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SUMMARY

The turbulent boundary layer flow at the
leeward side of a planar delta wing at high
angles of attack and high subsonic Mach
numbers has been studied. A quasi-three
dimensional boundary layer method has been
developed, assuming a conical external flow
and similar velocity profiles along rays
through the apex. The solution takes place
at a constant chord position, while the
marching direction is away from an
attachment line until separation is
reached. The present method has been
tested with experimental pressure
distributions as input. The predicted
surface flow compared with oil flow
visualization tests showed good agreement
as far as the limiting streamlines and the
secondary separation positions are
concerned.

NOTATION
Ce ,Cg skin-friction coefficients
r 8 .
p surface pressure coefficient
C,. rootchord of the wing
E ratio of total enthalpy
F,G velocity ratios
H total enthalpy
M Mach number
Pr Prandtl number
Pry ‘turbulent' Prandtl number

pressure
=(u2 + v2)1/2
Reynolds number
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temperature
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velocity components in r,@,z
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g, v stream functions

" angle of velocity vector on
surface z=constant

Subscripts

e edge of boundary layer

t tangential

W wall

@ free stream conditions

INTRODUCTION

In the last years the interest in the
flow around delta wings at high angles of
attack has been increased considerably.
This is mainly due to the development of
fast manoevrable aircraft and missiles and
to the growing capability of computing
complex vortex-dominating flows!. Although
the geometry of a delta wing is rather
simple, it is rather difficult to obtain
realistic computational results, especially
for high angles of attack and high speed
free stream conditions. The flow around a
delta wing may be characterized by a strong
viscid~inviscid interaction. The
rolling-up of free shear-layers emanating
from the leading edge has a major effect on
the entire flow field, and consequently on
the aerodynamic coefficients of the wing.
With inviscid computational methods
vortices emanating from sharp leading edges
may be captured. This is not the case with
free shear-layers shed off from a smooth
surface. These are a result of boundary
layer separation due to an adverse pressure
gradient, so their position is not known a
priory. The status of the boundary layer
is very important. A turbulent boundary
layer upstream of separation will sustain
an adverse pressure gradient over a longer
distance than a laminar boundary layer.

The computation of the boundary layer on
a conical body like a delta wing upstream
of separation will be discussed in this
paper. The present method may be seen as a
modification and extension of the methods
developed by Matsuno?, DeJarnette3 and
AdamsY%. The computational method is a
simplified 3D- method, using the assumption
of conical inviscid external flow. The
conical flow concept is valid for
supersonic flows; for high subsonic flows
trailing edge effects will disturb it.
From experiments however, it can be seen
that certain phenomena like lines of
attachment and separation occur along
straight lines through the apex’®.
Furthermore pressure gradients in spanwise
direction are much larger than chordwise
pressure gradients, so the assumption of
conical flow is rather good .



The present boundary layer method can be
used in interaction with conical inviscid
computational methods. If vortices
emanating from a smooth surface can be
modelled, the position of separation has to
be prescribed. In order to improve the
inviscid calculations, it would be
necessary to predict the position of these
separations by studying the evolution of
the boundary layer upstream of separation.

In this paper only experimental pressure
distributions have been used to generate
boundary values. The experimental data
were obtained from measurements in the
transonic - supersonic windtunnel of the
Delft University of Technology, Faculty of
Aerospace Engineering5. The delta wing
model had a sweep angle of 65° and a flat
upper surface. It was tested at Mach
numbers between 0.6 and 0.9 and at angles
of attack of 5° - 22°. The calculations
were made for M, = 0.6, 0.7 and 0.85 and
®= 5, 10°and 15°.

GQVERNING EQUATIONS

The turbulent boundary layer equations
for a steady compressible flow will be
described in an orthogonal curvi-linear
(r,B,2) coordinate systemé, fit to a
conical body (fig. 1). 1In this system z is
the normal distance to the surface, r is
the distance to the apex and 9§ is the angle
between a generator and a fixed generator
measured along the unwrapped surface. The
velocities u,v and w are in the directions
r, 6 and z respectively. Then the systenm
of equations may be written as:

continuity
%; (rpu) + %g (pv) + %; (rpw) = 0 )
r—%&yen%ygu — 3u v aue
SRR AN M S AN (2)
v_ du v
e e e L a2 )
Q—momentum v
Pive ;%g . Peuive X %; [u %% . p;T;T]
energy
AR N Sl s IR A
where H is t?e to}al enthalpy defined by
2
“*?}IE*L%L‘L (5)

The dynamic viscosity g will be determined
according to Sutherlands' law, and the
Prandtl number is taken constant, Pr=0.7.
The boundary conditions for (1)-(4) with an
adiabatic wall are:

3H
z=0: u,v,w=0; 3z°9 (6a)
=8 = . = . = 6b
z=8: u = ue(r.e), v ve(t,e), H He(r.e) (éb)

where § is the boundary layer thickness and
the subscripts w,e denote quantities taken
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at the wall (z=0) and at the boundary layer
edge, respectively. For the modeling of
the turbulent Reynolds stresses the
Cebeci-Smith eddy viscosity concept is
used’:

au, v

- ou'w' = L2 v pu'w' =
puW psm 2z’ pv'w pem Az (7a)
€
C SITET - i _m 3H
pw'H’ = Peyaz = P Prt 3z (7b)
€n is the eddy-viscosity coefficient, €,

the eddy-conductivity coefficient and Pr;is
€

€

the 'turbulent' Prandtl number,,Prt = n

Ll

€, is defined in an inner region near the
surface by

0.4 = (1-exp (- 21" (2" + (B9)Y2 (®

€ =

m,
s
where T£
Ae26 L ()12 = (Y2
u_ 'p A ¢ [4
T w w

= auy? 3avyiy1/2
Ttw = Hy {[Eglw * (a:]w]

In the outer region £, is defined by

e, =0.0168 | J (u,
[¢] o] e

1/2

- u) dz (9)

e
where u,

The inner and outer region are estab}ished
by the continuity of the eddy viscosity
formula.

= (ut +y? )

In order to reduce the number of
dependent variables two streamfunctions are
introduced, such that:

a¥ 3%

R A *

Satisfying the continuity equation,
Eqg. (1), we obtain

(10)

e\ O]
PW = " 3 T 38
We also transform the z coordinate into a

nondimensional quantity by
u z
n = [———2;)1/2 I p dz
PeVe o

(11)

(12)

Then, two nondimensional functions may be
derived satisfying

£(r.0.n(z)) = (ougur) 2Ly (r,0,2) (13)
Ye ~-1/2
g{r,8,n(2)) = % [peueuer] §(r,0,z) (14)
Using Egs. (10)-(14) we may derive
af
= u, 7o = uF (15a)
v=v B._, G (15b)

e an e



Egs. (7) and (10)-(14) may now be
substituted into the boundary layer
equations (2)-{(4). Then it will be clear
that the laminar boundary layer equations
allow similar solutions along rays 8 =
constant if the external flow is conical,
which means that the flow quantities are
independent of r. The similarity
transformation is equivalent to the Blasius
transformation for a flat plate. This
concept is not valid for turbulent boundary

layers, since the eddy-viscosity terms are
dependent on r. Several authors Y8 have
introduced the idea of local similarity,
which means that the eddy-~viscosity terms
are locally independent on r while they are
evaluated at the actual r position. This
is a valid assumption if the flow
gquantities in the boundary layer vary
sufficiently slow with r. Under the above
mentioned local similarity restriction a
transformation of the boundary layer
equations into a parabolic system may be
acomplished. The coordinate r only serves
as a parameter; the coordinate 8 is the
time~like marching direction. Thus for a
conical inviscid external flow the
equations become:

v
3 3F aF Ve oF |
—n[bgh(cﬂ;— T T (16)
e e
v v
2 3G _e dgy 3G _ ‘e ;3G
an (o an] + (e u ae) an " u. %3 R, (17)
(=] e
v 3R
1 (b_ +(Q ] - g2 ___3s)
Pr an u u a8 an
e e
where
do v
= 3 _e _e 4 (e
3t o m tae (g)le
.e e e
% = PeMele
= H/H,
pe
b=_EL(1+___)
PeMe H
Vez
- — -2
R, = (77) (Fe-2)
e
dv [ dv
- 1 " e .8 1 _e
Ry = FG + ug a © P (1 + u, 48 )
- — 2
R. = (1 PI’] [FE+Y§G.3_Q
= 2
3 peueHe an Ye an
The boundary conditions are:
n=0: f=F=0; g=G=0; -:’—% =0 (19a)
neng: F=GeE=1 (19b)
Egs. (16)-(18) are solved starting at an
dv
attachmentline, where v=v_ =0 and -—£ 3 0.The

das
solution is marched in 6- dlrectlon until
separation is reached. In the case of
conical flow this means that the
skinfriction coefficient in 0 -direction
becomes zero.

675

The skinfriction coefficients in r and
direction are defined by:

2(n 33, Ve 1/2p p_ 3F
fr= e U, z '[ ]1/2 (U } (—) [ T ;{)w (20)
2 Y uv o
c zw_ 2 ee d=1/2 p u aG, (21)
fe P UQ (Rer) 1/2 Uml [oe] [po u@ n]w

However, on the reattacment line G=v/v,
is indeterminate and the limit on this line
has to be taken at this position. It may
be shown that G is finite at the
reattachment line and that the starting
solutions may be obtained from
Egs. (16)-(18). They reduce to the
ordinary differential egquations

d dF o1

gl reg=0 (22)
dv, Pe, P

d_ q, 44 aG | 1 € (- _&__8

. (b dr) + Q an = FG + u 35 (G2 ) p (23)

LLUJQ+Q@=212§.WHL (24)

Pr dn ' dn dn H, an/‘e

DETERMINATION OF THE INVISCID VELOCITY

For the boundary layer calculations we
need the velocity components ue and v as
boundary conditions. Normally they are
obtained from an inviscid flow code. In
the case of an experimental data they have
to be derived from a measured pressure
distribution.

On the body of the surface (z=0,w=0) the
conical inviscid equations may be written
as:

du .
g~ v=0 (25)
dv 1dp
METIMMAES TR (26)
71 B0 g ey (27)
If we transform the velocity components
into
=qgecos¢, Vv=gsing (28)
where g is the speed of the inviscid
surface flow and the angle of the
velocity vector with a conical ray, we
obtain from Egs. (25) and (26) for
isentropic flow '
1-1
2 2 1 ) Y 29
R =S Ul oy I (29)
and 1 dp
p. dé
Q @
(;+ de)tan P+ 1 = g)
p /Y 2 ey Y
() 35 (0 -(&) J]



same

Eg. (30) can be solved numerically for a
given spanwise pressure distribution and

given starting values of ¢ and gg Oon a

reattachment line this equation is

indeterminate. This problem may be dealt

with by differentiation of Eq. (30). The

result on the reattachment line is

de _ 1,

de. 2 q_- QE (31)
p_ dez2 1/2

y-1

(xR L A O S )

FINITE DIFFERENCE METHOD

The transformed boundary layer equations
(16)~(18) are to be solved using a marching
procedure. These equations are of a
parabolic nature, so an implicit difference
scheme is preferred to aveid instability
problems. If a fully implicit scheme is
used, the non-linear terms have to be
linearized with a Newton method; this
implies an iteration procedure. In the
present method an alternative is applied by
using a predictor-corrector linearization
following Matsuno? and DeJarnette and
Woodson3. This so called 'half-implicit!'
scheme is 1mp11c1t in the - (2z=) direction
and eXpllClt in the # -direction. Thus the
scheme is second order accurate, .
unconditionally stable and no iteration
procedure is needed.

For the determination of the initial
profiles at an reattachment line,

Egs. (22)-(24) are discretized using the
-differences. Using a Newton
linearization for the nonlinear terms the
differential equations are solved in an
iteration procedure.

The following notations are used in the
finite difference equations:

= 32
Up g = U8y (32)
where
i+l T ei + Aei y1=1,2,..... IMAX-1 (33a)
LRI B dng 5§ =12, JIMAX-1 (33b)
The central difference operators are
defined by
U - U, b
i,j+1 i, j-1
AU, ., o= LLad¥d 1, 3-d (34)
' A An,
noi,j Nyt ANy g
U, ,. .- U, .,
5 U L= _1;1§%___541 (35)
n vJ 2 j
1) -~ U, .
i+vl,j “i,d (36)
66 Ui+l AB
20 i
2
s (b, 60U, )= —
LI S I - OO A“j+A“j—1‘ (37)
b, 1 Uy e Vg . Up 57Ug g |
ioJ"'—Z_ Anj ivJ'E A“j"l
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1
L=3 by 5+ by i)
For the predictor step the backward
difference operator

with b, |
1.3&5

u,.1.-U, .
S i,
.2 ’ (38)
ve Ul"'%v‘] B lAe
271
is used. f
The discretization of = F becomes
f, . - F. .
- i,j+1 i,j _1 -
O figed An, =2 (Fy 501 " Fy j)
J
from which we may write
1
£j o1 = Fi,j * 2y [Fi'j+ Fi‘j*l) (39)
A similar expression holds for g.
The predictor stage becomes
s, (b, .6 F, L ] +
1,370 i35
Ve
Q .+ (Z) 1V, 8 1 } A_F, .-
( i,3 ( Uy 1+§ 8 noi,J (40)
e (r,)
(=)L 6, VoF, 1 .= (R, |
u i+ 1,j 9 1+2 W] 174,35
and similar expressions fer G and E. The

relation between f,g and F,G, respectively,
is obtained from Eq. (39).

For the corrector-stage the equations
are

FiiFie1,g
Sty o (e
Ve
[u )1+§ 69g1+1 i) AnF1+% (41)
Ve } :
[G—}L#— i+d, 69 ied,g ” (Rl}i+%.j

2'd 23

and similar expressions for G and E.

The difference equations may be written in
a block-tridiagonal matrix form. The
system of equations is solved using a
modified Davis algorithm9. The solution
marches away from an attachment line in
cross—-flow direction until the skin
friction coefficient ¢f, becomes less than
zero. This means that separation occurs,
and the solution of the boundary layer
equations breaks down.

For the turbulent calculations a variable
grid was employed

. AN/AN
Moy (KT 0
_ Jmax (42)
ny = 1/8N
K -1
where 17 is an appropriate choice after

some itérations of the determination of the
initial profiles; AN = 1/JMAX; ANO = 0.1;
K = 1.5. The mesh width af# was varied such
\'%
e

that it decreased in regions of large



DISCUSSION OF RESULTS

Experiments

The experimental results’® were obtained
from measurements on a delta wing with a
flat upper surface, sharp leading edges and
a sweep angle of 65° The results used for
the calculations cover free stream Mach
numbers of 0.6, 0.7 and 0.85 and angles of
attack of 5%, 10° and 15°.

The experiments contain oilflow
visualizations of the surface flow and
measurements of the surface pressure
distribution. The pressure tabs are
located at a spanwise row at 70% root
chord, at a row at the rootchord and at
some different spanwise stations. The
latter were applied to check the amount of
conicity of the flow.and the existence of
non-conical shock waves at high angles of
attack and high Mach numbers. The Reynolds
number based on the rootchord varied from 3
to 3.6x10°%.

A sketch of the vortex flow at the
leeward side of a delta wing is given in
fig. 2. The primary vortices emanate from
the sharp leading edges as a result of the
merging of the boundary layers from upper-
and lower side. The flow reattaches at the
lines Al. These lines move towards the
rootchord as the angle of attack increases,
and will coincide at the wing symmetry line
(rootchord) above a certain angle of
attack.

Due to the primary vortices the pressure
from the attachmentline towards the leading
edge first decreases, reaches a suction
peak and then increases considerably. This
unfavourable pressure gradient will cause
the flow to separate, which will lead to
the formation of a secondary vortex. This
separation is of the so called 'open-type'
separation, which is a much more stable
phenomenon than the closed bubble
separation in two-dimensional flow. The
existence of a secondary vortex will have a
large influence oh the pressure
distribution, and thus on the aerodynamic
characteristics of the wing.

The experiments in the high-subsonic
flow regime showed that the pressure
distribution is not conical. At the
rootchord an almost linear pressure
increase was measured. The pressure
gradients in spanwise direction, especially
in the suction peak region are much larger
than the pressure gradients in chordwise
direction. Thus a conical approximation
will be a good first approach, as will be
shown when comparing the computational and
the experimental results.

All calculations are carried out for a
turbulent boundary layer. This assumption
is valid for the chord position where the
pressure distribution is measured. From
the oil flow visualization pictures an
outboard shift of the secondary separation
line could be observed at x/Cr = 0.2-0.25 .

This has certainly to do with the
transition from a laminar to a turbulent
boundary layer.

It should be noted that if the outer
flow may no longer be regarded as conical,
which may be due to embedded shock waves,
trailing edge~ or tip effects, vortex
bursting, the present method can not be
used. Also the non-conical transition
region can not be covered by the method.

Computations

As, shows Table 1, the theoretical and
experimental results compare.rather well
for almost all cases studied. Therefore
only one case for the highest Mach number
(0.85) and a moderate angle of attack (10°)
has been included in this paper. 1In fig. 3
the pressure distribution for this case is
shown, together with the distribution of
the velocity components u, and v, derived
from the pressure distribution with
(29)-(31). This result serves as an input
to the boundary layer calculations. The
calculations were carried out with 80
gridpoints in 7 -direction and with spanwise
steps of 48 = 0.004 rad = 0.23 deg.

The resulting distributions of the
skinfriction coefficients in spanwise (Cf )
(]
and radial (Ce } direction are shown in

fig. 4. The deviations in ¢, are much
]

larger than the deviation incf . The
r

position of secondary separation is
indicated by the point where cq Crosses

6
zero (0.6 < y/yle < 0.8). The radial
component Cﬁ.' however, does not become

zero at this position. This theoretically
obtained secondary separation position is
slightly inboard of the experimentally
observed line in the oil flow pattern (see
fig.5). In the following table some
different cases are summarized, showing
that the overall result seems to be rather
good.

M o S, % of local | diff.
semi-span
() exp. | theor.
0.6 5 82.2 81.3 0.9
0.6 10 77.4 76.1 1.3
0.6 15 73.9 72.9 1.0
0.7 10 75.8 74.6 1.2
0.7 15 72.8 68.6 4.2 .
0.85 5 80.6 80.9 -0.7
0.85 10 73.2. 70.5 3.2

Table 1. Location of secondary
(turbulent) separation .
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It should be noted that the calculations
break down just behind separation. This
has to do with the Goldstein singularity,
appearing in direct calculations near
separation.

An possible reason for the differences
between experimental and computational
separation positions could be the lack of a
good resolution in the experimental
pressure distribution. The pressure
orifices located in the region of interest
are located with intervals of 6% semi-span.
This involves that the position of minimum
cp in the splined cp~distribtion can differ
to the order of some percents to the real
position. This has a large influence on
the computations.

At higher angles of attack and higher
Mach numbers the assumption of conical flow
becomes less valid due to the influence of
vortex bursting, shock-waves etc. This
will cause increasing discrepancies between
theoretical and experimental results.

These aspects have not been studied here.

For comparison with the o0il flow
visualization the limiting streamlines may
be derived from the skin friction
coefficients. The limiting streamline
angle y, and the outer streamline angle ¢,
are shown in fig. 5. Also the measured
values §w from the oilflow pictures have
been plotted; it shows a rather good
agreement with the theoretical results,
especially in the region of increasing .
Beyond the suction peak an inflection point
in the p,~distribution through the boundary
layer appears, so the decrease in Yw is
much larger than in Ye -

The calculated streamline pattern is
given in fig. 6. This may be compared with
the picture of the oilflow pattern in
fig. 7.

The spanwise and chordwise momentum
thicknesses are plotted in fig. 8. Just
inboard of the location of minimum pressure
the momentum thickness reaches a minimum:;
before separation it increases
considerably.

CONCIUDING R KS

A quasi-three dimensional boundary layer
method for compressible turbulent flows has
been developed. 0il flow visualization
tests have shown that the surface flow on
planar delta wings may be considered as
nearly conical over a large part of the
w1ng. This is due to the observation that
in the region of interest for the boundary
layer computations the gradlents of
pressure are much larger in the spanwise
than in the chordwise direction. This
phenomenon validates the assumption of a
conical outer flow, which simplifies the
originally three dimensional problem to a
great extent.
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The present boundary layer method was
tested on experimental pressure
distributions. It has been shown that the
method provides a good possibility to
compute the surface flow and to predict
separation lines. This was verified with
0il flow visualization data. Furthermore
the non-iterative difference scheme is
rather cheap in terms of computer time.

Further investigation is needed for the
coupling with a method for the inviscid
outer flow field. For the incompressible
case some attempts have been made. From
the work of de Bruin and Hoeijmakers?® it
is known that the coupling of a direct
boundary layer method with a panel method
in which the secondary vortex is modeled,
does not lead to a useful prediction of the
position of secondary separation. In order
to overcome this a complex strong
interaction procedure, as indicated by
Riley!" , is necessary. A different
approach is followed by Wai e.a.'* , who
used a scheme with a radial (chordwise)
marching direction, the entire secondary
vortex can be captured within the boundary

layer. Since no back flow in radial
direction occurs, no difficulties are
encountered. The coupling with the method

for the outer flow (without modeling the
secondary vortex) is provided by the
displacement thickness. The results seem
to be rather good.
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Fig. 1. Coordinate system

A: recttachment lines
S: separation lines
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vortex

secondary
vortex

Fig. 2. Delta wing leeward flow geometry

679

0.00 .20 .40 .60 .BO 1.00
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