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Abstract

In a joint effort between the DFVLR, NASA-Ames and
Cal. State University Long Beach, USA, a
viscous/inviscid interaction procedure has been developed
to calculate the unsteady viscous flow around airfoils
operating under dynamic stall conditions. The inviscid
part of this procedure is represented by a time-marching
subsonic panel method which uses appropriate distrib-
utions of unsteady surface and wake singularities.
Unsteady pressures as well as lift and moment distrib-
utions show good agreement with experimental data as
long as viscous effects remain small. For increasing mean
incidences and oscillation amplitudes, however, unsteady
viscous effects become important. Experiments by
McCroskey, Carr et al. have shown that reversed flow
areas develop in time over parts of the airfoil upper sur-
face, i.c. separation is delayed by unsteady motion. The
flow may even be reversed and boundary layer-like over
almost the entire upper surface until a strong (dynamic
stall) vortex ultimately develops at the leading edge which
changes the flow characteristics completely.

An unsteady boundary layer procedure has been coupled
with the panel method. This strong coupling allows a
detailed investigation of the complicated unsteady viscous
flow phenomena involved. The inverse boundary layer
method is an unsteady extension of the method for steady
flow around airfoils at high incidences developed by
Cebeci et al. using the Hilbert integral formulation. A
laminar or turbulent boundary layer calculation can be
performed using the two-region aigebraic eddy viscosity
concept by Cebeci/Smith in the turbulent case. The tran-
sition point and its development in time is prescribed in
the present version of the method.

1. Introduction

A detailed understanding of unsteady viscous flow phe-
nomena has been of increasing concern in recent years.
Unsteady separation occurs on blades of helicopter rotors
and wind energy converters as well as on turbomachinery
cascades. This phenomenon, known as dyramic stall, may
be the origin of dangerous stall flutter. On the other hand
stall delay on wings in accelerated motion may success-
fully be used to increase the high maneuverability prop-
erties of combat aircraft. In the present study a few fun-
damental aspects of unsteady viscous flows around airfoils
operating under dynamic stall conditions will be analyt-
ically investigated by means of a strong coupling proce-
dure between an unsteady potential-theoretical and an
inverse boundary layer code.
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Extensive windtunnel tests on oscillating airfoils-? have
shown that the dynamic stail phenomenon may occur in
different degrees of severity. Depending on profile geom-
etry, incidence variation, frequency of oscillation, Rey-
nolds and Mach number, one can distinguish between
either light or deep dynamic stall conditions, with all var-
iations in between. Experiments have shown further that,
in the case of light dynamic stall, the flow may remain
boundary layer-like about the airfoil although cxtended
areas of reversed flow are developing over the airfoil’s
upper surface. The present study concentrates on the light
dynamic stall cases where the assumption still holds that
viscosity is restricted to a relatively thin region adjacent
to the airfoil surface. In cases of deep dynamic stall,
however, the flow breaks off the surface completely and
concentrated vortices may develop. These cases are not
within the scope of the present study.

It has been pointed out’ that coupling between an
unsteady panel method and a boundary layer code in the
direct mode may lead to a breakdown of the numerical
calculation due to unsteady separation. No simple sepa-
ration criterion was found in these cases. But by integrat-
ing along the vectors of the maximum reversed flow
velocities inside the boundary layer, typical envelopes
were observed in the x,~-domain (x £ surface coordinate,
t & time) which were interpreted as the time-dependent
locations of separation.? In a number of recent publica-
tions,* singularity has been completely avoided in the
steady case by means of a strong viscous/inviscid coupling
procedure. Airfoil incidences even close to stall could then
be treated successfully. In the viscous part of the proce-
duret the Hilbert integral formulation was used to modify
the external velocity distribution U (x) within regions of
strong viscous interaction. Here, U(x) was part of the
iterative solution procedure and allowed to adjust to the
boundary layer displacement effect. Lift as well as drag
coefficients obtained by this method show good agreement
with corresponding experimental data.

A similar local strong interaction procedure with quasi-

simultaneous viscous/inviscid coupling has been described
recently,’ with emphasis being placed on the interactions
between the trailing edge and the near wake.

The present paper describes a coupling procedure between
an unsteady subsonic panel method and a finite difference
code to calculate the unsteady two-dimensional
laminar/turbulent boundary layer equations around oscil-
lating airfoils. Here the main features described in Refs.
[4] and [6] for steady flows are followed also in the
unsteady case. The Hilbert integral concept is used in
regions of strong viscous interaction with several succes-



sive sweeps through the boundary layer per time step. A
few global iterations in combination with the inviscid
method are necessary in addition to get a final converged
solution for a complete cycle of oscillation. For turbulent
flows the two-region algebraic eddy viscosity concept by
Cebeci and Smith is used on a quasi-steady basis. The
location of transition from laminar to turbulent flow is
prescribed simply in space and time. Two further prob-
lems have to be taken into consideration for unsteady flow
problems:

1. The region of integration of the boundary layer
equations is moving in time due to the movement of
the front stagnation point.

2. Due to the explicit solution procedure of the present
method in the x- and ¢-domain, a stability-bound
{CFL condition) has to be taken into account,

The first problem is solved by a new transformation pro-
cedure using a time-variable boundary layer grid. The
second problem is controlled simply by restricting mesh
sizes in the x,t-domain. A further problem is the treatment
of the unsteady wake. The effect of wake circulation is
fully accounted for in the inviscid part of the problem via
the unsteady Kutta condition. The displacement effect of
the wake, however, is simply accounted for by an analyt-
ical formula representing a sink distribution with expo-
nential decay along the wake center line. In the following,
the main features of the method will first be outlined to
some detail. Then results will be presented to show the
flow characteristics inside the unsteady boundary layer.
Overall lift, moment and drag coefficients will be pre-
sented and compared with experimental data.

2. Unsteady inviscid method

The inviscid flow about an oscillating airfoil is calculated
by means of a subsonic panel method, which represents
the airfoil surface and unsteady wake by corresponding
source/sink and vorticity distributions.” For the incidence
variation

a(T) = ag + oy sin* 7T (1)
' L. UOO . .
with T = —= {dimensionless time),
and o* = “L’/'c (reduced frequency),
00
(U, & undisturbed velocity, ¢ 2 airfoil chord) ,

a time-dependent circulation ", (7) develops around the
airfoil. The change of “bound” circulation in time
_(_3.1:_”.. dT = _?2&
oT oT

(with s, as the total arc length of the profile surface) is
shed into the wake in agreement with the vorticity trans-
port equation and determines the vorticity loading v, of a
wake element ds,, at a specific instant of time 7. If time is
increasing, an increasing number of vorticity-loaded wake
elements is formed. These elements are assumed to move
downstream with the undisturbed flow speed U_. It is
further assumed that the wake geometry is simply repres-
ented by a straight line forming an incidence of ay/2 (half
the steady mean incidence) with respect to the airfoil axis,

dT-s, = —y,-ds, 2)

The time-dependent incidence of Eq. (1) defines a kine-

matic velocity Vi, (T) in points on the airfoil surface. With
the sum of the kinematic velocity and the induced veloci-
ties of all sources/sinks: Uq and vortices (on profile and
wake): By , the kinematic flow condition for each instant
of time yields

{ (Viin + 0y + 7)) = 0. 3)

In Eq. (3) Z is the unit normal vector (outside positive) in
points on the airfoil surface. If all known quantitics in Eq.
(3) are shifted to the right-hand side:

09, = = Vo + 1) )

a Fredholm integral equation of the second kind is
obtained for the unknown source strengths of v, at time
T. Due to the discretization of the airfoil surface and wake
into panels, Eq. (4) can be represented by a linear system
of equations where the left-hand (source) part forms a
large time-independent quadratic matrix of MxM ele-
ments (M £ number of surface panels) which has to be
inverted only once before starting the unsteady solution
procedure. The constant vorticity strength y,(7) in by is
also unknown at this step and is first set equal to unity.
Its value is calculated in a further step by applying the
Kutta condition at the trailing cdge:

Jim (6, (D = ¢, (T) = 0, )
where s is the coordinate along the slope of the airfoil, ¢,
and ¢, are the trailing edge values of the instantaneous
pressure coefficients on the upper and lower surface,
respectively. From Eq. (5) a quadratic equation for y,(T)
can be formulated and solved explicitly.

Once all source and vortex strengths are known, the cor-
responding relative velocities (relative to the airfoil sur-
face)

—

W = Vo +0,+0, (6)

together with the time derivative of the potential are
inserted into the unsteady Bernoulli equation:

. * — — -
o) = —29- BtV Bt ()
— * —
with T=T°§ﬂ, 0<T<1. ®)

Integrating along the airfoil surface, the corresponding
time-dependent lift, drag and moment coefficients (¢, (T),
cu(T), cp(T)) are obtained.

3. Unsteady boundary layer method

It has already been pointed out that, for an oscillating
airfoil, the front stagnation point is moving in time.
However, problems arise if the boundary layer calculation
has to start at the instantancous positions of the stag-
nation points which are assumed to be known from the
inviscid calculation of Chapter 2.

In Ref. [3] problems are avoided by calculating the
boundary layer within the stagnation point region on a
quasi-steady basis and then continue with the unsteady
calculation further downstream. This procedure has the
disadvantage that, for high-amplitude oscillations, the
stagnation point moves several percent of the airfoil chord
along the leading edge and unsteady effects inside the
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boundary layer are assumed to be no longer negligible
within this region. In a different approach,® the boundary
layer surface coordinate was attached rigidly to the mov-
ing stagnation point. In this case difficulties occur at the
airfoil’s trailing edge which is not a point of the moving
system. The retro-transformation and interpretation of the
results in surface-fixed coordinates is not straightforward.
The unsteady loading edge flow was recently investigated
in detail 9

In the present approach the coordinate system for the
boundary layer calculation is attached to the stagnation
point (Fig. I) as well as to the trailing edge of the airfoil.
The grid is therefore allowed to stretch and shrink with
time.

: upper surface bl.-coord.
g :lower surface bl.-coord.

Figure I: Coordinate system for oscillating airfoil
Fig. 2 shows the coordinate mesh in the physical x,t-plane
and in the computational &, t-plane. The lines ¢ = con-
stant are obtained by subdividing the surface slope
between the stagnation point and the trailing edge into
equal numbers of grid points for each instant of time.

The transformation rule is given by

¢ = ¢&¢(x, 0, surface coordinate, Fig. 1
n =n@), normal coordinate, Fig. I (9)
T = 1(), time,
where the metric coefficients
9¢ 0¢
3t # 0 and F # | (10)

now have to be taken into account.
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Figure 2: Coordinate transformation
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3.1 Boundary layer equations in moving coordinates

With the transformation conditions (Eq. (9) and Fig. 2)
the unsteady 2-d boundary layer equations can be
expressed in moving coordinates:

Continuity equation

2 X a9

T [u<ax)]+ P <u 3 ) 0 (1)
Momentum equation
du 0 . ou [ OC ) IS du 0% _
PR ag( )”Ta?( el ax)“’ o
ou 98¢ ¢ a &
wE (B (W EE)

sl (B8 8 (,ou
Re \ dx ] oy 3n
with the boundary conditions

n=0 :u
oo iy

In Eqgs. (11) and (12) all lengths are in terms of the airfoil
chord ¢ and all velocities are in terms of U,. The term b
in Eq. (12) includes the turbulent eddy viscosity v, (see
Section 3.4) with

v,
b =1+
(13)

(v £ Kinematic viscosity) .

System (11), (12) is rendered independent from the Rey-
nolds number by the transformation

7 =nyRe ,

14
v = v /Re . (14)
Introducing a stream function
— U, ¢
=y (15)

JRe

the continuity equation (11) is not always automatically
fulfilled in the moving system. A term

9 (9 )
E3
remains, which is only zero if (6{/0x),, = constant. The

latter condition can be achieved with an equally spaced
mesh in both x,y,¢- and &, 7, -domains (Fig. 2).

(16)

With Eq. (15) the momentum equation (12) yields

. - 8\ _
il '5?(6) % (7 5) % -
U &N, 8 aé

where the primemark denotes differentiation with respect

to 7. The boundary conditions for Eq. (17) are
0 :y =y =0,
o Yy =U

S {11

(|

(18)



In Eq. (17) the underlined terms refer to the moving
coordinate system. With the additional defining equations

Vo= u (19)
v (20)

and U =g =y
the system (17)—(20) forms the final set of first-order
equations which has to be solved by numerical methods.,

3.2 Eddy viscosity, transition

In regions of turbulent boundary layer flow the turbulent
viscosity v, in Eq. (13) requires a turbulence model. Here
the algebraic eddy viscosity concept by Cebeci and
Smith!® is used. The term v, is expressed by two different
formulas representing the inner and outer region inside
the boundary layer. In transformed variables the inner
part within the region 0 < % < #, yields

(), = 016 /R 372 (1 - e

4= 26

\/_—— l// ”max

maximum value inside the boundary layer)

TNy, (21)

with
(l/I ”max g

and the outer part is represented by

Vv —
(T')O = 0.0168 JRe (Un, — $.),, -

Both Egs. (21) and (22) coincide at 7, using the condition
of continuity of the eddy viscosity terms.

The term y, in Egs. (21) and (22) represents an intermit-
tency factor which accounts for the transitional region
between laminar and turbulent flow:

(22)

~G(x~ x")' dx
Yo = 1 —e I v (23)
, 1 URé
with G = ———. (24)
1.34
1200 Rex"
and the transition Reynolds number
Re, = U-.x-Re. .(25)

The coordinate x in Eqs. (23)—(25) is measured in the
physical domain (Fig. 2) from the instantaneous position
of the stagnation point.

In the present study transition has always been fixed two
mesh points behind the stagnation point on the upper and
lower surfaces of the airfoil. The consequence of this sim-
plification is a rigid movement of the transition point with
the stagnation point. Further intensive studies are neces-
sary to improve the prediction of the instantaneous posi-
tion of the transition point. In the steady case* it has been
pointed out that, in cases of high incidence, the transition
location has a very sensitive influence on the development
of the boundary layer and on the final lift and drag coef-
ficients.

3.3 Inverse formulation

If the system (17)—(20) is solved in the direct mode the
external txme-dependent velocity distribution
U (¢, T)=w (Eq.(6)) remains unchanged during the vis-
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cous solution procedure. This assumption is no longer
valid if strong viscous/inviscid interaction is involved duc
to severe boundary layer displacement effects. In this case
the external velocity distribution is modified by means of
the Hilbert integral concept:

WE,T) = UETY+oUET), (26)

where U (£, T) is the influence of the boundary layer
displacement effect upstream and downstream of . In the
transformed coordinate system, Eq. (26) becomes

&
1 _QC_. _a_ * a¢
T ox ! da¢' (e &=y

(& & control point, ¢ 4

SUT) = (27

inducing point).

In Eq. (27) &, and £, define the upstream and downstream
limits of the interactive region. The term U (&, T) in Eq.
(27) can be interpreted as the induced velocity of a con-
tinuous source distribution between £, and £, of strength
djdé’ (Us*) with

1 (s _ Ve
5* P F, m ——
JRe ( © v )
as the boundary layer displacement thickness (7, and v,

are values at the outer edge of the boundary layer). Eq.
(27) can be discretized as described in Ref. [11] by

(28)

- — % < R
W& T) = U T)+ 5= ;cw(ua ), (29)

with ¢, reprecentmg geometrlc influence coefficients of the
mducmg elements j in control points . Rearranging the
unknowns in Eq. (29) on the right-hand side yields

I'Vi'"c—i.t—'(r—’el/Vi'—"/742) =
(US*y +

i 2, 30)
o¢ g e (U, S (

. . Gy 0
with Cii TR ox

If the boundary layer equations are solved in the inverse
mode, the external velocity component W in Eq. (30) is
assumed to be an additional unknown and a fourth
equation is necessary:

oW
on
which will be discretized in the same way as Egs.
(17) —(20), modifying the external boundary condition

(18) by

(3D

=0, (32)

Vo= W. (33)

Eq. (30) is then used as an additional condition for the
unknown W.

3.4 Discretization and solution procedure

Fig. 3 shows the discretization molecule for the system of
unsteady boundary layer equations (17)—(20) and (32).
Eq. (17) is discretized at the midpoint of the box at
(G—1/2, i—1/2, n—1/2), whereas Eqgs. (18), (19) and (32)
are discretized at the side of the box at (j—1/2, 2, 2).The
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Figure 3: Discretization molecule

general features of the solution procedure are described in
detail in Ref. [6] for steady 2-d inverse boundary layers
as well as for unsteady 2-d boundary layers in the direct
mode.

For application of Newton’s method the nonlinear system
of equations as well as the boundary conditions arc first
of all linearized:

-y
l//j = |//j +6l//j!

0 .
w, = u; + du; ; 0<j<J
J jO J (34)
& = & *o,
Wy = W)+ oW,

where the terms with superscript “0” denote appropriate
starting values. Introducing Egs. (34) into the discretized
equations (17) —(20) and (32) yields for Eq. (19)

V=0 122 (n)
with the boundary condition at the wall (Eq. (18)):
Sipp = () =0

Eq. (17) is discretized and rearranged by

(S1) 08500 + (S2);0g;-y 5 + (S3), 8jng +
+ (S4)j 6|/jj“1,2,2 + (SS)j5uj'2'2 + (S6)j6uj_1‘2.2 +
+ (ST OWjaa + (S8) W, 15, = (r)

(‘S Wiaatou_y5,) = (35)

(35a)

(36)

with the boundary condition at the wall
(=0

The coefficients (Sl)j (S8), see Appendix, are deter-
mined from the discretized momentum equation (17). Eq.
(20) yields

oupy = (36a)

stands for the inverse formulation. Eq. (32) yields

OW; =W,y = Wiy — W; = (rg)-y  (38)
with the boundary condition at the outer edge
(5” - 5WJ = (V4)J . (383)

The nght—hand vectors (r);, — (ra)y, see Appendix, are
obtained again from the discretized versions of Egs.
(17) —(20) and (32).

With Egs. (35)~(38) a linear system of equations is
obtained for all grid points 0 < j < J through the bound-
ary layer

AS =1 (39)
60 "o
r
with s =% |; - |7 (40)
B 7 ty
and the tridiagonal matrix
[ 4 G 0 |
B A, ¢
- \\\ \\ \\\
A B 4 G “0
0 '8, 4,

The elements of matrix 4 represent 4x4 blocks corre-
sponding to the four equations (35)—(38) to be solved
with

oy
1 - 3 0 0
(83 (S5 (S1); (ST
4 =1 o 1 -2 |5 (422)
0 0 0 -1
1<j<J-1
(42b)
-1 __thl 1] i) 0 0 0 o
2
(54 (s6) (S2) (S8) 00 oh 0
j
B, =1 o o 0 oy G=|01-750
Y 0 0 0 0 0 0 1
L ] o
1<j<J 0<j=<J-1

02— 0135~

—1
(0822%08-122) = (r3)—y (37)

with the boundary condition, Eq. (30), at the outer edge
of the boundary layer obtamed from the inverse formu-

lation

oW, + 9, 00, = (r3); -

(37a)

In Eq. (373), y, = 0 and y, = 1 represents the standard

problem and

Y1

1

Y2

o

- Ei;r’e

Cii

(37b)

At the wall (j = 0) and at the outer edge of the boundary
layer (j = J) the boundary conditions (Eqgs. 35a, 36a and
Eqs. 37a, 38a) enter the first two rows of matrix 4, and
the last two rows of matrix A,, respectively:

1000 Pk 0 0

6 100 (83); (85) (S1) (ST) ]
A = 0—1—%0 ’ Ar = "1 0 0 Y2

o 0 0 -1 o 10 -1

770



The solution vector §; and the right-hand vector #,

; are
represented by:

W22 (n)
du; ()i

5. = 722 . . 2)f

/ g2z | 7 (r3); “4)
0W;s2 (ra);

The block elimination method by Keller'? and Cebeci and
Bradshaw'? is applied to solve the linear system (39). Only
a few Newton iterations are necessary to obtain a final
sufficiently converged solution of the linear system of
equations. If the boundary layer calculation is carried out
in the interactive mode, Eq. (30) has to be taken into
account, with W as the unknown velocity. The interactive
procedure can only be carried out iteratively. To start this
iteration, (Us*)-values (in Eq. (30)) from the previous
time step are used and several sweeps through the inter-
active part of the boundary layer are made. It has been
found that the number of sweeps can be limited with the
present method to three in the unsteady part of the cal-
culation. The interactive region can be extended further
over the entire upper surface of the profile to take care of
backflow regions in the vicinity of the airfoil’s leading
edge as well.

To start the unsteady calculation, appropriate initial val-
ues at a prescribed time line have to be determined. Here
the procedure for interactive two-dimensional boundary
layer flowsS has been applied with the Flare approxi-
mation (u0u/0x=0 for u < 0) in regions of reversed
flows. The (Ud*)-values for the first interactive sweep are
now obtained from a direct 2-d steady solution of the
boundary layer system up to the point of zero skin fric-
tion. The (Ud*)-values beyond the separation point are
simply determined by extrapolation. In the steady case,
about 13 to 15 iterations are necessary to obtain a suffi-
ciently converged solution.

4. Viscousfinviscid coupling, global iteration

The converged - source strengths in the Hilbert integral
formulation of Eq. (27)

o6, T) = L (U.o%),

a

i.e. the blowing or transpiration velocity, have to be taken
into account in the inviscid panel method to modify the
kinematic flow condition (Eq. 3)

(45)

C(Vk,-"+uq+uy) = vp. (46)
The solution of Eq. (46) for the unknown source and vor-
ticity strengths now includes the effects of boundary layer
displacement along the airfoil surface. The blowing veloc-
ity also has to be taken into account in the Bernoulli
equation in order to calculate the pressure distribution
(Eq.7)

. * g - - o
e(T) = -2 2 —iﬂ/ki,,. Viga = (W - w +03)

2 a7 7

and correspondingly in the Kutta condition (Eq. 5).

The latter condition is further modified by using control
points which are located on the instantaneous displace-
ment body surface instead of the airfoil surface itself.

After calculating the relative velocity distribution w (Eq.
6) now including the displacement effects of the boundary
layer, a second global cycle starts with modified external
velocities in the boundary layer calculation etc. Viscous
as well as inviscid calculations are always extended over
complete cycles of oscillation. For the start of the global
viscous/inviscid iteration procedure, appropriate initial
velocity distributions have to be determined. These initial
values are obtained from the inviscid panel method by
iterating over three complete cycles of oscillation. Fig. 4
shows again the various steps of the global
viscous/inviscid iteration procedure with the option of
accelerating the convergence in step 3. This step however
was not very effective and therefore not applied in the
present calculations.

L=t ]

Calculation of external inviscid velocity
distribution by panel method

e 1t step:

i = 1 : no blowing velocity
i > 1 : with blowing velocity : Vg (x,5)
Result : U, (x,h)

20d step:  Boundary layer caleulati
Unsteady, interactive (3 ps / time step)
Result: Viscous external velocity : U,,; (x,0)
Blowing velocity t Vg (X0

l— 3rd step:  Acceleration of e

Va1 (558) = Vi (x,t) [l +o (%—"‘ - 1)]

(Relaxation parameter @ = 2)

Figure 4: Unsteady viscous/inviscid interaction procedure

Fig. § displays the iteration history of the instantaneous
lift coefficient for the NACA 0012 airfoil section at the
maximum  incidence of «(T) =18 (w* =04,
Re = 2.10%) . The results from the first three cycles are
derived from inviscid calculations. The first viscous cycle
has been obtained with a Reynolds number 10 times lar-
ger than the nominal one (2 - 107). Experience with the
method has shown that, if the Reynolds number is not
increased in this way, the lift after the first viscous cycle
tends to overshoot to small values and requires additional

&
18+ /)e-’""’( NACA 0012
:(/ \ a = 13°+ 5° sinw"T
w'= 04
\ Re = 2 10°
177 @18

\
<

\,*_____*_..——X--_*__——)(——-.x
re-2-107 |—he=2-10°

L A T

e viscous Mumber of global cycles

inviscid

Figure 5: Iteration history of the instantaneous lLift
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iterations to approach a converged level. During the sec-
ond and following global cycles the Reynolds number is
reduced to the nominal value again. Fig. 5 shows that,
even in the case of extreme incidence for the present cou-
pling procedure, only three global cycles are necessary to
obtain a satisfactory solution. For the results presented in
the following sections, three global cycles were therefore
assumed to be sufficient in all cases.

It has already been mentioned that the displacement effect
of the wake is approximated by means of an analytical
function:

Gu(s,) = — [(U%), + (Us*),Ja-e "W o) | (47)
where g, (s,) is the strength of a distribution of sinks along
the wake center line (s,) with (Ud*), and (Ud*), obtained
from the boundary layer calculation (indices u and # refer
to the upper and lower side at the trailing edge, respec-
tively). If in Eq. (47) the parameter a is set equal to unity,
the effect of the sink distribution along the wake on the
pressures is presented in Fig. 6 and compared with the
case without sink distribution. Larger typical deviations
can be observed in the trailing edge region. The lift and
drag coefficients are slightly increased.

-ZW
NACA 0012
bp a =13+ 5° sinw"T
w"=04
Re = 2-10°
4 a =18°
including sink - effect
of wake
0+
ng Sink - effect
of wake
A
Figure 6: Effect of wake sink distribution on trailing

edge pressures

Due to the fact that it is difficult to assume a reasonable
value for the parameter a in Eq. (47), the present results
are calculated without wake sink effects.

5. Results

The present method allows a reasonable number of
parameters to be varied:

airfoil geometry,
incidence variation,
reduced frequency,
Reynolds number.

Some of these parameters will be investigated in the fol-
lowing sections. However, one important parameter, the
Mach number, is missing. The incompressible treatment
of the problem of airfoils oscillating at high incidences has
its limitations. The incompressible minimum pressure
coefficient (¢, ). may be related to the critical Mach
number Ma*:®
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e ) = - 2 (1 — Ma} ) )
Cpmiu (I k + 1 Ma *2 ’ (48)
(c = 1.4) .

If the Mach number of the undisturbed flow is as low as
0.25, the limiting pressure coefficient is about --12, a val-
ue which may be reached for the NACA 0012 airfoil at
incidences beyond a = 16°. At Ma = 0.3 the limiting val-
ue is already reached at ¢, = —8. If ¢, is exceeded,
strong local supersonic regions may develop which change
the pressure distributions and-hence lift, moment and
drag characteristics considerably. For comparisons with
experimental data in Section 5.2, therefore, only data was
selected? for which the assumption of incompressible flow
still holds.

5.1 Details of unsteady viscous flow

One of the most important parameters for the oscillating
airfoil problem is the frequency of oscillations expressed
in dimensionless form by the reduced frequency w* (Eq.
1). Some emphasis will therefore be placed on a variation
of w* and its effect on the various flow quantities
involved. For the development of the time-dependent
flow, the limiting values at w* = (, i.e. the quasi-steady
limit, are of interest. The present computer code is there-
fore constructed such that the case w* = 0 can be treated
on the basis of a steady interacting boundary layer calcu-
lation coupled with the quasi-steady limit for the external
inviscid flow. A complete incidence cycle can then be cal-
culated as in the unsteady case. But for each incidence a
larger number of sweeps (about 15) is necessary for a
converged solution.

First of all the flow about the standard airfoil section
NACA 0012 will be investigated within the incidence
range

a(T) = 13° + 5° sinw*T

and a Reynolds number of 2. 105 In Ref. [15] a maxi-
mum lift coefficient of about ¢, = 1.55 at a = 16° is
achieved from experiments. In the present calculation a
breakdown in the leading edge region due to the strong
adverse pressure gradient occurred at o > 17°.

Fig. 7 displays the boundary layer profiles (u-velocity
component, Fig. 7a) and the corresponding streamlines
obtained by integration of the u, v-velocity vector field on
the upper surface of the airfoil in Fig. 7b. The coordinate
s in Fig. 7 is the slope along the airfoil surface (measured
from the trailing edge around the pressure side to the
upper surface, see also Fig. 1). The coordinate 5 is meas-
ured normal to the surface and is restricted in Fig. 7 to a
narrow region very close to the airfoil surface. The main
features of these plots is the backflow region which has
developed from the trailing edge upstream to about
s = 1.6 (x/c ~ 0.6). This region extends outwards towards
the trailing edge. It has been pointed out* that the back-
flow region is sensitively dependent on the location of
transition for this very high incidence case. The transition
point in the present calculation (steady as well as
unsteady) was fixed two grid points (Ax = 0.02) down-
stream from the position of the stagnation point.
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Figure 8: Boundary layer details on NACA 0012 upper surface, oscillating case.
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Figure 10: Instantaneous incidence « = 15.5° downstroke
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Figs. 8, 9 and 10 show corresponding results from
unsteady calculations with a reduced frequency of
w* = 0.4. Figs. 8 display the flow details at o = 15.5°
upstroke, Figs. 9 include the results for the maximum
incidence o = 18° and Figs. 10 show the results for
« = 15.5° downstroke. Several features are noteworthy.
First of all, the numerical calculation did not break down
for the unsteady case. The region of backflow is smaller
in its upstream extent (¢ = 18°, Figs. 9) as well as in its
extension in #-direction although the incidence with
a = 18° is considerably higher as in the quasi-steady case
(17°). If the frequency is increased further, the backflow
region is reduced even more. Comparison between Figs. 8
and 10 (« = 15.5°1 and « = 15.5°}) show considerable
phase shifts in the development and extent of the reversed
flow regions,

Further details of the boundary layer development in
space (5) and time (T, Eq. 8) are displayed in Figs. 11— 13

for the three frequency cases w* = 0/0.4/0.8 and the
same airfoil incidence variation and Reynolds number as
in Figs. 7—-10. Figs. 11 show the development of the
boundary layer displacement thicknesses 6*, where in Fig.
11a (quasi-steady) irregularities occur in the trailing edge
region for incidences beyond 17°. The calculations were
forced to continue to larger incidences; the results in this
region are therefore not assumed to be very meaningful.
In the unsteady cases (Figs. 11b, 11c), however, the results
do not show any numerical irregularities. This result is
assumed to be of importance with respect to the increasing
delay of breakdown of the unsteady lift with increasing
frequency of oscillation. This is a phenomenon which has
been frequently observed in experimental investigations
as well. Comparing the three é* carpets (Figs. 11a, b and
¢) it is evident that a strong decrease of the displacement
body occurs with increasing reduced frequency. It can be
concluded from this behavior that, with increasing fre-
quency, the influence of boundary layer displacement on
the outer inviscid flow also decreases.

NACA 0012
a = 13*+5%°sin (@°T)
Re = 2,0E6 3. Cycle Tronsition: Stg.P.
a) b) c)
8.86 2.06 o.08
@83 o.95 2.0
oo ®.04 2.04
2 e.93 = 0.03 I' o.03
¢-82 .02 °.02
o se 1R 2.0
2,
Figure 11: Boundary layer displacement thickness 5* in space/time domain.
a) steady b) w* = 0.4 ©) w* = 0.8
- NACA 0012
a = 13°+5%s1in (0° T} 3. Cycle Transitton: Stg.P.
Re = 2,0E6
Yo = - on = -.2265 Yo = 7.1752
a) :.::'_' . 4.?22 b :-,:, = 4.8769 c) :-m = 4.9469

.2000- T = . 2000

Atw *
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Figure 12: Contour lines of wall shear stress 7, in space/time domain.

a) steady b) w* =

v

0.4
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Figs. 12 display corresponding contour lines of the time-
dependent wall shear stress

7, = 4

]

again for the three w*-cases on the upper surface of the
airfoil (s = 2.03 £ trailing edge, T = 1.0 corresponds to
«a=131,T=125%2a¢=18"and T = 1.5 £ 13°]). The
dashed lines in these figures indicate the region of reversed
flow. In Figs. 12b and 12c the locations of minimum wall

shear are shifted to higher T values, i.e. into the down-
stroke region. The curves show increasing deformations.

Lastly, Figs. 13 display the maximum reversed flow
velocities within the boundary layer. For o* = 0.4 values
about 8% of the freestream velocity are reached, decreas-
ing to about 4.5% for the higher frequency (w* = 0.8).

NACA 0012 0} NACA 0012

x = 13"+5°sin (") a = 13°+5°sin (0*T)

Re = 2.0E6 Re = 2,0E6

w® = 40 w' = .80

3. Cycls Transitfon: Stg.P. 3. Cycle Transttion:

b) Figure 13: Maximum reversed flow
velocities within boundary
layer.

a)w* =04 b)o* =08

Stg.P.

Figs. 14 and 15 display results which are important for the
global coupling procedure. Figs. 14a and b show the
development of Ud* in space and time. Similar to plots
11, the maximum Ud* values are reduced considerably
with increasing frequency. The spatial derivative of
(Ué*), Eq. (45), determines the blowing velocity v, which
is introduced into Eq. (46) to modify the kinematic flow
condition in the inviscid code. Figs. 152 and b display
contour lines of the blowing velocity for a complete cycle
of oscillation. Noteworthy are the considerable phase
shifts of the maximum v, values to higher T, i.e. into the
downstroke region. It is of further interest that v, has a
maximum in the leading edge region within the area of
strong velocity deceleration.

b) Figure 14: U, 5* distributions in-
space/time domain.
a)ow* =04 b)o* =08

Stg.P.
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The latter phenomenon should be investigated NACA 0012 NACA 0012 .

. . . = e sin (w* @ . e 5° {w*

in the future because it may force the formation &, J5ee " ©'" a) fe s pog b)
; h \ pr e s 0l e

Of a Strong lpteractlﬂn nglO?l Wlth lnCIplent ; Cyc:(: Transition: Stg.P. 3. Cycle Transition: Stg.P.

turbulent leading edge separation. - wors

5.2 Lift, moment and drag distributions

Figs. 16a, b and ¢ show the sectional lift and
moment distributions on the NACA 0012 air-
foil section for the three frequency cases. The
solid curves in Figs. 16 display the inviscid
results (after three inviscid cycles). The dashed
curves show the results after three global cycles
of viscous/inviscid interaction. Fig. 16a also
includes experimental data from Abbott and v.
Doenhoff.!5 In the experiment the maximum lift
is obtained at about o = 16°. The analytical
results exceed this value. It has been mentioned
in the previous section that a first breakdown

of the boundary layer calculation occurred just
beyond « = 17°. In this region the lift curve
shows noteworthy wiggles: the calculation was
forced to continue here.

In the unsteady case, however, (Figs. 16b and c) the
curves show a smooth behavior. As in the quasi-steady
limit the lift is reduced throughout the entire cycle com-
pared to the inviscid case. Increasing hysteresis effects can
be observed with increasing reduced frequency.

Finally, Figs. 17, 18 and 19 show results for three different
airfoil sections: NACA 0012, Ames 01 and NLR 7301
with incidence variations, frequencies and Reynolds num-
bers which have been experimentally investigated.? The
corresponding experimental data are indicated in the
plots. These three cases were selected because the critical
pressure on the airfoil leading edge was not exceeded and
therefore compressibility effects should remain small. In

all three cases the moment and drag distributions show

good agreement with experimental data except for the ¢y

P,

NACA Q012 U) NACA 0012

& = 13*+5°sin W*'T) a = 13" +5'sia T}
Re = 2.0E6 Re = 2.0E6

w* = .00 W = 40
Transttion: Stg.P. Tronsitton: Stg.
— 12YK x O » Experiment {Abbott /v. Doenhott] — JZYK = O

—=—- 1ZYK = 3 e 1ZYK = 3

Figure 15: Contour lines of blowing velocities v,
a) w* = 0.4 b) w* = 0.8

curve in Fig. 19 (NLR 7301) which is shifted in the
experiment to higher negative values. The lift curves in all
three cases however show a notable deviation. The exper-
imental lift curves have a larger slope compared to the
analytical results. There are not only deviations at higher
incidence but also at the lowest a where viscous effects
should be of only small importance. Furthermore the fig-
ures show that the measured maximum lift coefficients are
even higher than the inviscid values. This is surprising
because the inviscid values in these cases are reduced due
to viscous effects. The explanation for these deviations
may be that the amplitude of oscillation in the exper-
imental case was higher than the nominal one: the curves
should therefore be plotted over a larger incidence range
which would reduce the slope of the curves accordingly.

NACA 0012

g = 1345610 W7
Re = 2.0E6

w* .80
Transition: Stg.P.

b) c
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Figure 16: Lift and moment distributions. a) steady, compared with experimental data'’
b) unsteady, w* = 0.4 c¢) unsteady, v* = 0.8
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6. Conclusion

For calculation of unsteady airloads on oscillating airfoils
in the high incidence regime, a coupling procedure
between an inviscid potential theoretical panel method
and an unsteady interactive boundary layer calculation
procedure has been developed. A coordinate transforma-
tion into a time-dependent surface coordinate has been
incorporated into the boundary layer code: the surface
coordinate is attached to the moving stagnation point as
well as to the airfoil trailing edge. With this transforma-
tion a quasi-steady treatment of the viscous flow
equations in the leading edge region is avoided. The upper
and lower sides of the airfoil are calculated with the com-
plete set of unsteady equations. Moreover it is straight-
forward to extend the interactive region of the boundary
layer calculation over the complete upper surface of the
airfoil while accounting for interaction areas in the region
of strong adverse pressure gradients with incipient sepa-
ration.

The method has been applied for a number of incidence
cases up to « (7)~ 18°, reduced frequencies, including the
quasi-steady case, Reynolds numbers and various airfoil
sections. The comparisons with experimental data show
reasonably good agreement even for the unsteady drag
coefficients.

The method nevertheless has several shortcomings. The
incompressible treatment reaches its limits in high-inci-
dence cases due to the development of supersonic regions
and shock waves in the leading edge area of the airfoil.
The displacement effect of the wake has been répresented
simply by an analytical formula. The unsteady movement
of transition has been rigidly attached to the increment of
the stagnation point. The turbulence model is applied on
a ‘quasi-steady basis. Future plans foresee avoiding at
least some of these shortcomings by a further development
of the coupling procedure.

tributions, comparison with
experimental data;? AMES
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Appendix
With the abbreviations
FB = 0.5 (Wj,Z.Z + Wj-—l.l,z)
and correspondingly
UB(u), VB(g), WB(W)

FB2 = 0.5 (%,2,1 + g’-j—‘vzvl)
FB3 = 0.5(01 + ¥j-1.10) (AD)
FB4 = 0.5 2+ V=112

and correspondingly

UB2, UB3, UB4 and WB2, WB3, WB4

FB14
FB23

= 0.5(FB + FB4)
= 0.5(FB2 + FB3)

and éorrespondingly

UB14, UB23, WB14, WB23,
UBI12, UB34, WBI12, WB34

UB1234 =
Uoya1t Y

()5( 22+
2t 1.1.2+

122t Ut
ARG I RRY,

and correspondingly
VB1234, WB1234, UB1234

UBSQ12 = 025(";%2,2 2 122 + 1l 21 + “ 121)
. 2
UBSQ34 ‘= 0.25(u}, + ,'2—1,1,1 +wha w0

and correspondingly
WBSQ12, WBSQ34.

With these abbreviations, the right-hand terms of Eqs.
(17)—(20) and (32) yicld

(ny = Vim0 * Wjaa + oy UB, (A2)
J 7

(A3)

(rp)y = 7{‘—((//;14 111;23)~—(Wm4 wB23)+
2

+

A

-2

Y4
4 DKSI
A

( € )(Unvgn URSQ34)—

( o¢ )(nglz WRBSQ34)+

4 DKSI
A

+ (11812 l/B34) - (WB12— WB34) +

DD’?’ WRI234 —

1 .
~ = VRI234(FR12— FR34)~
AZ ( )

1

T Ay
+ (bg)i2

o {(hg)2 = (b8 122t (P8l —(bg) (201 *

(hgy 10,2 % (Bghag ~ (Bg) 111}
o

0¢
DKSI = 0.25 {( - ),’, + a—z>'-2 +

(5t (5

DDKSI = {os[( ‘7)5[ > + (%)u] _

“os[( ) ()]}

(r)i-1 = #i—122 00+ A VB

(r4)/~_, = ”/_] I/Vj .

with the metric coefficients

and

(Ad)

The coefTicients from the lincarized momentum cquation
(17) yicld

(AS)
1
— + .
(1), = ZA{ (FB12 — FB34) Y. bina
1
§2), = —— (FBI12 — FB34) — ——— b, _
(52); ZAf( ) - An,y i1
(53)1'274755_ VB1234 = (S4),
(85) = — 2 - 4ia2 (0L \ _ DKSI _ DDKSI
Y AT AE \ax ) AL 2L
e ui-122 ( d¢& \ _ DKSI _ DDKSI
/ At AE \ox )] _AL _2A0
W,
1 22 [ O DKSI | DDKSI
B il . S +
S A¢ gﬁ_x_) _AL . _2A¢
(58) = - + Wiciz2 (3¢ ) . DKSI , DDKSI
T At Aé ox A¢ 2N

The underlined terms in Eqs. (A3) and (A5) are also
obtained by transforming the system (17) —(20) and (32)
into a moving coordinate system.
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