of temperature along the curved
edges. Deformations decrease rapidly in shallower
panels. Nonuniformly heated panels become unstable
at the values of axial compressive load which are
much smaller than the static buckling value cal-
culated in the absence of temperature. The con-
dition of panel flutter of nonuniformly heated
composite panels in a gas flow is also formulated.

I. Introduction

Problems of panel flutter of composite cylindri-
cal shells have been studied since the
seventies.(1-3) At high flight velocities and
with modern materials, aerodynamic heating has to
be included in the analysis. The effect of temper-
ature on supersonic panel flutter of aerospace
structures was studied in references 4-8.

In this paper the effect of aerodynamic heat-
ing on the behavior of a simply supported composite
cylindrical panel in a supersonic gas flow is con=-
sidered. Both aerodynamic and material damping
effects are neglected. The aerodynamic pressure
is described by piston theory. The temperature
distribution is assumed to be a general quadratic
function of both the x and the y position
coordinates:

= 2 2
T (aO + arx + azx )(bo + bly + bzy )T0

This assumption permits reduction to uniform,
linear, and parabolic distributions of the tempera-
ture in particular cases.

It is shown that cylindrical panels experience
static deformations in a nonuniform thermal field.
These deformations can exist even if the gas flow
is absent. The presence of a gas flow can result
in panel flutter, superimposed on static deforma-
tions. The effects of different geometries, tem-
perature distributions, and axial compression on
static deformations of nonuniformly heated panels
are considered in numerical examples.

II. Analysis

Consider a cylindrical panel in a supersonic
gas flow (Fig. 1). The axial length of the panel
is a, the arc length of the curved edges is b, and
the radius of the middle surface is R. The panel
is formed of layers symmetrically oriented with
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respect to the middle surface. The number of
layers is large so that the analysis can utilize
the assumption that the panel is orthotropic.
The analysis is based on Donnell's shell theory,
which was shown to be sufficiently accurate for
thin, shallow composite shells that are not too
long. 9

Then the equations of motion of the panel can
be written in terms of displacements and thermal
and external forces as follows:
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where u, v, and w denote the axial, circumferential,
and radial displacements, respectively; Ng°, Ny s
Ny T are thermal stress resultants; Ny and Ny "are
the stress resultants of external loads acting in
the x and y directions, respectively; p is the

mean density of the material; h is the total panel
thickness; and q is the intensity of aerodynamic
loading. The differential operators Lij corres-
ponding to the generalization of Donneli's theory
to orthotropic shells are(9
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- a d®+ 4, d
Ly = (4,/Rd, 5 Ly, = Aged, + Ajdy
Lyy = (/R
iy 2.2 L

= +D,,d + A, /R (2
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In equations (2), Ai' and D;4 are extensional and
bending stiffnesses,” respectively; dy and d
denote differentiations with respect to the
corresponding argument.

Following the well-known piston theory, one can
represent the aerodynamic pressure as

paczM2 3)

where p, is the gas density, ¢ is the sound velo-
city in the gas, and M is the Mach number. The
vector of thermal stress resultants is given by

N
No= 3 Q(k)a(k)hk'r (%)
k=1

1886



where

T

Ny K Ox

N = NyT ) @,
N T o

Xy Xyl k

Q1 U2 Qe

(k) _

CT T U2 % Y &
%6 6 e
Here Q(k) is the matrix of the transformed plane-

stress reduced stiffnesses of the k-th layer, alk
is the vector of the transformed thermal expansion
coefficients of the same layer, and T is the tem-
perature which is assumed to be independent of
time. The total number of layers is N, the thick-
ness of the k-th layer is hk.

The relationships between the elements of the
vector a and o, and o, the coefficients of
thermal expansion in the principal orthotropic
directions of the layer are:

ax = aL cos?p + aT sin?g
ay = aL sin?0 + aT cos?g
axy = (aL-aT) sin B cos © (6)
where 6 is the lamination angle.

The temperature distribution is assumed to be a
general quadratic function of the middle-surface
coordinates:

= 2 2
T (a0 + a;x + a,x )(b0 + bly + b2y )To (7)

This assumption permits consideration of uniform,
linear and parabolic distributions, in particular
cases,

NT = T (8)
where
By
8= <8, (9
B
is the vector of reduced thermal stiffness
coefficients
6= 3 oMy (10)
k=1

The boundary conditions at the edges x=0
y=0, and y=b correspon% go S2 conditions in the
terminology of Almroth.( 0 These conditions are
satisfied if the displacements field is represented
by the following series:

’X=a’

u = (U cos I= 4 U cos EEE) sin 2Y
1n a n a b

2
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The substitution of equations (11) into the first
two equations (1) and applying the Galerkin pro-
cedure yield the following two independent sets
of algebraic equations.

K10 T KVin = KWy * Ty

kzﬁln + k4§ln = ksﬁln +T, (12)
and

KgUpy * KV = gy + Ty

k762n + k9§2n K gon * Ty (13)
where

(ﬁln’Gln’ﬁZn’GZn) = (Uln’vln’UZn’VZn)/h 1s)

are the nondimensional amplitudes of in-surface
displacements. The nondimensional coefficients
ki in equations (12,13) are

2= - 2+
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where
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and
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ij ij’ T

Er being the transverse-direction modulus of elas-~
ticity of a layer. The nondimensional thermal
terms in equations (12,13) are given by the
following relations:

T, = 8h{2(aya®)[b £, (n) + b bf,(n) + by b*f (n)]
+ A(aja + aya®) [b bf,(n) + 2b,b7f, (n)] By} 7
T, = - 8h{AB,[2a + aja + a,a?(1 - 4/72)][b,b*€, (n)]
+ By(-aja + 3232)[blbf4(n) + bzbzfs(n)]}/ﬂ
T, = - z(x/ni)ﬁ<a2a2)[blbfl(n) + 2b,b%f, ()] By



T, = 4E{A§2(ala + 3232)[b2b2f4(n)] + §3(a2a2)

*[b;bf, (n) + bzbzfs(n)]}/w (18)
where
(By58,,84) = (81585584) (TO/ETh) 19

are nondimensional parameters and

fl(n) = (1 - cos nm)/am
fz(n) = ~ (cos nm)/nm
£5(0) = - 2/(am)3 - [1/(am) - 2/(am)’] cos nm  (20)

fa(n) = (cos um - 1)/(nm)? ;fs(n) = 2 cos nn/(nr)?

Note that the products aja, azaz, byb, and b2b2
are nondimensional parameters.

From equations (12,13) the nondimensional in-
surface amplitudes can be expressed in terms of
W and W

in 2n’
l_Jln = Slwln + SZ
Vg = 830, * 8,
I_JZn = SSWZn + S6
Von = S7¥pn + Sg 2n
where
81 = (kyley = kokg)/Ciegley = k)
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8, = (kgkyg - Kykg)/ (egky ~ 12)
Sg = (kgT, = K;To)/(keky = K2) (22)

The substitution of equations (3) and (11) into
the third equations (1) and applying again the
Galerkin procedure yield the set of differential
equations:

2 pid - - - _ - -
(ORS/EpW kg Uy + gV kgl = Ky )
2 - - - = - -
(PRZ/EpWp + K sUpn + K1gVaq + Ky, = kpgiy M
(23)
In equations (23)
M= M/AMZ - 1 (24)
The nondimensional coefficients are given by
2
kll = - mah A12 = - k3
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is the nondimensional axial load.

Equations (23) can be written in terms of
radial deflections only:

(oh?/EDU) |+ BT+ Ry = Iy H W
(phZ/ET)i'i2n + R3ﬁ2n +R, = klaﬁ ﬁln (28)
where

Ry = kygSy ¥ kgpSy + Ky

Ry = ky18y + kyp8,

Ry = kygSg5 + kygSy + kyy

R, = k5, +k  Sg 29)

The solution o6f equations (28) consists of static
and dynamic parts:

_co,ot
wln wln + Wln sin wt

= -0 =t
Yon = Won * Yo

sin wt (30)
where w is the frequency of harmonic vibrations of
the fluttering panel.

The substitution of equations (30) into equa-
tions (28) yields two independent sets of algebraic
equations. The solution of the set including the
static deflections is

so . (R2 + k14R4/R3)M

In -2
(k14k18/R3)M - Ry
W = (k, M/ROW.C - R, /R (31)
2n 18753 %1n T N3

The set including the dynamic deformations can be
written in the form:

-k MW .F=0

2.t
Ry = w)Wy =y MW,



(32)

where

-2
w = phzwz/ET (33)

The Mach number parameter M corresponding to the
flutter oscillations of the panel is obtained from
equation (32) as

\/(R -w)(R -/~ k ) (34)

14 18

Note that (- -ki4kyg) > 0. Therefore, the frequency
of motion of the fluttering panel is either

-2
w” < min (Rl’R3)
or

=2
w > max (Rl’

R3) (35)

It can be concluded that the panel may have two
types of deformations. Static deformations given
by equation (31) exist if the distritution of tem-
perature is nonuniform. If the temperature is
uniformly distributed over the planform of the
panel, these deformations vanish within the
Galerkin-type analysis. Panel flutter can be
superimposed on static deformations at the Mach
number given by equation (34). In the numerical
example the attention is concentrated on static
deflections of the panel at the center; see
equations (31)

- -0 .
W=1z wln sin nn/2 (36)
n
which is the largest deflection.

III. Numerical Examples

The cylindrical panel considered in the numeri-
cal examples is assumed to be made from boron
fiber/Al 7178-T6 matrix composite. The properties
of this material at room temperature are Ey, = 31
Msi, Er = 19 Msi, = 6,4 Msi, v T 0.255, ay =
5.16 uin/in/°F, ap = 10.1 pin/in/°® %

The calculations were carried out by assumption
that T, = 700°F and the effect of high temperature
on mechanical properties is uniform throughout the
plate. This assumption imposes limits on the
magnitude of a;a, aja, byb, b2b2 which cannot be
too large. Degradation of mechanical properties
due to high temperature was calculated based on
the data on mechanical properties of boron/aluminum
at T, =0 and To-—700 F given in reference 1l:

Ey = 22 3 Msi, Ep =5.2Msi, Gp =1.7 Msi. The
Poisson's ratios and the coefficients of thermal
extension were assumed to be unaffected by temper-
ature. Circumferential load N, was zero in all
examples. The panel was formeg of 30 layers
symmetrically oriented with the lamination scheme
0 # 45° (two layers adjacent to the middle surface
have the lamination angle 0°).

The effect of the Mach number on static deflec-
tions of the panel appeared to be negligible.
This can be explained by the analysis of the

coefficient pac /ET in ky, and kjg which has an
order of 1078 Therefore, static deformations are
due to aerodynamic heating and only to a negligible
degree to aerodynamic pressure. Note that in geo-
metrically nonlinear problems this conclusion may
be invalid. In the following examples, the Mach
number was always taken as M=4,

As it can be seen from the solution, temperature
change causes transverse deflections only if it is
nonuniformly distributed over the planform. In
the examples, it was supposed that aj=by=1,
blb bzb =0.1, i.e., temperature was nonunlform
in the circumferential direction. The values of
aja and aza2 were taken equal to either zero or 0.1,

The effect of the panel central angle on static
deflections of cylindrical panels is shown in Figs.
2,3. Deflections are always larger in narrower
panels; they decrease at larger panel angles
(except for the case of very thick panels as
illustrated by curve 3 in Fig. 2) and converge to
a constant value. This indicates that wide panels
behave as closed circular shells of the same geo-—
metry. Similar conclusions were obtained by Sobel,
Weller, and Agarwal 1n pro?lems of static buckling
of isotropic panels Physically the in~-
crease of the deflection in wider panels can be
explained by the fact the temperature is "more
uniformly" distributed in such panels if bib= b2b
= const. Apparently, this affects the magnitude
of deflections more than the tendency of wider
plates to have large deformations due to the
smaller effect of the boundary conditions along
the straight edges.

The influence of the length-to-radius ratio is
illustrated in Figs. 4,5. Deflections of the
panels tend to approach zero if their radius in-
creases (small 5). The explanation for this fact
is that if the radius increases, the panel
approaches a flat plate which has a very small
deflection due to nonuniform temperature distri-
bution.

The effect of axial compression is shown in Fig.
6. The deflection curve in all cases considered
consists of two branches. At certain values
Nl/Ncr < 1, the deflection approaches infinity,
i.e., the panel becomes unstable. The right branch
can be reached only if the temperature is applied
after the application of compressive load, provided
that instability in the transient regime is avoided.

The estimation of the influence of temperature
on deflections is shown in Figs, 7,8. The cal-
culations for these figures were carried out by
assuming that the mechanical properties of the
material remain constant within the range of tem-
peratures considered. The effect of T, on deflec-
tions of relatively thick panels is not very large.
However, deflections of thin panels increase at a
much higher rate with the increase of temperature
(curves 1 in Figs. 7,8).

Finally, the influence of spatial distribution
of temperature is shown in Fig, 9. The nonuniform
distribution of temperature along the straight
edges does not change the character of the deflec~
tion versus relative thickness h relationship.
However, if bjb= bob? =0 while aa= azaz-O 1, the
magnitude of W is of the order of 1073 only
(this curve is not shown in Fig. 9). This means
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that significant static deflections can exist only
if the temperature is nonuniformly distributed
along the curved edges.

IV. Conclusions

Deformations of nonuniformly heated composite
cylindrical panels in a supersonic gas flow have
been considered. It was found that static deflec-
tions can be considerable if temperature is non-
uniformly distributed over the planform. The
effect of aerodynamic pressure on static deforma-
tions is negligible compared with the effect of
nonuniform aerodynamic heating at high velocities
of flight. Significant static deformations can be
reached only if temperature is nonuniformly dis~
tributed along the curved edges.

As the panel angle is increased, the static
deformations approach a constant value which is
equal to deformation of a circular cylindrical
shell of the same geometry. The deformations are
much larger in curved panels than in the shallower
panels. There exists, in the presence of the tem-
perature, a critical value of the axial compressive
load which is usually much smaller than the clasgs-
ical buckling load calculated in the absence of
temperature. The deflection of the panel increases
as the temperature is increased. This increase is
more pronounced in thinner panels.
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Cylindrical Panel in a Gas Flow

Figure 1.
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Figure_8. Effect of Temperature on Static Deflec-
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Figure 6. Effect of Dimensionless Axial Compres-—
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Figure 7. Effect of Temperature on Static Deflec-
tion (a=0.5; A=2; aja= a2a2 =0; Ny = 0). Curves
1, 2, and 3 correspond to dimensionless thick-
nesses of 0.010, 0.015, and 0.020, respectively
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Figure 9. Effect of Spatial Distribution of
Temperature on Static Deflection (a=0.5; A=2;
Nl=0). Curves 1 and 2 correspond to values of
ala=aza2 of 0 and 0.1, respectively



