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Abstract

A fully time-consistent viscous-inviscid interaction
method, which was developed previously for the
computation of unsteady attached or separated viscous
flows at high Reynolds numbers, is used to predict the
onset of transonic buffet over steady airfoils, and to
describe the unsteady behaviour of the flow,

Based on the "Defect Formulation" theory, and on
thin-layer approximations, the method solves unsteady
defect integral equations for attached or separated
turbulent flows, interacted with a small perturbation
potential solver. The strong-coupling step is achieved
by the "Semi-Implicit" method suggested earlier by the
authors for time-consistent interaction.

The method is found capable to predict steady or
unsteady solutions, according to the incidence, over the
RA16SC1 and NACAO0012 airfoils. A good agreement is
found between the buffet calculations and the
experiments on the time histories and spectral
properties of the unsteady pressure distributions, and
on the unsteady motion of the shock-wave. In the case
of the NACAO012 airfoil, an accurate prediction is also
obtained for the buffet boundary, which was
investigated by computations, versus Mach number and
angle of attack.

L. Introduction

The knowledge of unsteady flows becomes more
and more an important point in the design of airfoils,
and gives access, for example, to the study of
acroelasticity problems, oscillating flaps, dynamic stall
and flutter.
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The first computing methods developed for the
prediction of unsteady flows were restricted to inviscid
flows, and were based, with an increasing complexity
and increasing domain of application, on linearized
subsonic or supersonic theories, small perturbations or
full potential approximations, and solutions of Euler
equations.

A slight improvement to these methods can be
given by weak-interaction methods, where a boundary
layer analysis allows to take into account small viscous
effects {12,13,21]. A higher improvement is obtained by
partially-strong interaction methods [10,11], where the
viscous-inviseid coupling is not time-accurate. These
methods, however, are not capable to deal fully with
strong viscous interactions, which play an important
role in unsteady flows.

The transonic buffet over steady airfoils is an
example of complicated unsteady flows, where the
unsteadiness is induced by shock-boundary layer
interaction with separation. Until these last years, this
phenomenon was considered to be out of the range of
application of most computational methods, and was
only studied experimentally.

As in steady flows, with the increasing
computational facilities, the possibility to predict
unsteady flows involving such stiff viscous problems is
given either by the direct solvers of Navier-Stokes
equations [1,2,3,4,5], or by the indirect solvers based on
strong viscous-inviscid interaction [6,7,8,9].

In the present method [6,7] of viscous-inviscid
interaction, following the Defect Formulation of Le
Balleur [14,15], approximated with =a thin-layer
modelling, viscous integral equations are solved in
Direct or Inverse mode, and are strongly interacted with
a small perturbation potential solver. The “semi-
implicit" coupling technique [6], which is converged at
each timestep, is time-consistent with strong
interactions and gives access, not only to the
computation of unsteady separation over oscillating
airfoils, but also to the calculation of buffet.



The method, which is here summarized, is used to
predict the onset of transonic buffet and to describe the
characteristics of the corresponding unsteady flows, on
two different airfoils at lifting conditions.

I1. Viscous-Inviseid Interaction Method : Equations

The present time-consistent method [6,7] provides
a first order approximation to the Defect Formulation
suggested by Le Balleur [14,15], where the numerical
treatment of the viscous problem is split into viscous,
pseudo-inviscid, and interaction solvers. The interaction
step is performed by the original "semi-implicit"
numerical technique [6], which is converged at each
time-step of the calculation. The viscous step, which
estimates the defect between the real flow and the
pseudo-inviscid overlapping flow, is approximated by
integral equations and is solved by a marching
technique, in Direct or Inverse modes. Small
disturbances approximations are presently used, in
addition, for the pseudo-inviscid solver.

Despite the approximations introduced in the
viscous and pseudo-inviscid steps, the method is able,
as direct Navier Stokes solvers, to compute strong
viscous interactions such as shock-boundary layer
interactions, trailing-edge and shock-induced
separations, in steady or unsteady flows, so long as the
strong coupling is fully achieved at each time-step.

Denoting z and y the coordinates along and
normal to the wall or to the wake, ¢t the time, ¥ , ¥ the
velocity components, p the pressure, p the density, ﬁ_t
the total enthalpy, 7 the shear stress, and u,v,p,p,h,
the corresponding inviscid quantities at same z,y,t, ¢
the perturbation potential, ¢ the chord length, w the
pulsation, U_,, M the velocity and Mach number at
infinity, ¥ the specific heat ratio, H(z,t) the airfoil
contour and I' the circulation, the full set of equations
can be written:
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ii) pseudo-inviscid problem:
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The viscous integral defect system (1,2,3,4,5),
whose pressure approximation is better than Prandtl
equations, connects "defect” thicknesses which include
the y-variations of the inviscid p,u. The system is
closed by the velocity profile modelling suggested by Le
Balleur for attached or separated 2D or 3D turbulent
layers, see {15,16]. The density profiles are deduced
from the velocity profiles with the approximation
}—z;=ht. For equilibrium turbulence, the entrainment
coefficient E is deduced from the velocity profiles, plus



a mixing length model. Two additional integral
transport equations [15] allow to compute out-of-
equilibrium turbulence, but they were not used in the
buffet calculations.

II. Numerical Methods

HL1. Viscous defect problem

After insertion of the closure, the viscous integral
system can be written in the following form:

1 { a.f] { af] )
{;Cj {a,m,8) ot +4; {a,m.f) Oz =b o)
(8)
. s
i q
f" B t 5 o cf t =13
= § s =1 s -
2 ] =14
E

where the unknowns of the viscous problem are the
. ~2 .

reduced Mach number 7 = .5(y—1)M", transpiration
velocity /¢ and total enthalpy &, in the inviscid flow
at the wall, plus the boundary layer thickness § and a
shape parameter a =6,,/6. The three unknowns
m,b/q, h, have to be coupled to the corresponding
quantities of the pseudo-inviscid problem m,v/q,h,.

Before coupling at each time-step, uncoupled
viscous calculations are performed, always with a
prescribed total enthalpy (h, = h,). For attached flows,
the viscous system is solved in Direct mode (i = m).
When the flow is near to separate, and according to the
value of the shape parameter, a, an Inverse mode of

)
resolution is adopted (—=-—). It is only at

q q
convergence of the coupling step that we will have
together:

i

w |e

hy =h, 1

@ e

The viscous wupstream influence, which s
eliminated in Inverse mode by the space marching
technique, is recovered at convergence of the coupling.
The numerical scheme is implicit in time and space and
uses a Newton method to solve the non-linearities of
the system, see references [6,15].

The unsteady small disturbance equation (8) is
solved with an ADI method [17] involving an X-sweep
with supersonic biasing and an upwind Y-sweep.
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111.2. Numerical Coupling problem

If we consider the pseudo-inviscid unknowns at the
wall (m,h,,v/q), it is possible to show, see references
[6,7], that the viscous boundary condition to be
satisfied, which is called the viscous influence function,
can be deduced from system (8) by a numerical
elimination of the pure viscous unknowns § and a. The
remaining equation of system (8) can be written, at
time level n and point (7,1) of the wall or wake :
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This relation, highly non-linear because of o ,ﬁj,
connects the transpiration velocity 9 /g with the time
and space derivatives of /2 and 4,, and summarizes the
viscous effects on the pseudo-inviscid problem.

The same viscous influence relation R, written
with the unknowns wv/q,m , k of the inviscid
problem, must be exactly satisfied at convergence of the
strong coupling. However, before convergence, non-zero
residues R, ," are obtained, and the "Semi-Implicit"
coupling algorithm, see [6,7] for details, is a relaxation
technique for these residuals. From (9), the relaxation is
written at time level n and node ¢:
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where v41 and v denotes respectively the new guess
and the previous guess of the variables.

The residuals and coefficients o; , B . are provided
by the previous uncoupled viscous calculation, in Direct
or Inverse mode. The conditioning terms on the left
hand side are written with the potential variable of the
inviscid solver, and discretized with an upwind scheme



for ———, and a Gauss-Seidel centered scheme based on

dzr ot )

iterations v and v+41 at the same time level for —

Oz
The relaxation v is converged at each time-step, which
insures consistency and upstream influence.

The summary of the "Semi-Implicit" method is
shown on Figure 1. The time loop, initiated with the
inviscid X-sweep which is not influenced by the
transpiration velocity at the new time level, gives a first

INVISCID
X-SWEEP

UNCOUPLED VISCOUS
CALCULATIONS
DIRECT or INVERSE

VISCOUS INFLUENCE

FUNCTION
+

COUPLING RESIDUALS

TIME LOOP

SEMI-IMPLICIT
COUPLING EQUATION
+

INVISCID Y-SWEEP

Figure 1. Organisation of the "Semi-Implicit" method.

estimation of the inviscid quantities. Uncoupled viscous
calculations, switched in Direct or Inverse modes, are
then performed. The coefficients and the residues of the
semi-implicit equation (10) are then deduced. This
semi-implicit relaxation (10) is then solved from
upstream to downstream, with the inviscid Y-sweep.
The procedure is iterated at a given time-step until
convergence of the viscous step (8) and coupling step
(10), which allows to capture the viscous upstream
influence within a time-step.

Let us notice that the "Semi-Implicit" coupling
method is different from the Quasi-Simultaneous
coupling method of Veldman [10], where the viscous
equations are solved together with an inviscid influence
function. On the contrary, the Semi-Implicit method
maintains uncoupled Direct-Inverse viscous calculations,
and solves an inviscid problem plus a viscous influence
function. In addition the Semi-Implicit method provides
the time-consistency of the coupling iteration.

IV. Prediction of transonic buffet

The present time-consistent method can be used to
compute unsteady attached or separated flows, not only
on airfoils moving in pitch or with an oscillating flap
[6,7], but also on fixed airfoils where the unsteadiness is
induced by the viscosity [6,8,9].

The prediction of the transonic buffet, which occurs
on relatively thick airfoils in the transonic regime at
lifting conditions, and which is characterised by the
interaction of a shock-wave and a separated boundary
layer, is shown here. This buffet prediction
demonstrates the capability of the method to compute
unsteady strong viscous interactions.

The cartesien mesh used in all the calculations
involves 160x100 nodes, with 100 points along each side
of the airfoil and 30 points along the wake cut. The top
and bottom boundaries are located at +/— 20 chord
lengths, the upsteam and downstream boundaries are
located at — 20 and + 10 chord lengths. This mesh is
believed to be still poor, and the minimal-one in order
to have a discretisation that captures the scale of the
physical phenomena of viscous-inviscid interaction at
the foot of the shock-wave.

The initial conditions correspond to a uniform
flow. A transient viscous calculation is performed, after
increasing the incidence and thickness of the airfoil
within 32 time-steps.

IV.1. RA16SC1 airfoil

The first attempt to disecriminate between steady
flows and unsteady shock-induced separated flows,

1.1 CL

{ms)
0 100 200

Figure 2. RA16SC1 airfoil. Time-histories of the ULft
coefficient. (M, = 723 , Re = 4.2 10°)
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Figure 3. RA16SC1 airfoil. Envelope of the lift coefficient
versus incidence. (M, = 723, Re = 4.2 10%)

according to the incidence, was performed on this thick
supercritical airfoil, on which buffet configurations were
reported in the experiments of Benoit [18], and Dor et
al [19] at ONERA.

The calculations were carried out for a Mach
number of .723, a Reynolds number of 4.2 millions and
for increasing positive incidences. A great number of
time-steps (3400) were computed, corresponding to 2
physical time interval of about .25 seconds, in order to
have a good decription of the eventual unsteadiness of
the flow.

The time-histories of the lift coefficient, figure 2,
and the evolution of the envelope of the lift coefficient
versus angle of attack, visualised by the hatched zone
on figure 3, show that steady states are predicted for
the lowest incidences. The computed lift coefficient and
the experimental values, corrected from wall effects, are
in good agreement. When the incidence is greater than
3°, the solution is radically different, and converges
towards a well-established quasi-periodic unsteady
solution.

1.5 4 calculation
1.0 4
5
0. 1 a = 3.5°
M =0723
e R =42 10° x/c
-1.0 + + + + -
0 2 4 .8 8 1.0

Figure 4. RAI16SC1 airfoil. Envelope of the pressure
coefficient distribution.

The unsteadiness of the flow is due to the
interaction of the shock wave and the separated
boundary layer, which induces osciliations of the shock
position over about 20% of the chord length, and
pressure fluctuations of large amplitude in the
separated region, see figure 4. The experimental results
for a Mach number of .732 and an angle of attack of 3°
exhibit a similar behaviour.
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Figure 5. Time evolution of the wunsteady pressure

distribution. (M = 723 , @ = 4° ,Re = 4.2 10°)
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DSP(CP) Calculation

R =4.210°
Figure 6. RA16SC1 airfoil. Evolution of the power spectral
density of the pressure coefficient with frequency on the
upper surface.

A quantitative good agreement is found between
the calculations and the experiment on the description
of the time and spectral properties of the buffet
phenomenon, as it can be seen on figure 5 and 6 which

Experiment

DSP(CP)

D
AR

RN
RN

M =0.732
R =42 10°

The computations were carried out for a Reynolds
number of 10 millions, at 4 Mach numbers in the
transonic range (.725,.750, .775, .800) and different
incidences, in order to study the onset of buffet in the

Mach number-incidence domain. As in the case of the
RA168C1 airfoil, for each Mach number, several angles
of attack were investigated until buffet occurs.

display the highly non-harmonic time-evolution of the
unsteady pressure coefficient at two locations on the
upper surface, and the power distribution of the
pressure versus frequency, measured by the power
spectral density function (DSP). The fundamental
frequency of the phenomenon is however higher in the
computation.

O O O steady calculation
¢ e ¥ buffet calculation
experiment NASA AMES

IV.2. NACA0012 aifoil

BUFFET

To confirm these first results, new calculations were
performed in the case of the NACA0012 airfoil, for
which the transonic buffet was studied experimentally 3.
by McDevitt and Okuno at NASA AMES [20].

e

2 F
, STEADY FLOW

experiment Nasa Ames : 3¢ calculation : %y . L ~
1.0 p -

8 |CL Mach = .725 Mach = .750 0. 1 1 ] ] i
ol i 70 72 74 6 78 .80 .82
' ‘ Figure 8. NACAO0012 airfoil. Computed and experimental
4T 3 buffet boundary. (Re=10")

2r o

0. . . . L t : : L The results of the calculations are summarized by
1.0 r - the lift envelopes on figure 7, which show that the
8+ Mach = .775 Mach = .800 buffet phenomena appears at a critical incidence which
sl i is a decreasing function of the Mach number. For each
) Mach number, the lift coefficient corresponding to the
4 F 3 (1 lowest incidence compares rather well with the

L - experiments.
2 o p
i i i L i L 1. 1
0‘0, 1.0 20 3.0 4.0 1.0 20 3.0 4.0 The onset of buffet, as affected by the free-stream

Mach number and incidence, is shown on figure 8. The
computed results are very close to the experimental
predictions, except for the highest Mach number.

Figure 7. NACAOO12 airfoil. Extremal values of the lift
coefficient versus incidence. (Re = 107)
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Figure 9. NACA0012 airfoil.
coefficient. (M, = 775, a = 4" , Re = 10")

Figures 9,10 and 11 show, for one calculation, the
time-history and the power distribution versus
frequency of the lift coefficient, and the envelope of the
pressure fluctuations at the upper surface. If the buffet
characteristics are qualitatively very similar to those
obtained on the RAI16SC1 airfoil, they are very
different quantitatively. In the case of the NACA0012
airfoil, the lift fluctuations are larger and the shock is
moving on 40% of the chord length.

[ log DSP(CL)
-2.

-4 L

~10. ! i 1 1 F(hz) 1
0. 100. 200. 300. 400. 600,

Figure 10. NACA0012 airfoil. Power distribution of the lift
coefficient versus frequency. (M = 775 ,a = 4° ,Re = 10")

For a Mach number of .775 and an angle of attack
of 4°, the computed fundamental frequency is near
f =70hz, and corresponds to a reduced frequency
k=2rfc/U, = .35, somewhat lower than the
experimental one, which is equal to .44. However the
buffet calculations show that the mean frequency of the
unsteady phenomenon depends on the Mach number
and incidence. In particular, variations of the calculated
frequency appear, depending on the fact that the
incidence is well into the buffet domain, or close to the
buffet boundary. A better tuning of the buffet frequency
between the computations and the experimental results
is probably then possible .

Time-history of the lifi

1.6 —

1.0

-5 F

x/c
-1.0 ! | 1 | j
0. 2 4 8 8 1.0

Figure 11. NACAO0012 airfoil. Envelope of the pressure
fluctuations at the upper surface.

(My =775 ,a = 4° ,Re=10)

It is possible to explain the mechanism of “shock-
induced buffet”, looking at the instantaneous iso-Mach
lines over one cycle, figure 12. When the shock is at its
rear position, the intensity of the shock is high enough
to separate the downstream boundary layer
(T¥me=185). The normal shock is transformed into an
oblique shock, which is moved upstream by the
separated flow (Time=321). The intensity of the shock
is then decreased by this process, leading to a thinner
attached boundary layer which is no more able to
contain the occurence of a shock (Time=361). The
shock is then increasing again as a normal shock,
growing in intensity and moving downstream
(Time=401) until its rear location, where the cycle is
repeated.

/%’ TIME = 185.T é iTI\[E = 321.

TIME = 361. TIME = 401.

Figure 12. NACA0012 airfoil. Instantaneous iso-Mach
lines over one cycle of buffet.
(My= 775, 0 =4" ,Re=10")
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Figure 13 NACAQ0012 asrfoil.
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Time-evolution of the

unsteady pressure on the upper surface.

(Mg, =750, 0 = 4° ,Re = 10")

As in the case of the RA16SC1 airfoil, the
behaviour and the levels of the time-histories of the
unsteady pressure at the upper surface (ﬁgure 13) are
found very similar in the calculations and the
experiments. The pressure fluctuations are small in the
attached region near the leading edge (z/c=.2), and
larger in the separated zone downstream of the shock.
Moreover the qualitatively very different behaviours of
the pressure histories, depending on the location on the
airfoil, are well reproduced.

V. Conclusions

A fully time-consistent viscous-inviscid interaction
method, which was developed [6,7] for the computation
of attached or separated viscous flows, is found capable
to describe the transonic buffet phenomenon over
steady airfoils at lifting conditions.

The convergence at each time-step of the coupling,
obtained by the "Semi-Implicit” coupling technique [6],
allows to take into account the viscous upstream
influence in unsteady flows consistently, and so to
compute, as well as direct Navier-Stokes solvers, the
unsteady shock-boundary layer interaction with
separation which is at the origin of the transonic buffet
phenomenon.

The possibility to predict the buffet phenomenon
on lifting airfoils, according to the incidence, which was
first demonstrated in the case of the RA16SC1 airfoil, is
confirmed by new calculations on the NACAO0012
profile. If the buffet characteristics are qualitatively
similar on the two airfoils, they are found very different
quantitatively.
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The buffet boundary is computed for the first time
through these buffet calculations, versus Mach number
and angle of attack, and is found in good agreement
with the experimental results.

Acknowledgments : the authors are grateful to French
STPA for providing his financial support to this study.

References

[1] CHYU W.J., KUWAHARA K. - Computations of
transonic flow over an oscillating airfoil with shock-
induced separation. AIAA paper 82-0350, Orlando,
Florida (1982).

[2] CHYU W.5, DAVIS SS. - Numerical studies of
unsteady transonic flow over an oscillating airfoil.
AGARD-SMP  meeting, Toulouse (Sept. 1984),
AGARD-CP-374.

[3] SEEGMILLER M.L., MARVIN J.G., LEVY L.L. - Steady
and unsteady transonic flow. AIAA J., vol. 14, no. 6,
(1978).

[4] MC DEVITT JB., LEVY LL., DEIWERT G.S. - Transonic
flow about a thick circular-arc airfoil. AIAA J., vol. 14,
no. 5, (1976).

[5] MARVIN J.G., LEVY LL. SEEGMILLER M.L.
Turbulence modelling for unsteady transonic flows.
AJAA J., vol. 18, no.5, (1980).



[6] LE BALLEUR J.C., GIRODROUX-LAVIGNE P. - A semi-
implicit and unsteady numerical method of viscous-
inviscid interaction for transonic separated flows. - La
Recherche Aerospatiale 1984-1, p.15-37, English and
French editions, (1984).

[7] LE BALLEUR J.C, GIRODROUX-LAVIGNE P. - A
viscous-inviscid interaction method for computing
unsteady transonic separation. - Proceed. 3rd Symp.
Numerical and Physical Aspects of Aerodynamics
Flows, Long-Beach (jan.1985), T. Cebeci ed., Springer-
Verlag (1986).

[8] LE BALLEUR J.C., GIRODROUX-LAVIGNE P. -
Prediction of buffeting and calculation of unsteady-
boundary layer separation over airfoils. IUTAM symp.
"Boundary layer separation”, London, August 26-28,
(1986), or ONERA TP 1986-95.

[9] GIRODROUX-LAVIGNE P., LE BALLEUR 1.C. - Unsteady
viscous-inviscid interaction method and computation of
buffeting over airfoils. Proceed. Springer Verlag joint
IMA/SMAT  Conf. “"Computational Methods in
Aeronautical Fluid Dynamics", University of Reading,
6-8 April (1987), or ONERA TP 1987-58.

[10] HOUWINK R., VELDMAN AEP. - Steady and
unsteady separated flow computations for transonic
airfoils. - NLR MP 84028U, or AIAA 17th Fluid-Plasma
Conf., Snowmass, Colorado (june 1984).

[11] HOUWINK R. - Computations of separated subsonic
and transonic flow about airfoils in unsteady motion. -
Proceed. 3rd Symp. Numerical and Physical Aspects of
Aerodynamics Flows, Long-Beach (jan.1985), T. Cebeci
ed., Springer-Verlag (1986).

{12] RIZZETTA D.P. - Procedures for the computation of
unsteady transonic flows including viscous effects. -

NASA CR 166249 (1981).

[13] MALONE J.B., SANKAR N.L. - Numerical solutions of
2D unsteady transonic flows using coupled potential
flow/boundary layer methods. ATAA Paper 84-0268
(1984).

[14] LE BALLEUR J.C. - Computation of flows including
strong viscous interactions with coupling methods. -
AGARD-CP-291, General Introduction, Lecture 1,
Colorado-Springs (1981), or ONERA TP 1980-121.

[15] LE BALLEUR J.C. - Strong matching method for
computing transonic viscous flows including wakes and
separations. Lifting airfoils. - La Recherche Aerospatiale
1981-3, p.21-45, English and French editions, (1981).

[16] LE BALLEUR J.C. - Numerical viscid-inviscid
interaction in steady and unsteady flows. - Proceed. 2nd
Symp. Numerical and Physical Aspects of Aerodynamic
flows, Long-Beach, (1983), Springer-verlag, T. Cebeci
ed., chapt.13, p.259-284 (1984), or ONERA-TP 1983-8.

[17) COUSTON M., ANGELINI J.J. - Solution of nonsteady
two-dimensional transonic small disturbances potential
flow equation. - ASME Conf., San Francisco (1978) or
J. of Fluids Engin., vol.101, no 3, (1979).

[18] BENOIT B. - Etude du champ de pression
instationnaire sur le profil RA16SC1 en regime de
tremblement a S3MA. - Rapport ONERA RTS no
17/3423A (juin 19886).

[19} DOR 1B, GOBERT J.L., PLAZANET M., MIGNOSI A. -
Etude experimentale des instabilites auto-induites sur
un profil RA16 de corde 180 mm en ecoulement
transsonique, a la soufflerie T2. - Rapport Technique
ONERA-CERT-10/5017D. (juin 1986).

[20] MC DEVITT J.B., OKUNO AF. - Static and Dynamic
Pressure Measurements on a NACA0012 Airfoil in the
High Reynolds Number Facility., NASA Technical
Paper 2485, June 1985.

[21] HOWLETT J.T. - Efficient self-consistent viscous-

inviscid solutions for unsteady transonic flow. AIAA
Paper 85-0482, (1985).

787



