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Abstract

The incompressible, axisymmetric, steady Navier-
Stokes equations in primitive variables are used to simu-
late vortex breakdown. The equations, discretized using a
second-order, central-difference scheme, are linearized
and then solved using an exact LU decomposition, Gaus-
sian elimination, and Newton iteration. Solutions are
presented for Reynolds numbers, based on vortex-core
radius, as high as 1500. An attempt to study the stability
of the axisymmetric solutions to three-dimensional pertur-
bations is discussed.

Introduction

Thirty years ago, Peckham and Atkinson(!’ observed
that under certain conditions the concentrated vortex core
shed by the leading edge of the Gothic wing they were
testing would swell, eventually stagnating the flow along
the vortex axis and forming a bubble of reverse flow.
Immediately downstream of the bubble the flow became
highly unsteady and turbulent. The phenomenon was so
striking that it became known as "vortex breakdown."
The severe adverse effect of vortex breakdown on the
performance of a wing has stimulated many experimental
and theoretical studies. Comprehensive reviews of the
progress made in understanding and predicting the
occurrence of vortex breakdown have been given by
Hall® and Leibovich.®*) With these works as back-
ground, it is only necessary here to review some of the
salient features of the problem pertinent to this work,

Perhaps the single most important contribution to the
study of vortex breakdown was made by Harvey®™, who
isolated the vortex from the wing, and thus, set the stage
for most of the "clean" experimental work that followed.
Experimentally, Leibovich®® identified two major types of
breakdown; the "bubble” which appears as a basically
axisymmetric phenomenon, and the "spiral” which charac-
teristically represents a major departure from axial sym-

metry.

Theoretically and numerically, the bubble breakdown
is the only one that has been studied in detail. The pre-
valent theory for the onset of breakdown is principally
due to Benjamin.®® In Benjamin’s theory, breakdown is
explained as a transition between a supercritical upstream
flow incapable of supporting upstream propagating waves
and a subcritical flow which allows upstream and down-
stream propagating waves. The theory is based on an
inviscid quasi-cylindrical approximation which neglects
all axial gradients. In general, no consistent correlation
has been found between the occurrence of breakdown in
the few available numerical solutions of the Navier-
Stokes equations and the criticality condition of Benja-
min.

Grabowski and Berger,” using Chorin’s artificial
compressibility method and a primitive variable formula-
tion, calculated the first numerical solutions of the steady
axisymmetric Navier-Stokes equations for this problem.
Their work clearly established the existence of solutions
with bubble-like breakdown under the axisymmetric
assumption. However, the numerical scheme had
difficulties in realizing fully-converged solutions and in
obtaining solutions for Reynolds numbers, based on
vortex-core radius, greater than 200. In reference 8,
Hafez et al., using upwind differences and vertical line
relaxation, solved the Navier-Stokes equations using the
streamfunction - vorticity formulation and confirmed the
carlier results of Grabowski and Berger. In order to over-
come the 200 Reynolds number barrier encountered by
Grabowski and Berger, Hafez et al.,® Salas et al.U® and
Beren,!1) each working independently, attacked the prob-
lem using direct matrix inversion techniques.

Encouraged by the success of this technique, this
effort was directed towards solving the full three-
dimensional problem. As a first step towards this goal, the
axisymmetric Navier-Stokes equations in the primitive
variable form were solved. In the current work, we
present the results of the primitive variable formulation
and address some issues related to the three-dimensional
problem.
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Mathematical Model

The governing equations are the Navier-Stokes equa-
tions. The flow is assumed to be steady, laminar and
incompressible. The non-dimensional equations describing
this flow, written in cylindrical coordinates, are

u,+-vr—°+wx+-‘;- =0 o
q.Vu-—VT2+p,= Rle [V2u~m+—rfv")} )
q.vv+-‘3r5’-+-pri=RLe V%+@] 3)

q.Vw+p, = -RI: [Vzw] @
q=uf+vO+wk &)
V= %f+—:—-é%é+%i ®)

where u,v,w are the radial (r), azimuthal (0), and axial (x)
velocity components, respectively, and p is the pressure.
Re is the Reynolds number defined in terms of the frees-
tream axial velocity, the vortex-core radius, and the
kinematic viscosity of the flow.

Numerical Scheme
Axisymmetric Problem

In the first part of this study, the axisymmetric
assumption is retained. The four axisymmetric equations
are linearized in the following manner. Let

¢n+1 — ¢n+A¢ (8)

where

¢=[u,v,w,pl
Ad = [Au, Av, Aw, Ap1

Evaluating the four governing equations using the n+1
approximation and neglecting higher-order terms, we get
a set of linear equations. These equations are discretized
on a staggered rectangular mesh (Figure 1), where the
variables v and p reside at the cell center and u and w
reside at the middle of the horizontal and vertical cell
faces respectively. The discretization uses a second-order
central-difference formula. The continuity equation and
the 6-momentum equation are discretized about the cell
center. The other two momentum equations are
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discretized about appropriate cell faces.

Boundary Conditions

Let the vortex-core radius at x=0 be r=1, and let
the radius of the farfield boundary be r=R. The inflow
properties used here to model the 8vlc%rtex at x=0 have
been used by several investigators.(7' 1) They are:

un =0
vr) = Vr2-1?)  0<r<d
©)
v(r) = Vir 1<r<R
w(r) =1

where V, the swirl parameter, is the circumferential velo-
city at the edge of vortex core. V measures the strength
of the incoming vortex. Like Re, it is a free parameter of
the problem.

Along the vortex axis, r=0, the boundary conditions are

ux) =0
v(x) =0 10y
wi(x) =0
In the farfield, r=R, the boundary conditions are
w—u, =0
v(x) = V/IR (1D
w(x) = 1.

At the outflow boundary, x=L, the boundary conditions
are

u,(@) =0
v, =0 (12)

u,(r)+wx(r)+—‘¥)- =0

The pressure level of the flowfield is specified by fixing
the pressure in one cell.



Solution Procedure

The discretized governing equations and the boun-
dary conditions represents a system of the form

JAG =-R (13)

where J is the Jacobian matrix, A¢ is the correction vector
and R is the residual vector. Equation (13) is solved by
performing an LU decomposition of the Jacobian matrix,
Gaussian elimination and Newton iteration. Since J is a
function of the solution, LU decomposition of the Jaco-
bian matrix is performed at every iteration.

For the case of Re=100 the initial flowfield was set
equal to the inflow conditions. For Reynolds numbers
higher than 100 the converged solution for the previous
lower Reynolds number was used as the initial condition.

For a mesh with Imax points in the x-direction and
Jmax points in the r-direction, the Jacobian matrix has a
bandwidth approximately equal to 8Jmax. The storage
requirement is approximately equal to 32Jmax?Imax.
Here Jmax is smaller than Imax. For a mesh with
Imax=401 and Jmax=33, a single matrix inversion
requires approximately 47 seconds on the NAS Cray-2
computer. Typically, about 5 to 8 inversions are needed
to account for the nonlinearity and achieve machine accu-
racy. A typical convergence history is shown in figure 2.
The asymptotic convergence rate is quadratic. Note that,
because the continuity equation is linear, its residual is
zero after the first inversion. This does not imply a good
solution after one step, but a balancing of errors for
Au, Avand Aw such as to satisfy the equation.

Three Dimensional Problem

In the second part of the study, the first attempt is
made to solve the three-dimensional problem. With the
computer resources currently available, it is not possible
to solve directly the whole set of coupled equations for
the full three-dimensional space. Hence the dependent
variables are expanded in the azimuthal direction using
Fourier transforms, namely:
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0= |, | = b0+ X Oncosmd)+ 3 dysin(m) (14)
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&m = 6)m(r’x)

Retaining only the first two Fourier components and
neglecting higher order terms, yields 12 equations in 12
unknowns. Dropping the subscript for convenience, these
equations are
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Equations (16), (19), (22) and (25) represent the axisym-
metric model. Equations (17), (18), (20), (21), (23), (24),
(26) and (27) give the contribution of the first Fourier
mode. The first mode represents the most significant
three-dimensional effect, particularly, it will show how
stable the axisymmetric solutions are to three-dimensional
perturbations.
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Boundary Conditions

~ The boundary conditions are similar to the ones used
in the axisymmetric case except at the axis. Along the
axis , r=0, the boundary conditions are
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Solution Procedure

These equations are solved in the following manner.
Starting with the symmetric solution ¢y, and slightly per-
turbed inflow conditions, the eight equations representing
the first Fourier mode are solved simultaneously by direct
inversion for ¢; and ¢;. Since these equations are linear,
only one inversion is necessary to obtain a solution.

However, since there are eight coupled equations the
bandwidth of the matrix is approximately equal to
16 Jmax and the storage requirement is approximately
equal to 128 Jmax’Imax. For a mesh with Imax=241
and Jmax=33, a single matrix inversion takes about 213
seconds on the NAS Cray-2 computer.

Results
Axisymmetric Qa§_g

Several accuracy checks were performed to deter-
mine the appropriate requirements for mesh resolution
and boundary location. To obtain a mesh-independent
solution, it was found that the mesh spacing Ax and Ar
should be less than or equal to 1/16. A mesh spacing of
1/16 in the x and r directions was used in this study.
Location of the farfield at R=2 was found to be sufficient
to minimize the influence of the farfield boundary. It was
found that the location of the outflow boundary is directly
related to the Reynolds number since as the Reynolds
number increases, more and more structure develops
downstream along the axial direction. Surprisingly, the
upstream flow structure freezes as the Reynolds number
increases. For all the cases that are considered here, the
outflow was located at L=25. With the outflow at this
location, good quantitative representation of the solution
is obtained for all the Reynolds numbers considered here
(Re=100 to Re=1500). For low Reynolds numbers, it is
possible to obtain accurate solutions with a domain of
shorter length.

Figure 3 shows the streamline patterns for Reynolds
numbers, Re, ranging from 100 to 1500 and swirl param-
eter, V of 0.9 and 1.0. As the Reynolds number is
increased, more and more breakdown structures develop.
Multiple breakdowns have been observed experimentally
by Harvey®. The flow structure is also very sensitive to

small variations of the swirl parameter. For V=0.9, as the
Reynolds number is increased, more and more recirculat-
ing zones appear along the axis. For V=1.0 the first
bubble lifts off the axis at about Re=>500, forming a tor-
roidal recirculating zone. As the Reynolds number is
increased further, the second bubble elongates and necks
in the middle. At about Re=600, the second bubble
breaks into two, forming a third recirculating zone.

Figure 4 shows the vorticity contours for the
flowfields shown in Figure 3. One interesting feature of
the vorticity field is that as the Reynolds number is
increased, the vorticity intensifies at the spot where break-
down is to occur, thus signalling the appearance of a bub-
ble. For example, in figure 4 we can see the appearance
of a second region of high vorticity at Re=200. As the
Reynolds number is increased, the concentration of vorti-
city in this region also increases and eventually a second
breakdown occurs at Re =400 (Figure 3).

Figures 5 and 6 show the map of the axial velocity,
w, along the axis for V=0.9 and V=1.0 respectively on a
Reynolds-number, axial-location . plane. The hatched
areas show the regions of negative w. It is clear that near
the inflow, the flow asymptotes to a flow field invariant
with Reynolds number. In figure 6, where V=1.0, it can
be seen that the first bubble lifts off the axis around
Re=500. The second bubble breaks up into two around
Re =600 and it lifts off the axis around Re=850.

All these results agree qualitatively with the results
from the streamfunction - vorticity formulation presented
in reference 10. Since there are differences in the boun-
dary conditions in the two approaches, quantitative com-
parison is difficult.

Three Dimensional Case

In this section a few representative results are
presented illustrating the sensitivity of the axisymmetric
solutions to three dimensional perturbations. Starting
with the steady-state solution of the axisymmetric prob-
lem, the equations for the first Fourier component are
solved with a perturbed (non-axisymmetric) boundary
condition. In all the cases that are discussed here, the per-
turbation at the boundary is introduced through a har-
monic variation in the w velocity component with a max-
imum amplitude of 0.1%. The calculations are done on a
domain shorter than the one used in the previous section.
This was necessary because of the large memory and
intense computing requirements of the three dimensional
problem. However, the lengths of the domains selected
for the cases presented were all sufficiently large to
obtain accurate solutions at the Reynolds number indi-
cated.

The magnitude of the total velocity is,
q = Ve +v2+w? (32)

where u,v and w are given by equation 8 for m=1. The
magnitude of the axisymmetric component of the velocity
is,

Qo = Vug+v§+wi (33)
We define a perturbation velocity q by,

q=q-q (34



Contours of the magnitude of total velocity q and
perturbation velocity q are plotted on r—8 planes at
selected axial locations. At these locations, the r—9
planes cut through the recirculating zones. These loca-
tions are marked on figure 3. Figure 7a shows the con-
tours of q on the r-0 plane at an axial location x=2.5
(plane AA in figure 3) for Re=200 and V=0.9. A small
deviation from the axisymmetric solution can be noticed.
(Compare outer contour with outer circular boundary indi-
cated by dash line.) Figure 7b shows the contours of  at
the same location. The maximum magnitude of q is
about an order-of-magnitude less than the magnitude of
the axisymmetric component. In figures 8a and 8b, the
contours of q and G, respectively, are shown for the case
Re=500 and V=0.9 at an axial location of x=2.0 (plane
BB in figure 3). The features shown here are very simi-
lar to those shown in figure 7. In figures 9a and 9b, we
show again the contours of q and  for the same case, but
at an axial location x=6.5 (plane CC in figure 3). A
large deviation from the axisymmetric solution can be
observed in figure 9. The magnitude of the perturbation
velocity in figure 9b is of the same order as the magni-
tude of the axisymmetric component. It appears that
small perturbations remain small at low Reynolds
numbers. However the perturbations can become
significant as the Reynolds number is increased. In order
to validate these solutions, the contributions due to higher
Fourier modes need to be investigated. Inclusion of
higher modes into the present algorithm leads to a for-
midably large and expensive problem to solve. Currently,
we are looking again at iterative techniques to solve the
full three dimensional problem.

Concluding Remarks

Numerical solution of the steady Navier-Stokes
equations were obtained for the vortex breakdown
phenomenon for Reynolds number ranging from 100 to
1500 and swirl velocity parameter, V, of 0.9 and 1.0.
The solutions were very sensitive to changes in V. It was
found that near the inflow the solutions become indepen-
dent of Reynolds number and that downstream more and
more structure appears as the Reynolds number is
increased. Vorticity contours signaled the occurrence of a
breakdown. All these solutions agreed , qualitatively,
with the ones obtained using a streamfunction - vorticity
formulation.

The first Fourier component indicates a relatively
small effect on the axisymmetric solution, due to three
dimensional perturbation, at low Reynolds numbers. It
indicates a significant effect at higher Reynolds numbers.
Higher Fourier modes have to be evaluated to understand
the three-dimensional problem.
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Figgrg 7a. Contours of q for Re=200 and V=09 at Figure 8b. Contours of § for Re=500 and V=09 at
x=2.5. x=2.0.

Figure 7b. Contours of § for Re=200 and V=09 at Figure 9a. Contours of q for Re=500 and V=09 at
x=2.5. x=6.5.

Figure 8a. Contours of q for Re=500 and V=09 at Figure 9b. Contours of § for Re=500 and V=09 at
x=2.0. x=6.5.
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