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Abstract

A computerized method based on the ge-~
neral momentum theory of thin shells for
optimizing circular conical anisotropic
shells, with the properties of orthotropy
on main directions of their middle surfa-
ces, in terms of their geometrical, mecha~
nical and elastical characteristics, is de-~
veloped,

From the general system of equilibrium
equations, expressed in terms of displace~
ments, a single governing equation is ob-
tained, with respect to the potential
function ¢ , through which all characte-
ristics of the stress-strain state of
the shell can be expressed, This 8-th or~
der differential equation with partial de~
rivatives, may be solved by the develop~-
ment of the function ¢
rows, The elementary stress-strain state
corresponding to bending load is investi-
gated and its axial and shear stress-flows
are determined.

The optimization factors are establis-
hed in terms of the chosen geometrical and

in trigonometric

&lastical design parameters, in order to

obtain a conical orthotropic shell with

best qualities characterised by maximal

stress~capacity reported to minimal weight,
1. Geometrical considerations
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Fig.l.Gedmetrical characteristics
of the she
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All geometrical characteristics of
the shell are showr in the Fig., 1 and 2.
The ratio thickness / radius of the shell
in every section is constant, constitu-

(1)

ting a geometrical parameter H

=5 = const

Az,

Fig. 2. Utilized orthogonal and

curvilinear coordinate

systems

The shell is reported to following
coordinate systems :

- orthogonal x,, y, 2, with the origin
in the apex of the cone;

- curvilinearo(l )Q on the middle sur-



face of the shell
~ non-dimensional curvilinear "isoter-

mic" coordonates t, Q being bound
with 0( by the relations :
K= oL,e 0f t= &L(%)

p=r g, (12)

where (; and 724
the generator

are the lenght of
and the radius
of the middle surface in the sectiona., :,

m = sincr, (43)

n= cos?

being the angle of conicity of the
middle surface.

The material of the shell may be iso-
tropic, with elastic constants E, and
the density f » Or orthotropic, charac-
terized by elasticity moduli Eo( N EP
and the Poissons coefficients /L,L
and }l,p sdirected in the sense of coordi-
nate lines ©O¢ and . Its density

?ﬂ may vary from f“ f
(in the case E,(v and = Le isotro-
P P

py) to f » when &ﬂ‘;t éﬂ/l

In the case of an isotropic shell,
reiforced by longitudinal and transversal
stiffeners of the same material, their con~
tribution may be taken into account by
substituting the real heterogeneus shell
by an equivalent homogeneous orthotropic
one, characterized by elastical constants

E“/EP’F“)/LP

ced" thickness (in the direction of X -

and of a "redu-

3
i
“ ohy=2BL (14
where Iot is the inertia moment

of an unit element containing a stiffener
in the direction of p( - lines,which va-
ries along the generator,so that the
equality (1.4) would be satisfied. As the
inertia moment in the transversal sense
is generally different from Iu
it would result »Alg ;ﬁg..a ; in order
to surpass this nonsense we assume that
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the thickness of the shell is overal ZL
{in both X and directions),but

the material is orthotropic, so that its

moduli of elasticity maintain the propor-
tionality with inertia moments :

Ls

Iof- Eoc
Following relations are valid for
the orthotropic material :

Ex=E ; )= F/Ed)ﬂoc-f"/\/"
flp fta(}\-

(l

4.4)'

=\,
or € = X (4. ‘7)

In order to obtain comparable results
at the optimization factors (see later
Ch.3) we shall investigate a family of co-
nical shells of similarly geometrical cha-
racteristics, differing only by the coni-
city angle ( ¢ ), and the material pa-
rameter . All investigated shells are
of the same length a 8)

xk'-'—-‘ xz“‘$4

and the same radius /Zm, » in the section
-xm, which divides the volume of the
shell v

where

in two equal parts
Vr = Vir
(see Fig 1).

The volume of the shell is obtained by
integration along the coordinate X of
elementary ring sections

dV = 2rr/(x) x 2h6) dot
Usirlxg the substitutions :
_%=x—— f=t = X2

do(_dx and %= oc’”

i (932 x1)
(o) o

(4.9)

it results :

V= lﬂt _m‘) J z’dx =




The weight of the conical shell is
the product of G ‘O) and (1.6).
=Vs, a.1)
In order to determine the unknowns
JG,, X, and xm from the equality

VI Vll' . it results :Z:m-x, (l‘,a
3 e
and )Zrm:xm o (.__12___‘_1) m @ 12)

Then, from relations (4.8\ and (4.42)
it results a 3 degree equation to
determine .7}4 H

wied S e ("fzf)—o(MS)

The coordinate :):4 is given by the
real root of this equation.

Xy = (- +A)h’ —~-—A> Ao, (1.44)

where: } ,P--—Q’,k)q'-- O’Z)(d ’5)

a-{(&)*

Unknowns 332_ and Xpm &re to be found
from (4-8) ana (1,12).

In establishing the geometrical cha-
racteristics of the shell (1.{3 ) ,the con-

dition: d % (m /l,) <0

must be fulfilled. Otherwise the coordi-
nate X4 becomes negative. Being given
the geometrical parameters & and 2m
the conicity angle Cf is limited by
the condition :

o ety (2= ol s’y
(1.16)

In practical computing the angle
must be taken as : cﬂmé 08 cn/ ¢ :g)
In such a way we obtain for different
combinations of XA and % the follo-
wing values of the limit angle C'D
(see table T 1).

3
Xm

¢. Teoretical considerations

2,1, Basic equations,

The system of internal forces and mo-
ments acting on an element of the comical
shell subjected to an arbitrary external
load, is shown in the Fig.3, where T:l 7;4’

Sx S}, Nd, Np are the 1nternal
forces (stress~flows) and Gd. G’ﬁ) Hd'
Hﬁ -are the internal moments.

Fig 3, Systems of internal forces

and moments

From the set of equilibrium quations
in the terms of these internal forces and
moments (I,2,1.) x) the equations which
bind by themselves the displacement vector
components U, V', W with the linear, shear
and rotational strains 6,,(’ Ep,c.), ){,‘I)(P"Z"
(I1.2.2.) x) and "constitutive" equations
establishing the relstions between the in=-
ternal forces and strains (I.2.3.).x)a sys=~
tem of equilibrium equations expressed in
tenns of displacements (I.2.9)x) is ob-~
tained.

This system may be reduced to a single
governing equation with respect to the po=«
tential function ¢(t 9)‘

¢ <t 9) = X)
whereA is the differential operator (I,2,11)

The equation (2,1.,) is an equation with

partial derivatives with respect to the va-

riables t and 9 , of Sth order, with cons-

Table T 1 X} here and further: from the Work (5)
7 0,3 0,5 0,65 0,75 0,9 1 1,2
R'?q'oox" 26,7 3203 393 4304 48.6 51,6 56.5
5@“'2, 16,6 25,8 32,4 34,7 38,9 41,2 45,2
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tant coefficients, Its complete expression
is given in (5) {formulae I.2.l0).

The solution of the governing equation
is obtained by the development of the func-
tion in trigon etric rows:

95 (t,6) = }'_‘[d)(t)cos J9 +$[t—)smjgj
where the termsJ con and ﬂnue @2
represent the symmetric and antisymmetric
parts of the function

By the substitution of (2.2) in (2.1)
we obtain an infinite set of simple diffe-

order

rential equations of the Bth
kP =009

EPRG )]
LR s L

Each term j of the development
represents an elementary stress-strain sta-
te,which may be treated independent.

Substituing CP[t}s 0. 4)
where s is an inknown nunmber, one arrives
to the algebrical "characteristic" equa-

on X)
: RIE +{”4+ o tbs+b=005)

of the differential equation (2.3.)

The general solution of the equation
(2.3) for the state j_is:

bW =3 Cre 2.¢)

where C}r are the cghstants of integration
and-d;- the roots of the characteristic
equation.

2.2, The investigation of the carac-
teristic wequation,

We shall concentate our attention on
the term j = 1, corresponding to an elemen=
tary bending-shear stress-strain state,

At j=0 and j = 1 the characteristic equa-
tion has 4 real roots 4,.... d4 ,correspon-
ding to the general stress-strain state
and 2 pairs of complex coots corresponding
to edge effects, For j ;; 2 the equation
has 4 pairs of complex roots.In the case
of j =0 and j = 1 the equation (2.5) may
be divided into two separate equations of
4 th degree,
For the general stress~strain state these
equations are : . )
S 2mB_mEr2m%s + F%fi,_—g=0 @9
where g;is as (II.1.4)xZ The :;ots of the
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equation (2,7) are:
As €480 ;4= HM; 8g==mj4y=-2p (2.8)
As the result of relations (1.1), ;
(2.4) and (2.8) the function @ *) for
3 = 1 symmetric, corresponding to a late~
ral load varying with cos } + has follo=-
wing expressionz
’
¢, Lt Gt 2 Gy CJest 29
whereCL.. Cy are the constants of integra-
tion, Z; - the radius in the section X, and
4(xz) - the radius in the current section.
2.3. The expressions of the internal

stress-flows.,

All characteristic values of the stress~
strain state)as internal forces,displace=
ments, etc, may be expressed through the
function <2,

The general expressions of the displa=-
cements and internal forces for the state
j are given in the Appendices I 5 and I 6
of the work (5).

After the necessary substitutions and
intermediary calculations the working
formulae for the internal forces}Z; and

, which present interent in our inves-
tigation, are as (I.6.2)%

«= 20,5 1«‘)m=n[c,o—m) 37
S 6ja, C4O-pi)mn (b)* 240)

According to (1) c, =¢, =) by vir-
tue of the fact that at j=0 and =1 (sy-
mmetric and antisymmetric), from the 12
elementary states corresponding to the par-
ticular solutions of the equation (2.6),

f; refer to the displacements and €; to

the elementary stress~states due to 3
forces and 3 moments, applied in the sense
of the axes x, y,2, At j = 1 C1 and 02
correspond to the displacements of transla~
tion (along oz) and rotation (about Ox);

C3 and C4 - to the stress~states due to

the transversal forces (Pz)), and C,(self)~-
to the moment My, applied at the frontal

edge x = Xy



2.4, Determination of integration

constants.

In the general case of the loading
characterised by j = 1, (l) - lo equa-
tions (11.3.2)X) must be solved to deter-
mine the constants C,...Cq and the dis-
placements 0(1' (on Oz, due to the rota-
tion about 0] ) and /Bl' (on 02z aue to the
movement of translation).,

By applying of simplified edge condi~-
tions (1) ( p.I, § 33) the number of
unknowns reduces to 6: CyeeeCyr Xr andf&“

In order to determine these unknowns
we are obliged to solve following set of
six equations :

a) on the edge Xy

=~ the equilibrium equations :

P
(1) [Em4S+Noanx=x, = -f[—ag; ! (2 ”)
- My
(2,[7;n-N,.m+Hd%"’ GA‘J ,,f;,—;,% Y
- the displacement equations:
(3) LUJI, = d] n+ﬂrm ’
@ [y, = Pr

(4 bis) and an auxiliary equation:
(W, = Pr-cm ;

b) on the edge X,

ful,, =0 (2.13)
[U'Jn =0

The problem will be solved in two

(2.12)

(5)
(6)

steps »

Firstly it will be determined the dis~
placements (f and ﬁl’ from the equations
(1) and (2) where the internal forces and
moments L’S)Nd,Hd,@u will be
expressed in terms of displacements

(W, , [v], and [w)y,

Secondly -~ the integration constants
Cl”ﬂll be calculated from the set
of equations (3) (4), (5),(6).

Finally both constants C1"'C4 and the
stress and shear flows _,: and S may be
expressed in terms of the external load:

~

GDEDT GDEDY.,
Ca=DE,4D: 5 G =Dyt

=24 &a-;(;)mzn{b,[%(f-m’)%é%’@ﬁ*

-~ - 2
RN Y 2.5
S =6ja,AIm’n (0., D.7e)(E);
where : 1) = Peﬁ% ; D&_-__—. Mjﬁzaz__ (2.1¢)
The coefficients E, £, and/-%as well
as all other intermediate coefficients,
are computed in the program KONUS (§ 3.3)
Now, using the relations (2.10) or
(2.15) we may determine the stress flows
in different points of the interval XyeesXgye
Their greatest values ‘appear at the free
frontal edge x = x,, where b,(x) =Q’4 W
Edge effects,appearing in this stress-
strain state are not taken into account
in this computation.
Further we shall consider the average
stress-flows and average stresses along
the generators of the shell.

_8Bxn _ cenx?
- 547'2'5}557"_%? xS Gy

. Z 2y 2 /2,2

“here ipp - 9a, (o) 2m)Gs
CC =Ga,f0r 18 mn 2C; ~ (248
OD = Gjéga -//Lfg)mgja ! )

The average normal and tangential stress

are :(, =73y/(2,¢§,,,); Tm= Sav/(?)(?,d (20)

All these computations are also perfor-
med in the program KONUS (§ 3.3).

3. Optimization program

3.1, Criteria for optimization

The influence of geometrical and
physical parameters of the shell family
described in Ch.1, on its “quality” of
stress~capacity/weight, defined by the op-
timization factor , is investigated.

The variable design parameters are :

a) The conicity angle ¢ ;

b) The parameter ;\ (1.5) ,which
characterizes the elastical and mechanical
properties of the shell and the density of
its material.

The shells are subjected to the same
external bending load (corresponding to
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j = 1} constituted of a force Pz, and
moment My applied on the edge xl.‘

3.2. Definition of the optimization
parameters,

The optimization parameters 42 and
2 Yeported to the stress-components
7; and S are defined as non=dimensio=-
nal ratios :

Y= FR1/GR ; Y= FR24e  (3.1)

where FR 1 and FR2 are the "reserve-fac-

",
tors FR1 362/6;, ; Z:?@/Tm (32)
and GR is the ratio:

GR = G/GCL ] (3.3)
where G =~ is the weight of the shell
(1,11) and €CL is the weitht of an equi-
valent cylindrical shell of radius Zm:

GCL = 2R x4 42, &, (3.4)

The allowable stresses of the ortho-

tropic matzf}al are con;idered: (3 5
whergid: gﬂ‘ /)z;va’re‘réh: E‘l A(mal:a.'l.e (ultima'te))
stresses of the basical material.

The best quality of the shell is ob=
tained at the greatest values of the op-
timization parameters.

The arrangement of the optimization

parameters -after their magnitude,allows
to appreciate the combinations of design
parameters in order to optimize the geome-
trical and mechanical characteristics of
the conical structure,even in the phase
of initial design,

3.3. The computer program to determine
the optimization parameters.

A special computer program "KONUS" to
determine the optimization parameters of
the investigated class of conical shells,
was developed and implemented for numeri-
cal computations,

The optimization parameters were compu-~
ted for a family of conical orthotropic
shells, differring by their conicity an~
gles (from 5° to 30°) and the material
parameter:\ s varying from 0.5 to 1.5.

3.4. Numerical results.

The investigated family of conical
shells were characterized by the following
geometrical,elastical and mechanical pa-
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rameters: 4= {00om ; om= 5?)9,,/ X= Qoo
P= 5,10, 45,20 and 25°
E?:Ea*= Zé?%/osahyz{L}f‘=<1333

Sut= 2.7 61072 da oy ;
G = 4300 FaM’; 7z = 2700 ¥ 2
A=05;07 ;4.0; 45

The applied load on the frontal edge

x 2 x, (applied on all specimens),by
the means of a stiff frame, is :4
The transverse force Pz = lo daN

the bending moment My = lo6 daNcm

4, The analysis of obtained results

4.1. The variation [y =T.(&) and $=5(z)
X) )

Both T and s*’ flows vary from their
maximal values at the Xy edge, to the mi=
nimal ones at the Xy edge, following the
quadratic low, resulted from their expres-
sions (2.,10). The major importance in the
investigated stress-strain state have
the axial 7; - flows, while the 8 shear
flows have a smaller influence, Thus the
parameter Yj has a preponderent importan-
ce in establishment of the optimal design
characteristics of the shell,

4,2, The influence of the parameter;\
on the values of optimization parameter

The paranmeter )‘ has a significant
influence on the values of the optimiza-
tion parameters., This influence is evi-
denced in the table T 4-1, for a shell

with = 15° conicity angle :
Table T, 4.1
); 0.5 0,7 1 1.5
yj, 0.1824 0.2168 ©0,2600 0.3193

[2
%/‘EL 0.707 ©0.835 1

1.25

So , the optimization parameter % grows
with the growing of the factor A in the
proportion resulted in the table T.4.1.

This influence may be seen also in
the fig 4, '



4.3, Thé influence of the design para-
meters on the optimization parameters.

The dependence 'ﬁ (e %) = 7‘(‘;’)
for different values of the ) parameter
is shown in the diagram - Fig 4., whence
it results the following conclusions :

1? The major influence on determining
the design parameters in the ben-
ding stress-strain state of the in-
vestigated class of conical shells
has the optimization parameter ?ﬂ
determined by the longitudinal

stress-flow 7:l « The %-parameters Tmax

appear greater (in absolute values)
than ?}-parameters,what denotes
that the reserve factors with res-
pect . to the S~flow are significant
greater than ones, with respect to
7; flow (i.e. smaller values of
the S-flow in comparison with the
'T;-flow, for the given load).

2% The influence of the A-parameter is
important in all cases, on the Y:-
and y;-parameters. This influence

is evidenced in the table T=-4,1,

It is advantageous that the transver=~

sal-orthotropy properties (along ﬂ-—
coordinates) would be as great as
possible in comparison with the e~
lastical properties of the basic
material,

This conclusion is valid for the or~
thotropic material with the density
as in (1.6):

'?Pz ?,(k (k"ﬁ)

In the case when —9} this advan~

tageﬁand vanishes at t:), de=-
€creases

3? An interesting dependence exists
between the ‘f:- parameter and the co-
nicity angle Cf’ ("&;‘#‘P)). Firstly
the Y‘- parameter significantly
grows with the CP- angle (this situa=-
tion is valuable for every A - pa-
rameter), till the value of the an-
gle Ce":-‘,’?.‘/z, then it begins to
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decrease till the values %o»:: Oat the
angle (&/. This shows that at given Xy
and /'z,,, the best combination of the geome=-
trical design parameters is obtained for

the angle (fn :‘.:’.'21. andé((,zmz %l'mﬁ,) (4,1)

4% The optimization coefficients %_

‘ degrending exclusively from the transverse

150 0.3 e J
75 >
‘o 15 1-.-‘.0 1
3 N\
. 9§ . \lio.
Too0 1 02 y e .
, i N
7_0. () A\
Y T \') \\
200 TR | A=l

load Pz, have their maximal values at the
smallest values of the conicity angles

(i.e. at CP = 5°) » decreasing appoximative
linearly with the growing of the - angle
and becoming ‘;VZ= © at the angle <'P: fPW

YA ¢

N
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| e
\"\\ N
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M,
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- -—O— . --\,ua "/)2\/,(’0"7\')
e e~ ot T Tmy = Imx (‘70;7‘)
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5° . Conclusions

The performed analysis demonstrates
that from the point of view of chosen opti~-
mization criteria for the investigated

class of circular conical orthotropic shells,

subjected to the bending load, the best
quality is obtained for following combina-
tion of design elastical and geometrical p

. parameters,

The ratio between the elastical moduli
of the orthotropic material Ep and Ea(:

:>\ CEF/Eu.

must be as great as possible,



. When the density of the ortotrogic
material is of the form (1.6)-(1,7) =the
optimization parameters yg and ?&_become
independent from .

2% The conicity angle must be chosen in
such a way that its magnitude should be
approximatively equal with the half of
the critical angle, defined by the rela-
tion (1.16).

- The influence of the optimization
factor ‘f;_, defined by the shear flow S
is of secondary order.

=~ The dependence 7;&)( =7[(§q)) shows
us that the minimal values of the7;4x
stress~flow (2.lo) are obtained for the

angle: ~ _4_
(Tuﬁx)min -3 wa ' (6_1)

These indications will help us to
obtain even at the initial design phase,
the best shapes of conical components
of aerospace vehicles, characterised by
maximal stress-capacity reported to mi-
nimal weitht,

The analysis performed in present
paper represents in the meantime the first
step in the elaboration of a general pro=-
cedure to optimize the conical anisotro-
pic shells, of constant or variable thick-
ness, subjected to arbitrary load. The
presented procedure and the program KONUS
will be extended and generalized to cover
all practical situations.
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