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Abstract g(D) vector of behavior constraints

A special finite element for the aeroelastic h height of the single cell cross section
modeling of a swept tip rotor blade is derived.
The swept tip of the blade is assumed to undergo
moderate deflections in the flap, lag and torsional vior constraints
degrees of freedom. The nonlinear, partial dif-
ferential equations of motion are discretized using
a Galerkin type finite element method. Tip sweep tion of aerodynamic damping and stiff-
introduces flap-torsion and lag-axial couplings,

and may lead to aeroelastic instabilities asso-

ciated with frequency coalesce. When frequency iH.JH.kH undeformed swept tip coordinate systenm,
coalesce does not occur, sweep back is usually sta-

bilizing. This aeroelastic stability and response
computational capability is combined with a struc- swept tip finite element
tural optimization analysis to minimize the n/rev
vertical hub shears in forward flight, subject to
aeroela§tic stability and frequency placement 1 mass moment of inertia of the blade in
constraints. A special technique is used to build b

a sequence of approximate, inexpensive to solve, flapping

optimization problems which converge to the solu-
tion of the exact problems. Tip sweep is used as an
additional design variable to reduce vibration [K(y,¥)] blade stiffness matrix
levels in forward flight.

[H(ﬁo)] Hessian of objective function or beha-
increment for finite difference calcula-
ness matrices
also local coordinate system for the

iT'jT’kT deformed swept tip coordinate system

mass polar moment of inertia of the rotor

2 length of the elastic portion of the
blade
Notation ‘e length of the e-th finite element used
to model the blade
A(yl,y) vector containing aerodynamic loads ' tip length
t vector of nodal degrees of freedom of t
ag g M(y)] blade mass matrix
the swept tip element in the éx’ éy’ éz [Me],[Qe] modal coordinate transformation matrix

coordinate system for the e-th straight finite element

aL vector of nodal degrees of freedom of t
the swept tip element in the 1., ., k M- (y)] modal coordinate transformation matrix
coordinate system H “H" °H for the swept tip finite element
b blade semichord NS number of finite elements used to model
the straight portion of the blade
CT thrust coefficient e 1 ¢ th dal dinate t _
[c(y,9)1 blade damping matrix Qij element of the modal coordinate trans
B vector of design variables formation matrix {Qe] for the e-th
e_.,e_ & undeformed blade coordinate system, also straight finite element
xy= rotor radius
global coordinate system for finite ele-
ment model position vector of a point of the swept
F nonhomogeneous forcing vector tip
f(B) objective function t1 thickness of the cross section
VF(ﬁ) gradient of objective function or beha- axial elastic displacement
vior constraints v,w bending elastic displacements in the
direction of JH and kH
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X, offset between the elastic axis and the
aerodynamic center, positive for aero-
dynamic center ahead of the elastic axis

Xy offset between the elastic axis and the
center of gravity, positive for center
of gravity ahead of the elastc axis.

Xy distance between leading edge and inter-
nal wall in double cell cross section

Xy chordwise length of the cross section
tip spanwise coordinate, measured along
the 1H axis starting from the junction
with the straight portion of the blade

xj spanwise position of the junction,
measured from the blade root

v vector of generalized coordinates of the
blade

Yo'%0 cross sectional coordinates of a point

on the swept tip, measured along jT and

kT respectively

ﬂp precone angle of the blade

Y blade lock number

(k real part of hover stability eigenvalue
for the k-th mode

A tip sweep angle, positive for backward
sweep

u advance ratio

o rotor solidity

I mass density of the blade

¢ elastic torsional rotation of the swept
tip

Q angular velocity vector of the fotor

Q rotor angular velocity

¥ Azimuth angle

() derivative w.r.t. time

1. Introduction and Problem Statement

During the last few years, rotor blades with
tip planform shapes other than rectangular have
received considerable attention. Tip sweep and
taper play an important role in alleviating both
compressibility effects on the advancing blade and
stall effects on the retreating blade. In addi-
tion, they help reduce aerodynamic noise, and have
the potential for "tailoring" the aeroelastic
response of the blade.

Several investigators have studied recently the
aerodynamic characteristics of swept tips [1-3].
These studies seem to indicate that careful dynamic
and aeroelastic modeling of the blade is a prere-
quisite for accurate aerodynamic calculations. In
fact, swept tips introduce powerful bending-torsion
coupling effects which significantly influence
blade dynamics, because they operate in regions of
high dynamic pressure and of relatively large

elastic displacements. This statement is appli-
cable to both articulated as well as hingeless and
bearingless rotor blades.

The modeling of the dynamic effects introduced
in a rotor blade by sweep is a complicated aero—
elastic stability and response problem. Therefore,
only limited information on the ‘effect of tip sweep
on ‘the dynamics of helicopter rotor blades is pre-
sently available. One of the earliest systematic,
analytical studies is due to Tarzanin and Vlaminck
(Ref. 4), who studied the effect of tip sweep on
the hub loads of an articulated rotor system. The
mathematical model consisted of coupled flap-
torsion, and uncoupled lag equations of motion. - A
Myklestad type solution technique was used. A
number of interesting conclusions regarding the
effect of sweep were obtained: (1) sweep is not
beneficial for all rotor blades; (2) there is no
optimal sweep angle for all airspeeds; (3) blade
properties, and in particular torsional stiffness,
may drastically influence the effect of tip sweep;
and (4) improved analytical models are needed for a
better fundamental understanding of the dynamics of
blades with swept tips.

Current mathematical models of swept tips are
based on approximate modifications of straight
blade models [4]. Typically, sweep is simulated by
manipulating the relative positions of aerodynamic
center, center of gravity, and shear: center of the
cross:-sections. More refined theories, capable of
modeling helicopter blades with curved undeformed
elastic axes have become available recently, and
are reviewed in Ref. 5. Among these, the theory
developed by Rosen and Rand [6,7] contains some of
the ingredients required to model rotor blades with
swept tips; however, this model was never used to
model rotor blades with swept tips, due to its
somewhat cumbersome mathematical form.

Another recent study [8]} has emphasized
the use of blade sweep as a means for reducing
4/rev hub loads, using a modified version of the
analysis presented in Ref. 4. . The experimental and
theoretical study of coupled flap-pitch flutter for
a swept tip, composite bearingless rotor blade in
hover was presented in Ref. 9. The mathematical
details of the analytical model were not presented
in Ref. 9. The agreement between the theory and
experiment was incomplete and it is not evident
from Ref. 9 that a satisfactory mathematical model
for the aeroelastic behavior of swept tip rotors
has been derived.

From this brief review of the pertinent litera-
ture, it is evident that there is a strong need for
a consistent aeroelastic model capable of simu-
lating the dynamic behavior of rotor blades with
swept tips. It is also important to note that this
is both an important practical problem for the
helicopter industry as well as a fundamental, and
quite complex, theoretical problem which has
received only very limited attention in the past.
The general objective of this article is to remedy
this situation by presenting a finite element model
capable of simulating the aeroelastic behavior of
swept tip helicopter blades in both hover and for-
ward flight.

Furthermore the influence of 'sweep on both
aeroelastic response and stability is a powerful
effect and it is natural to raise the question
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about the possible use of blade tip sweep as a
design variable in a structural optimization pro-
cess aimed at vibration reduction in forward
flight. Such a structural optimization approach to
the vibration reduction problem implies that the
design problem is cast in mathematical programming
form and the blade mass and stiffness distributions
and its geometry are determined, by the optimizer,
in such a manner that the vibration levels at the
rotor hub are minimized. Recent surveys [10,11] on
the use of modern structural optimization for
vibration reduction in rotorcraft reveal the exist-
ence of a very limited body of work where blade
vibration levels are reduced while simultaneously
satsifying the aeroelastic constraints imposed on
the blade.

A serious problem encountered in the direct
coupling of a comprehensive aeroelastic stability
and response analysis code with an optimization, or
nonlinear mathematical programming code is the very
large computational effort required for the solu-
tion. This problem can be alleviated by construct-
ing an approximate, computationally easier to
solve, optimization problem [12]. The approximate
problem is updated frequently, so that the sequence
of solutions of the approximate problems converges
to the solution of the original, exact optimization
problems.

In a previous study [13] an expensive approach,
based on finite differences for generating approxi-
mations to the objective function and aeroelastic
constraints was used. The generation of the
approximate problem was cumbersome and it had to be
carried out in an interactive manner during the
optimization process. In this paper a more effec-~
tive method for dealing with this problem is pre-
sented.

The specific objectives of this paper are:

To present a new mathematical model for the
aeroelastic behavior of a helicopter rotor
blade with a swept tip. This is accomplished
by deriving a special finite element model for
the swept tip, which accounts for the effects
of sweep on the inertia, aerodynamic, and
structural operators associated with this
aeroelastic problem. The formulation is valid
for arbitrary sweep angles, and accounts for
general variations of mass, stiffness, and
geometric properties of the blade in the tip
region.

To gain a fundamental understanding of the
influence of sweep on the aerelastic response
and stabiilty of hingeless rotor blades in
hover and forward flight. This is accomplished
by presenting results illustrating the effect
of tip sweep on the aeroelastic response and

stability of an isolated, hingeless rotor blade.

To present a new formulation of the structural
optimization problem, for a helicopter rotor
blade in forward flight. The objective is the
minimization of the n/rev vertical hub shears.
The behavior constraints express mathematically
the requirements that the blade be aerocelasti-
cally stable, that its natural frequencies fall
between preassigned upper and lower bounds, and
that the autorotation performance not be
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degraded during the aeroelastic tailoring pro-
cess. A new formulation of the approximate
problem allows increases in efficiency, in the
complete solution of the optimum design problem
of at least one order of magnitude, compared
with existing procedures.

To present results obtained by letting the tip
sweep angle be one of the design variables in
the optimization procedure. Tip sweep has a
powerful influence on the dynamic behavior of
the blade, and when included in the aeroelastic
tailoring process, can lead to further reduc-
tions in blade vibration levels.

II. Aerocelastic Stability and Response Analysis

The geometry of the problem is shown in Fig. 1.
The assumptions made in derivation of the struc-
tural and inertia operator for the swept tip are
similar to those used in Ref. 14 to derive the
equations of motion of a straight blade. In par-
ticular, Bernoulli-~Euler beam theory applies; the
swept tip undergoes moderate deflections, which
implies small strains and finite rotations or
slopes, the elastic torsional deformations occur
about the undeformed elastic axis, and additional
torsional deformations may occur at the blade root,
due to the flexibility of the control system; the
blades are attached to an aircraft of infinite
mass, thus no coupling between the fuselage and the
blade dynamics exists; the helicopter is in
trimmed, steady, and straight flight.

The elastic axis of the blade is defined as the
line connecting the shear centers of the cross sec-
tions of the blade. Therefore the elastic axis is
composed of two straight segments, namely the
elastic axis of the straight portion of the blade
and the elastic axis of the swept tip. A force
applied at a point on the elastic axis of the swept
tip will produce only a bending moment within the
tip portion, and no torsional elastic deformations
of the tip region will occur. At the junction with
the straight portion of the blade, however, a com-
ponent of this bending moment will become a tor-
sional moment for the straight portion, and
torsional deformations of the straight portion will
occur.

Two-dimensional, quasi-steady aerodynamics is
used for the representation of the aerodynamic
loads. Stall and compressibility effects are
neglected, since the main objective of this study
is to examine the basic effect of sweep on the
aeroelastic behavior. The independence principle
is assumed to apply; that is, the aerodynamic loads
depend only on the component of the flow contained
in the plane of the cross-section (the jT -
plane), and radial flow effects are neglected.
Although the aerodynamic model is essentially the
same as in Ref. 14, a new, substantially different
implementation is used. The algebraic expressions
that define the aerodynamic loads are not expanded
explicitly. They are coded separately in a com-
puter program, and combined numerically during the
solution procedure. Thus, the aerodynamic loads do
not appear in the equations of motion as explicit
functions of the blade displacements. Rather, they
appear as general forcing terms, the numeric value
of which is introduced into the equations of
motion when the stability and response problem is



solved. The new, implicit formulation is used for
the aerodynamic modeling of both the straight and
the swept portions of the blade. A more detailed
description of its implementation, and of its
numerical properties, can be found in Ref. 15.

A basic ingredient for the formulation of the
equations of motion is the position vector R of a
generic point P on the swept tip, which is given by

R = eii + X8

38x + (xo + u) 1H

+ ij

+ wkH + yojT + ZOkT (1)
The coordinate system iH, J.» k. is the undeformed
swept tip coordinate system obtained from the unde-
formed blade coordlnate systenm e , & , & through a
rotation about & axis of the sweep gngle A. The
coordinate system i jT’ kT is the deformed tip
coordinate system For zero sweep angle, the unit
vectors 1 ' k, coincide with the & é
Then Eq. ?1) provides the position vec%or Xf a
point P on the unswept portion of the blade when
written in the form:

R=ei-~+ (xp + u)éx + vé  + wé

y zZ

v ¥odp t 2gky (2)

where x  is the spanwise coordinate of P. The
coordlngte system transformation between 1., J

kT system and the 1 , J system is based on the
assumption of moderate glade displacements and
small strains, and is given by (Ref. 14).

v w
VX X H
(v o ) 1 ¢ al
‘(W o ) ~(+v o~ ) 1

» X

=

X

After performing the appropriate coordinate trans-
formations, Eq. (1) becomes:

R = [(xj + el)cosA Xy - U - yo(v
o(w S ) EME {(
zo(d + v w My v - Be,

+ow )

,» X

-z X o+ el)sinA PV o+ Y

4]
v ygd + zglky

(4)
The angular velocity vector @ is given by:

Q=0k-=20 i :
(chosA 1,0+ BysinA 3. + kH) (5)

The distributed inertia load vector p_, and the
distributed inertia moment vector qI are respec-
tively given by:

Py = Pyiy

I + pyIJH vk, = - pr adA  (8)

Qypdy + 954Ky
-y plygin + zgk,) x a da (7)

Q= Gy +

where a is the vector acceleration of the point on
the swept tip, given by

=R +2(xR) + 2 x (2 xR) (8)

The algebraic manipulations associated with Egs.
{(6) and (7) produce expressions of considerable
length. These expressions are omitted in this
paper for brevity. They can be found in Ref. 15,
together with the complete equations of motion of
the swept tip.

The spatial dependence of the nonlinear, par-
tial differential equations of motion of the swept
tip is discretized using a local Galerkin method of
weighted residuals, resulting in a finite element
formulation. Flap bending is modeled using four
degrees of freedom, namely displacement and rota-
tion at each end of the tip element, and cubic Her-
mite interpolation polynomials. Lag bending is
modeled in the same way. Torsion is modeled using
three degrees of freedom, namely the rotations at
each end of the tip element and at its mid-point,
and quadratic Hermite interpolation polynomials.
This choice of interpolation polyomials defines the
simplest element which yields a consistent for-
mulation for coupled bending and torsion. The
interpolation polynomials are the same as those
used in Ref. 17.

The axial degree of freedom is elminated by

making the assumption that the blade is inexten-
sional in the axial direction, which gives:

. | 2
=3 I»(v,x

2

+ wzx)af (9)

in which § is a vector tangent to the elastic axis
of the blade.

The equations of motion for the swept tip are
derived in the preconed swept, undeformed coor-
dinate system i shown in Fig. 1. This is
also the local coorﬂ1na¥e system for the swept tip
element. The preconed, undeformed, straight blade
coordinate system € , & , & , shown in Fig. 1, is
the global coord1na¥e sgstem for the finite element
model of the complete blade.  The local-to-global
coordinate transformation can be written in the
form:

N t
= [Alag (10)
The vectors at and at are the vectors of nodal
degrees of freedom o? the swept tip element, in the
local and global coordinate system respectively,
and are defined as follows:

t T
a’ = [v v v, Vv w, W w, W b, ¢, ¢ ]
L 1 ,x1 2 ,x2 1 ,x1 2 ,x2 17273
(11)
t T
a - =[v.v_v. v _ w w_w w_o¢ ¢ ¢ u ]
G J ,xJ T ,xT J ,xJ T ,xT J ™ T J

(12)

The various components of at and at are shown in
Figs. 2 and 3, respectively. Although the axial
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displacement u, of the jungtion section appears
explicitly in ihe vector a_, the axial degree of
freedom will not be retained as an independent
degree of freedom in the solution of the equations
of motion. The axial displacement is eliminated by
making the assumption that the blade is inexten-
sional, and u, appears temporarily in Eq. (12) for
convenience o% implementation. Equation (10) is an
approximate coordinate transformation, based on a
small deflection assumption which implies that
elastic rotations can be expressed as vectors. A
coordinate transformation consistent with the
moderate deflections assumption has been presented
in Ref. 18. Numerical results presented in Ref. 18
confirm that the nonlinear terms omitted in Eq.
(10), due to the moderate deflections are negli-
gible for the range of tip sweep angles considered
in this study.

In general, the powerful effects of tip sweep
on blade stability and response, which are evident
from the results presented in the following sec-
tions, will not be modified by the approximations
introduced which are associated with higher order
effects, such as those due to moderate deflections.

The local-to-global coordinate transformation
matrix [A] is defined as follows:

[ALL] 0 ) {AL A}
[A] = 0 [AFF] [AFT] 0 (13)
0 gl I o

The nonzero submatrices in Eq. (13) are given below:

cosA [¢] 0 0
0] 1 V] 0
(A ] - _§.193A o 1
LL cosA cosA
0 0 0 1
1 ¢} 0 0
_} 0 cosA 0O o]
[AFF} “jo 0 1 ]
] 0 0 cosA
0 4] 0
-sinA 0 0
[AFT] ¢} 0 ~sinA
0 4]
[¢] sinA [¢] 0
. 1 1,
[ATF] = 0 2smA 231nA
0 0 0 sinA
[ cosh 0 0 sinA
0
[ATT] 0 cosA 0 H {ALA) = -
V] 0 cosA sin
0
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The submatrices [A ] and {A ,] are derived by
making the assumption % at the tip is axially rigid,
and thus u, = u, . This assumption is not used
anywhere e}sé in this study, and the primary reason
for its use here is to facilitate the elimination
of the axial displacement u,,. The submatrix [A F
is obtained by making the asusmption that the sTope
W, at the mid-element node is the average of the
slopes at the two ends of the element. This
assumption is required because the element has a
mid-element node for the modeling of torsion, but
not for the modeling of bending.

Equation (13) clearly shows that a swept tip
introduces two types of coupling, namely flap-
torsion coupling, and lag-axial coupling. Because
of the assumption of inextensibility, the axial
degree of freedom is a nonlinear function of the
bending degrees of freedom. Therefore, if such an
assumption is made, the lag-axial coupling becomes
a nonlinear effect. In this study, the calculation
of the natural frequencies and mode shapes of the
blade is assumed to be a linear problem; therefore,
for such calculations, a slightly different form of
[A] is used with the submatrix (ALA} set equal to
zero.

As a preliminary step before the solution of
the equations of motion for both, hover and forward
flight, a modal coordinate transformation is per-
formed. The purpose of the transformation is two-
fold; to reduce the number of unknowns of the
problem, representing the nodal degrees of freedom
of the blade, and to assemble the various element
matrices into the system mass, damping, and stiff-
ness matrices, and into the system load vectors.
For the swept tip element, the modal coordinate
transformation has the form:

ag - M°(v) v (14)

The vector y is the vector of generalized coor-
dinates, which become the new unknowns of the
problem. If m modes are used to perform the modal
coordinate transformation, then y is a vector of

size m. The modal coordinate transformation has
the form:
t [Q]
] = | 57— (15)
U (y)

The submatrix [Q ] is a matrix of size 11 by m, the
columns of which contain the portions of the normal
mode eigenvectors corresponding to the swept tip.
The modes used in the coordinate transformation are
coupled, rotating normal modes, computed for 2 root
pitch angle equal to the collective pitch. U (y)
is a row vector of size m, the i-th element of
which is given by:



u; ) 2 Z Z Y5
e-1 j=1
4 4
e e e
Z Z (0;,95, ] 7% Y,x!dx
k=1 2=1 0
+ Q® te dx ) (16
i,k+47j, 2+4 n,x n,x xe )
o k 2

UT(y) is associated with the inextensibility
assumption. In fact, the axial displacement u, of
the junction section can be written in the form:

X

__113 2 2 _ T .
S R L O I A EU)
V]
where x. is the spanwise coordinate of the junction
section’ In Eq. (16), v and n represent the

derivatives with respect %o x of éach of the four
interpolation polynomials used in the modeling of
bending [Ref. 16].

The modal coordinate transformation matrix [Me]
for the straight elements of the blade is-a matrix
of size 11 by m, obtained from Eq. (15) by dropping
the last row, that is:

] = [o°] (18)

(the superscript "e" denotes a straight element,
consistent with the notation of Ref. [17]). An
important difference between the modal coordinate
transformations for a straight element and for a
swept tip element is that latter is nonlinear, and
depends on the equilibrium position of the blade.
The nonlinearity is due to the inextensibility
assumption and appears due to of the axial-lag
coupling introduced by the swept tip.

The stiffness matrix [K(y,¥)] of the complete
blade is assembled by summing the stiffness matri-
ces of the individual elements, after the modal
coordinate transformation has been performed on
each of them, that is:

NS

=3 TR (. 9] 7]

e=1

[K{y)]

+ Mt 1T [k . ] a1 [t )] (19)

where [K (y)] is the stiffness gatrix of the e-th
straight finite element, and [K (y)] is the stiff-
ness matrix of the swept tip element, in the tip
local coordinate system. The blade mass matrix
[{M(y)], damping matrix [C(y)], aerodynamic load
vector A(y), and the nonhomogeneous load vector F,
are assembled in a similar manner.

The final equations of motion are a set of
nonlinear, coupled, ordinary differential
equations, which can be written in the form:

M(y)1¥ + [C(y.9)]y +[K(yv.9)]y + Aly,9) +F =0
(20)

For the general case of forward flight, these
equations also have periodic coefficients. In Eq.
(20) the matrices M, C, and K contain inertia and
structural terms, but not the aerodynamic terms,
which are all contained in the vector A.

For the case of hover, and within the assump-
tions used in this study, the nonlinear equations
have constant coefficients.  The generalized coor-
dinate vector y is then written as the sum of a
constant vector y, and a perturbation, time depen-
dent vector Ay(t):

v =y, + Ay(t) (21)

Substitution of Eq. (21) into Eqg. (20) leads to a
system of nonlinear algebraic equations:

[k(y,.0)ly, + A(y,.0) + F =0 (22)

and to a system of small perturbation, linear ordi-
nary differential equations of motion:

[M(y,)1a¥ + [C(yy.0)]ay + [K(vy.0)]ay =0 (23)

with

y =y,

[E(vg.0)] = [c(vg.0)] + [gﬂ] (24)
y=0°

[K(v,.0)] = [K(yy.0)] + Z __[_(_Y_}L).ll

v-y
1=1 y-0°
2
Viy=y,
y=0

Since the numerical value of the aerodynamic load
vector A is known as a function of y and y the

A
aerodynamic stiffness and damping matrices 5; and

Qé which appear in Eqs. (24) and (25) are com-

y
puted numerically using finite difference approxi-

mations. The i-th column of %% for y =y, and
y = 0 is given by:
h,0} - A 0
A A(vo + h,0) - A(y,.0) 26)
ay h

in which h is a vector with all its elements equal
to zero, except for the i-th which is equal to h.
A

Similarly, the i-th column of 5; fory =Yy kand
¥ = 0 is given by
Aly, +h,0) - A(y,.0)
{5’5—}; 9 - 0 (27)
%
yi

Equation (22) is solved using a Newton-Raphson
iteration procedure. The solution vector
Yo represents the static nonlinear equilibrium
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position of the blade in hover.
stability is determined from Eq.
standard eigenvalue problem.

The linearized
(23), by solving a

In forward flight, the equilibrium position is
time dependent and is obtained by solving a
sequence of linear, periodic response problems,
using quasilinearization (Ref. 19). The stability
of the system is determined using Floguet theory.
A detailed description of the solution procedure,
including the special treatment of the aerodynamic
loads, is presented in Ref. 15.

I1I. Formulation of the Optimum Design Problem

The optimization problem is cast in nonlinear
mathematical programming form. Thus the obgectxve
is to minimize a function f(D) of a vector D of
design variables, subject to a certain number of
constraints g(D) € 0:

minimize f£(D) (28)

subject to:

g(D) €0 (29)

As indicated in Section I the structural opti-
mization will be realistic only if the aeroelastic
constraints are retained in Eq. (29). Some recent
work has addressed the minimum weight design of
rotor blades with frequency constraints [20] as
well as the vibration reduction problem in forward
flight by using optimally placed tuning masses [21]
without enforcing aeroelastic stability constraints
and without using an aeroelastic response analysis
to obtain the vibratory loads. While such studies
are useful since they contribute towards the
overall understanding of the problem they do not
produce reliable designs, as indicated by a very
detailed study which was aimed at a experimental
verification of helicopter blade designs optimized
for vibration reduction [22].

To reduce the computational requirements, the
computer program performing the aeroelastic analy-
sis is not connected directly to the optimization
program. Instead, the optimization is conducted on
an approximate problem, which reproduces the
characteristics of the actual problem in a neigh-
borhood of the current design, and which is con-
tinuously updated as the optimization progresses.

An effective method of building an approximate
problem is to expand the objective function and the
behavior constraints in Taylor series in terms of
the design variables [12]:

F(B) = F(B) + ve(By)sB + 268" [u(B,)]6D  (30)

where F(ﬁ) is taken tg be any objective or
constraint function, D_ is the current design, and
VF(D ) and [H(D )] are respectively the gradient

and the Hessian matrix at the current design. The
Hessian matrix is the matrix of the second partial
derivatives of the objective function with respect
tg the design variables. The perturbation vector
6D is defined as:
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60 = B - 50 (31)

The most expensive function to evaluate is the
objective function. The cost of one evaluation of
the objective function is two orders of magnitude
higher than the total cost of evaluating the behav-
ior constraints. No analytic expressions for the
gradients are available for the objective function,
and finite difference approximations are required
for the construction of the derivative information
in Eq. (30). Therefore, if n design variables are
used in the optimization, n additional aeroelastic
analyses are required to compute the gradient, and
an additional n(n+1)/2 for the calculation of the
Hessian, making the cost of building the Taylor
series approximation of the objective function
extremely high. For this reason an alternative
approximation technique, introduced by Vanderplaats
{23,241, was used in this study.

This alternative technique is based on the idea
of approximating the gradient and the Hessian in
Eq. (30), not by using small finite difference
steps, but by using whatever design information is
available at the time. Equation (30) can be
rewritten, in expanded form, as [23,24]

AF = VFIGD1 + VF2602 + .o VFnGDn
+ Yu 6D + H,_ 802 + ... + H_6D%)
2' 11 22 2 NN n
+ H126D16D2 + H136D16D3 + + HlnGDIGDn
+ Hy,8D,6D, + ... + Hn—l,nﬁnn—lsnn (32)
where
AF = F(D) - F(ﬁ ) = F - F, (33)
and
= b H ..o=H, (D 3
AF VFi(DO) Hy 1J( 0) (34)

Assume that a baseline design i) hag been analxzed
to give F_, and that other designs D_, Dz""'Dk
have been previously analyzed, to providé Fl'

Fz""’Fk' Let

GD1 = Di - DO

and

AFi = Fi~F i=1,2,...,k (36)

0
If k designs are available, Eq. (32) can be written
k times. The unknowns of the resulting linear
system are VF VF VFk, and H1 H1 y .

If exactly 1 = 1 + n + n(n+1)/2 des1gns are avax?—
able and if all the designs are linearly indepen-
dent, the system of 1 equations (32) will provide
all the coefficients required for the quadratic
polynomial approximation Eq. (30). If all the
designs are very closely spaced, the solution of



the system of Egs. (32) will provide the finite
difference*approximations to gradient and Hessian
matrix at D_. Eguation (30) will then represent

a truncated Taylor»series expansion of F, valid in
a neighborhood of D . If the designs are dispersed
in the design space, Eq. (30) will simply be a
gquadratic polynomial approximation, defined over a
wider region of the design space.

An important characteristic of this technique
is that the system of Egs. (32) can be written with
less than 1 equations. If at least n+l1 designs are
available, the solution of the system will provide
the linear portion of the approximation, Eq. (30).
An approximate optimization can be conducted, based
on this linear approximation. The resulting opti-
mum is then analyzed precisely, and provides an
additional design: a system of n+2 equations (32)
can then be written. Its solution will provide a
new approximation, Eq. (32), with all the linear
terms plus one pair of quadratic terms of the sym-
metric Hessian matrix. The process can then be
repeated, with each new approximate optimum pro-
viding an additional design point to increase the
number of terms in the quadratic approximation to
objective function and behavior constraints.

One iteration of the optimum design process
thus consists of the follwing 6 steps:

1. Calculation of the blade properties, including
natural freguencies and mode shapes;

2. Aeroelastic analysis in hover;

3. Aeroelastic analysis in forward flight,
including calculation of hub loads;

4. Calculation of objective function and behavior
constraints;

5. Calculation of a new approximation (linear or
incomplete quadratic) to objective function and
behavior constraincs;

6. Solution of the approximate constrained optimi-
zation problem, using the feasible direction
code CONMIN {25}, to obtain a new, improved
blade design. ‘

The process is terminated when a feasible, optimum
design has been reached, or arbitrarily, when the
improvement in the design is considered “"adequate".

The first n+1 iterations of the procedure are
not true optimization iterations, because Steps 5
and 6 above- are not performed. In fact, these ini-
tial iterations are used to generate a sufficient
number of designs, to build at least an initial
linear approximation to objective function and
behavior constraints.

Side constraints are placed on the design
variables, to prevent them from reaching imprac-
tical values which violate practical, physical
constraints. Thus all the thicknesses and distan-
ces are assumed to be nonnegative numbers. No side
constraints were placed on the tip sweep angle A,
which could assume positive (swept back tip) or
negative angles, as determined by the optimizer.

Three different types of behavior constraints
are placed on the design:
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1. Frequency placement constraints. The fundamen-
tal frequencies in flap, lag and torsion are
required to fall between preassigned upper and
lower bounds. It w is one of the three fre-
quencies, and w, and W, are the preassigned
lower and upper bound respectively, the fre-
quency placement constraints are expressed
mathematically in the form:

- (,)2
gd) =5 -1%0 (37)
“y
- wz
gD) =1-—=5-120 (38)
')

Equations (37) and (38), written for each of
the three fundamental fregquencies of the blade,
provide a total of six behavior constraints.
Furthermore the frequencies are also
constrained so as to be sufficiently removed
from the n/rev frequencies.

2. Aeroelastic stability constraints. The blade
is required to be aercelastically stable in
hover. No constraints are placed on the stabi-
lity in forward flight, because all the blade
configurations considered in this optimization
study are soft-in-plane blade configurations,
and the effect of forward flight is usually
stabilizing for this type of blades [19]. The
aeroelastic stability constraints are expressed
mathematically in the form:

gB) =¢ €0 k=1,2,...m (39)
If m modes are used to perform the modal coor-
dinate transformation in the solution of the
equations of motion, there are m constraint
equations like Eq. (89), where the quantity

¢, is the real part of the hover stability
e§genva1ue for the k-th mode.

3. Autorotation constraints. The autorotation
constraint expresses the requirement that
possible mass redistributions produced in the
optimization process do not degrade autorota-
tion properties of the rotor. The most impor-
tant measure of the autorotation properties of
a rotor is the mass polar moment of inertia of
the rotor [26]. Therefore the autorotation
constraint is expressed mathematically in the
form:

e q _ d '
g =1 o.sJO‘O (40)

The constraint equation (40) requires that the
mass polar moment of inertia J of the rotor
maintain, during the optimization, at least 90%
of its initial value JO‘

Therefore, a total of thirteen behavior constraint
equations are placed on the design variables.




IV. Results
IV.1 Aeroelastic Behavior of Swept Tip Rotors

Two basic blade configurations were considered
for the forward flight study: a soft-in-plane and
a stiff-in-plane hingeless blade configuration,
with uncoupled fundamental lag frequencies of
0.732/rev and 1.42/rev, respectively. For both
configurations, the uncoupled fundamental flap and
torsion frequencies for zero sweep were 1.125/rev
and 3.17/rev, respectively. The Lock number was
¥ = 5.5, the thrust coefficient C, = 0.005, and the
rotor solidity o = 0.07. Only selected results are
presented in this paper additional results can be
found in Refs. 16 and 27.

The aeroelastic stability of the swept tip
rotor blade in hover is illustrated in Fig. 4 for a
collective pitch setting of 6, = 0.1432. The 0.10R
outboard portion of the blade is gradually swept
back. The combined effects of sweep and precone
are shown in the figure. Precone interacts with
sweep to change the nose-down torsional moment due
to lift and the nose up moment due to centrifugal
force. The influence of sweep and precone on the
root-locus of first torsion and first lag mode are
presented in Fig. 4. For zero precone frequency
coalesce occurs between the first lag and first
torsion mode. As frequencies coalesce, the tor-
sional damping increases considerably, while the
lag mode becomes unstable. This lag instability is
not eliminated by small amount of structural
damping [28] indicating that this is a strong
instability. For B_ = 3°, increasing sweep
increases the imagiﬂary part of the first torsion
eigenvalue, instead of decreasing it, as was the
case for zero precone. Thus frequency coalesce
does not occur, and the lag mode remains stable.
Numerous additional results, for the case of hover,
can be found in Refs. 16 and 27.

Tip sweep has also an important influence of
the aeroelastic stability in forward flight.
Figure 5 shows the real part of the characteristic
exponent of the first lag mode, as a function of
advance ratio, for the stiff-in-plane configuration
considered in the previous plot. For the blades
with the swept tip, forward flight is stabilizing;
and no instabilities are encountered in the range
of advance ratios considered. In the absence of
sweep, the real part of the characteristic exponent
bifurcates for a value of advance ratio between 0.3
and 0.4 with one of the branches becoming unstable.
The stabilizing effect of tip sweep on the second
lag mode is also noticeable, results for this case
can be found in Ref. {27].

Tip sweep has a relatively minor effect on the
stability of the flap and torsion degrees of
freedom in forward flight. Results illustrating
the influence of sweep on these degrees of freedom
are not presented here, due to lack of space,
however such results can be found in Ref. 16.
Another important effect due to sweep is its
influence on the aeroelastic response. Figure 6
shows the torsional response of the tip at an
advance ratio p = 0.4 for the soft-in-plane con-
figuration and for three values of the tip sweep
angle A(0, 5, and 10°). It is evident from the
figure that tip sweep induces a nosedown steady
elastic twist, and reduces the amplitudes of the
first and second harmonics of the torsional
response. Again numerous additional results can be
found in Refs. 16 and 27.

An important measure of aeroelastic response,
which is relevant for the structural optimization
studies which are presented in the next section, is
the effect of sweep on the peak-to-peak values of
the 4/rev vertical hub shears of a four bladed
hingeless soft-in-plane blade.

The calculation of the hub shears is carried
out using a direct load integration technique [16]
by assuming that the response of the blade is known
in the form of Fourier series expansions of the
generalized coordinates. The aerodynamic and iner-
tia loads contributions to the root shears are
obtained by integration, over the blade span, for
the reference blade. The total hub loads are
calculated by summing up the contributions from all
four blades, after each contribution has been
transformed from the rotating to the non-rotating
coordinate system. All blades are assumed to be
identical. The principal component obtained for a
four bladed rotor is the 4/rev component of the
vertical hub shears [16].

Figure 7 shows the peak-to-peak value of
v K of the vertical hub shears as a function of
tﬁg tip sweep A, for four different values of the
advance ratio pu. It is evident from the figure
that tip sweep may or may not be beneficial for the
soft-in-plane configuration, depending on the com-
bination of the advance ratio and sweep angle pre-
sent. At an advance ratio g = 0.30 the oscillatory
loads rapidly increase with tip sweep. However, at
B = 0.40 tip sweep has a beneficial effect. On the
other hand, for the stiff-in-plane configuration
tip sweep increases the oscillatory vertical hub
shears for all combinations of 4 and A considered.
These results can be found in Refs. 16 and 29.

Based on these results the advance ratio at
which the hub shears are minimized, i.e. the objec-
tive function in this optimization study, was
selected as the vertical hub shears at p = 0.40.

IV.2. Structural Optimization of Rotor Blades

The basic blade configuration considered in the
optimization studies was the soft-in-plane rotor
considered in the previous section. The blade pre-
cone angle B8 , the root offset e, and the offset
x. between tge elagtic axis and cross sectional
center of mass, were all set to zero, unless other-
wise stated. For the swept tip configurations, the
outermost 10% of the blade is swept. The modal
coordinate transformation is based on the six
lowest frequency rotating, coupled modes of the
blade. For all cases the six modes were: one tor-
sion, two lag, and three flap modes. All blade
configurations were modeled using five finite ele-
ments, with nodes at 0%; 22.5%; 45%; 67.5%; and
100% of the span. Only selected results are pre-
sented here, numerous additional results can be
found in Refs. 16 and 29.

Two types of cross sections were considered in
this study, namely a single cell, rectangular cross
section, and a double cell cross section. Both
cross sections are shown in Figure 8. Up to five,
and up to nine independent design parameters can be
specified for the single cell and the double cell
cross section respectively [16]. In this study the
cross sectional design parameters are linked in
such a way as to reduce the number of independent
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design parameters to two, for both single and
double cell cross sections. The first independent
design variable is the thickness t1 of all the ele-
ments of which both cross sections are composed.
The second independent design variable is the
chordwise width x, for both cross sections. In the
single cell cross section the ratio between the
width X, and the height h_ is kept constant, with
X,/h_ = 4.5. 1In the doubfe cell cross section the
internal wall is placed halfway between the leading
edge and the rear wall, so that x, = xz/z. The
outside wall of the double cell cross section has
the shape of a NACA 0012 airfoil. The properties
of both cross sections are presented in Ref. [16].

Three optimization studies were conducted using
the general procedure outlined in the previous sec-
tion, namely:

1. Optimization of a completely straight blade,
having a two-cell cross section. The objective
function is the peak-to-peak value of the 4/rev
vertical hub shears at an advance ratio g4 = 0.4
Because the cross section is not doubly sym-
metric, the blade generally has nonzero values
of the aerodynamic center-elastic axis offset
x, and of the center of gravity-elastic axis
o%fset Xp.

The design variables are defined at three
distinct cross sections of the blade: the root
section, the tip section, and the cross section
at the 67.5% span, for a total of six indepen-
dent design variables. The 67.5% station, at
which two design variables are defined, is the
junction section between the third and the
fourth finite element. The blade properties
are assumed to vary linearly between two con-
secutive stations at which the design variables
are specified.

2., Optimization of a completely straight blade,
having a single cell cross section. As in the
previous case, the objective function is the
peak-to-peak value of the 4/rev vertical hub
shears at an advance ratio g = 0.4.

As in Case 1, the design variables are
defined at three distinct cross sections of the
blade: the root section, the tip section, and
the cross section at the 67.5% span, for a
total of six independent design variables.

The cross section is rectangular, there-
fore doubly symmetric. Because the leading
edge masses have not been used in this par-
ticular example, the center of gravity and the
aerodynamic center are located on the elastic
axis of the blade - which is taken to be coin-
cident with the pitch axis. Therefore the
associated offsets are equal to zero.

3. Straight blade with a swept tip. The objective
function is the peak-to-peak value of the 4/rev
vertical hub shears divided by the thrust coef-
ficient CT’ at an advance ratio p = 0.4. This
particular choice of objective function is an
attempt to compensate for the inaccuracy of the
trim program, which neglects the torsional
deformation of the blade, and thus overestima-
tes the thrust that the rotor is actually
capable of developing.

The outermost 10% of the blade is swept,
with the sweep angle being a design variable of
the optimization procedure. The cross section
is rectangular, and therefore the offsets
X, and X, are equal to zero. The cross sec-
tional design variables are defined as in Case
2. Therefore a total of seven design variables

is used in this case.

The initial blade configuration, for all three
cases, is the baseline soft-in-plane configuration.

Optimization case 1. The iteration history of the
objective function for case 1 is shown in Fig. 9.
It should be noted that for all three optimization
cases, design n is defined as the design produced
at the end of the optimization step n. Step 0 and
the first six steps are not true optimization
steps; they are required to obtain enough informa-
tion to build linear approximations to the objec-
tive function and behavior constraints. Step 0 is
the analysis of the baseline design. 1In steps 1
through 6 each of the six design variables is per-
turbed, one at a time. Because the perturbations
were relatively small - 1% of the baseline value -
the linear approximations obtained at the end of
step 6 can be considered as gradients calculated
using forward finite difference approximations.

Step 7 is the first true optimization step, and
consists of the solution of a linear optimization
problem. Move limits were placed on the design
variables, which could not change by more than 25%
of the baseline value. The optimization continues
for three additional steps (8-10).  Each new pro-
posed design is analyzed precisely, and used to
improve the polynomial approximations to objective
function and behavior constraints. The diagonal of
the Hessian matrix is built first, as more function
evaluations become available. (The term "Hessian"
is used in this section with the general meaning of
"matrix of coefficients of the quadratic terms of
the approximation"). Figure 9 shows that, after
reaching a minimum at step 8, the objective func-
tion slightly oscillates.

At the constrained optimum of the approximate
problem the approximate flap damping constraint for
the first flap mode was active. In most helicopter
blades the first flap mode tends to be highly
damped, and a precise analysis of the proposed
design showed that this indeed was the case, and
that the precise first flap stability constraint
was satisfied. The constraint was therefore refor-
mulated as:

¢gp ~ 0.3<0 (41)

The subsequent optimization steps were performed
with this new form of the constraint, which pre-
vents the approximate constraint from becoming cri-
tical. Two more steps (11 and 12) are performed
with the relaxed flap constraint. The design of
step 12 is a local, unconstrained minimum of the
approximate problem. The corresponding blade is
such that a reduction of 54.3% is achieved in the
objective function, compared with the baseline con-
figuration. The design suggested by the optimizer
for step 13 is practically the same ‘as that for
step 12. A different design was instead arbitrar-
ily selected for step 13. This design was "close"
to that of step 12, and was selected primarily for
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the purpose of adding one design to the design data
base and try to improve the accuracy of the
approximations in the neighborhood of design 12 -
with the design of step 13 the full diagonal of the
Hessian can be built. Step 14 is the last optimi-
zation step, and it produces a value of the objec-
tive function that is slightly higher than the
minimum step 12. The optimization was arbitrarily
stopped at this point. All the designs generated
during the optimization were feasible. With the
only exception of the damping constraint on the
first flap mode at step 10, no behavior constraints
were active.

The iteration history on the design variables
can be found in Ref. 29 and for the case of con-
ciseness these results are not presented here. The
structural optimizer tends to make the structural
cross section wider, and therefore stiffer, going
from the blade root toward the tip.

Optimization case 2. The iteration history of the
objective function for case 2 is shown in Fig. 10.
Steps 0 through 6 are not true optimization steps.
These steps are required to generate enough designs
to construct at least linear approximations to
objective function and behavior constraints. The
design at step 0 is the baseline blade design. The
designs analyzed in steps 1 through 6 are obtained
by changing one design variable at a time. Since
the change in each variable was equal to 10% of its
baseline value, the resulting linear approximations
to objective functions and behavior constraints
cannot be considered as gradients anymore.

The first true optimization step is step 7,
which consists of a linear, constrained optimiza-
tion problem. A reduction of 37.6% is achieved,
compared with the baseline design. In the next
step the objective function increases slightly.
Because this behavior is somewhat similar to the
one observed in case 1, the optimization was
arbitrarily concluded at this point, and restarted
with a new set of behavior constraints.

The aeroelastic stability constraints used in
case 1, and up to this point in case 2, consist of
requiring that the blade be aeroelastically stable
in hover. It is prudent to require that the opti-
mization processes do not degrade too much the sta-
bility of the baseline design. The optimization
was thus restarted from step 9 with these more
stringent behavior constraints. The aeroelastic
constraints of Eq. (39) are reformulated as:

$k

gd) =1 - ——5—
0.95¢,

€0 ; k=12,...,m (42)

Eq. (42) expresses the requirement that the loss of
stability of a given mode should not exceed 5% of
the baseline value ng'

The optimization is not restarted with a new
calculation of an initial linear approximation.
Rather, the previous designs are reused to provide
the initial approximation for the new case. While
designs 0 through 8 were all feasible with respect
to the old set of behavior constraints some of
these designs are now infeasible with respect to
the tightened aercelastic stability constraints.

In particular, design 8, which becomes the initial
design for the second phase of this optimization,
is infeasible.

The first design produced by the optimizer with
the new set of constraints is feasible with respect
to the approximate behavior constraints. When this
design is analyzed precisely, it proves to be
infeasible with respect to the exact behavior
constraints. The successive design (step 10) is
feasible with respect to both the approximate and
the exact behavior constraints. The next design
(step 11) is again feasible with respect to the
approximate, but not the exact behavior con-
straints. In steps 9 through 11 the objective
function is constantly at a value higher than the
baseline value, and does not show any signs of con-
vergence to the optimum. In other words the opti-
mizer does not seem to be able to produce a
feasible design that improves on the baseline
design - which obviously satisfies the new
constraint equations, Eq. (42).

The apparently erratic behavior of the objec-
tive function required a reconsideration of the
optimization strategy which, starting from step 14,
was modified as follows:

1. At each*optimization step, take as the baseline
design D, the design with the lowest value of
the objective function, whether or not that
design is the latest analyzed, and whether or
not that design is feasible. Impose relatively
tight move limits on the design variables, for
example allowing a maximum change of 10% of the
baseline value.

2. If the new design generated by the optimizer
has a lower value of the objective function,
use it as the starting point for the next opti-
mization step with the design with the lowest
value of the objective function. Tighten the
move limits further.

3. When a good design is obtained, use it as the
starting point for the next optimization step,
and progressively widen the move limits.

4. If the design with the lowest value of the
objective function is infeasible, and the opti-
mizer consistenly fails to produce a design
that is both feasible, and with a value of the
objective function lower than that of the ini-
tial design, restart the optimization from the
initial design. Do not discard any of the
previous designs, unless enough function eva-
luations have already been performed to
construct a complete quadratic equation.

The new strategy is applied starting from step
14, shown in Fig. 10. The starting design is
design 2, which is infeasible and has the lowest
value of the objective function. Move limits are
placed on the design variables. The maximum allow-
able change is 10% of the values of design 2. The
design produced by CONMIN is still infeasible, but
already shows a large decrease 1n the objective
function. The next step (step 15) again uses
design 2 as the starting design. The same move
limits as in the previous step are imposed. Design
15 is now feasible, although the objective function
has increased. Step 15 again starts from design 2,
but the move limits are tightened. A maximum

1102



change of only 5% in the value of the design
varjables is now allowed, with respect to design 2.
The design produced by the optimizer has a value of
the objective function which is still higher than
that of design 2, but lower than the baseline value
of design 0. Furthermore, design 16 is feasible
whereas design 2 was not. Design 16 is constrained
by the move limits. The reduction in the peak-to-
peak value of 4/rev vertical hub shears of 16.6%
compared with the baseline value. Thus the imposi-
tion of the tightened aeroelastic constraints redu-
ces the gains in the objective function by more
than 50%.

This design is used as the starting design for
step 17. The move limits are widened from 5% to
10%. The design produced by CONMIN is so close to
that of step 15 that a new precise analysis is not
performed — for this reason step 17 is not included
in Fig. 10. The design is now constrained by the
approximate aeroelastic constraints. The first
lag, second flap, and second flap constraints are
active. The second lag constraint is slightly
violated, but it remains within the narrow numeri-
cal band that straddles the exact value of the
constraint - constraints are usually defined in
CONMIN as narrow strips instead of strictly as
lines [25]. The side constraints are no longer
active.

Design 17 is at least a local minimum for the
approximate problem. It is not necessarily a local
minimum for the exact problem. Whether or not this
is the case depends the quality of the approxima-
tions to objective function and behavior
constraints.

Optimization case 3. Figure 11 shows the iteration
history of the objective function for case 3, which
is the peak-to-peak value of the 4/rev vertical hub
shears divided by the thrust coefficient, . The
tightened aercelastic constraints of Eq. (42) are
enforced.

Design 0 is the baseline soft-in-plane straight
blade configuration. The first seven steps are not
true optimization steps. As in cases 1 and 2, they
provide enough precise values of the objective
function and behavior constraints to build at least
a linear approximation of objective function and
constraints. In the designs 1 through 7 each of
the seven design variables is perturbed, one at a
time. Design 7 is the only swept blade design.
Designs 0 through 6 are straight blade designs, and
are identifical to the corresponding designs of
case 2. Thus these designs are not reanalyzed, and
the values obtained in case 2 are reutilized. The
swept tip blade of design 7 is one of the blade
configurations analyzed to derive the results of
Figure 11, and need not be recalculated.

Thus the optimization process of case 3 begins
without the need for any precise analyses, in the
sense that the eight precise analyses required to
start the procedure were already available from
previous parts of this study, and could be directly
reutilized. The ability to make use of previously
analyzed designs, even if not very close to the
expected optimum in the design space of the current
problem, is one of the most important features of
the optimization algorithm used in this study.
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The first true optimizaiton step - step 8 -
produces a design with a reduction of 27.2% of the
objective function with respect to the baseline
straight blade. This also corresponds to a reduc-
tion of 14.5% with respect to the best swept tip
design obtained without applying formal optimiza-
tion techniques, that is design 7. When analyzed
precisely, the design proves feasible, with no
constraints active. Compared with the final result
of case 2, in which the blade is straight, the use
of tip sweep as an additional design variable
allows a further reduction of the objective func-
tion of almost 10%.

The next two steps (9 and 10) produce much
higher values of the objective function.. Starting
from step 11 the "modified" strategy previously
outlined is employed. The next two steps (11 and
12) provide considerable reductions of the objec-
tive function, but the best design is still design
8. The optimization is arbitrarily stopped at this
point, both for cost reasons, and because the
design appears to. converge towards design 8.

The iteration histories of the thickness tl’
the chordwise extension of the spar, and the tip
sweep angle A are shown in Figs. 12, 13 and 14,
respectively. The tip sweep angle corresponding to
the best design is A = 9°.

Computational requirements. All the results pre-
sented in this study were obtained on an IBM
3090-200 computer. Each precise aeroelastic analy-
sis required three or four iterations of quasili-
nearization [16]}. Each iteration of
quasilinearization required 80-110 CPU seconds for
a straight blade and 140-180 CPU seconds for a
swept tip blade. Because a variable step, Adams-
Bashforth technique was used to integrate the
equations of motion [27], the exact CPU time
required to complete an iteration of quasilineari-
zation was problem dependent.

The remaining portions of a complete optimiza-
tion step, namely the calculation of the cross sec-
tional properties of the blade, the calculation of
the vertical hub shears from the aeroelastic
response of the blade, the derivation of the poly-
nomial approximations to objective function and
behavior constraints, and the solution of the
approximate constrained optimization problem,
required an average total of 1-2 CPU seconds.

V. Concluding Remarks

This paper presents a fairly comprehensive
model which is capable of simulating the
aeroelastic stability and response behavior of
helicopter rotor blades with swept tips. Further-
more the paper also presents an effective technique
for the structural optimization of rotor blades
with straight and swept tips, subject to
aeroelastic constraints. The principal conclusions
of the paper are briefly listed below.

1. Tip sweep has a powerful influence on the
dynamic behavior of the hingeless rotor blade.
No general conclusions can be drawn concerning
whether given amounts of tip sweep will stabi-
lize or destabilize a given blade con-
figuration, because its effects will depend on



other blade design parameters, such as precone
and the combination of blade fundamental fre-
quencies. Therefore, the beneficial effects of
sweep can be best exploited if tip sweep is
included, as a design parameter, in the early
stages of the dynamic design of the rotor.

The aeroelastic instabilities induced by tip
sweep are associated with frequency
coalescence. Such instabilities are strong and
they are not eliminated by the addition of
small amounts of structural damping. The types
of modes that coalesce depend on the blade
design. Therefore, only fully coupled
flap-lag-torsion analyses should be used for
the prediction of the aeroelastic stability of
the blade.

when frequency coalescence does not occur, tip
sweep is usually stabilizing. In particular,
small amounts of tip sweep can remove the first
lag mode instability, characteristic of stiff-
in-plane hingeless rotors in forward flight.

The optimimum design procedure described in
this study is very efficient, and can produce
improved designs with a very limited number of
precise analyses. The method of constructing
the approximate problem is such that previously
conducted aeroelastic analyses can be reused in
a new optimization problem.

The results of the optimization are quite sen-
sitive to the aeroelastic stability margins
required of the blade. 1In the optimization of
case 2, changing the aeroelastic stability
constraints from the requirement that the blade
be stable in hover, to requiring that the sta-
bility margins be maintained during the course
of the optimization, reduced the gains in n/rev
vibration level reduction by more than 50%.

The introduction of tip sweep can reduce the
n/rev vertical hub shears beyond the level that
can be obtained by just modifying the mass and
stiffness distributions of the blade.
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Figure 1: Blade geometry and coordinate systems.
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degrees of freedom.



Figure 3: Tip element-global coordinate system and
degrees of freedom.
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