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Abstract

This paper is devoted to the formulation of a
higher-order, geometrically nonlinear theory of
anisotropic symmetrically-laminated composite
plates and to the analysis, in this context, of
their postbuckling behavior. Special attention is
given to the postbuckling analysis of plates made
of transversely isotropic layers for which case,
the influence played by the degree of transversal-
isotropy of the layers as well as by the geometri-
cal parameters of the panel is investigated.
Finally, the results obtained within the present
higher-order theory are compared with their first
order transverse shear deformation as well as with
their classical (Kirchhoff) counterparts and a
number of conclusions concerning their range of
applicability and the influence of various param-
eters are presented.

1. Introduction

The increasing use of composite materials in
the construction of aeronautical and aerospace
structures has generated a special interest in the
analysis of elastic stability of laminated com-
posite structures subjected to compressive in-
plane loadings. In this connection one may dis-
tinguish, on the one hand, the proccupation to
examine their elastic stability in linear formu-
lation which permits the finding of compressive
buckling loads. On the other hand one may notice
the interest to incorporate in the examination of
this problem the geometrical (and/or physical)
non-linearities. The non-linear approach of the
elastic stability enables one to determine the
behavior of the panel after buckling. In this
sense it is well known [1] that the metallic
panels are still capable to resist increased com-
pressive loads well beyond the instant at which
buckling occurs. This postbuckling strength
experienced by the metallic panels played a great
role in the design of aircraft structures in the
sense that conventional aircraft structural ele-
ments are often designed to operate in the post-
buckling range. However, the laminated composite
plates, in contrast to their metallic counterparts
exhibit a weak rigidity in transverse shear and in
addition their material is characterized by high
degrees of anisotropy. That is why, it is of a
high practical importance to examine the post-
buckling behavior of shear deformable composite
laminated plates in order to assess the influence
played on transverse shear deformation and ani-
sotropy. This paper deals with an analytical
investigation of the postbuckling behavior of
shear deformable symmetrically-laminated composite
plates. In this connection a simple geometrically
nonlinear theory of symmetrically laminated flat
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panels is formulated. This theory developed in
Lagrangian formulation retains the nonlinearities
associated with the transversal displacement

only. In addition, the theory incorporates trans-
verse shear deformation, transverse normal stress
as well as the higher order effects and fulfill
the static conditions on the bounding planes of
the panel. For more general geometricaily non-
linear theories of shear deformable single-layered
and composite laminated plates/shells the reader
is referred to the monographs [2,3] and the
articles [4-6].

It should also be mentioned that research on
postbuckling behavior of shear deformable com-
posite panels appears to be somewhat scarce, a
fact which could cleariy be inferred from the
monograph [8] and the comprehensive survey-work

[9l.

2 Geometrically Non-Linear Theory of Shear
Deformable Composite Plates

2a. General Considerations

Let us consider the case of a symmetrically
laminated plate of uniform thickness h composed of
2m + 1 elastic orthotropic layers. It is assumed
that the axes of orthotropy are parallel to the
orthogonal in-plane geometrical axes x to which
the points of the undeformed mid-plane“of the
laminated are referred. The axis x3 is perpen-
dicular to the plane x3 = 0. Throughout the paper
the tensor quantities are referred to the ortho-
gonal system of coordinates x; associated with the
undeformed body. In this system of coordinates
there is no distinction between contravariant,
covariant and mixed components of a tensor. We
use the convention, that the Greek indices of a
tensor range over the values, 1, 2 while the Latin
ones range over the values 1, 2, 3.

2b. Displacement Representation and Strain
Measures

In order to model the theory of laminated
plates there are, roughly speaking, two main
approaches: i) to start with some statical
assumptions concerning e.g., the variation of
transverse shear stresses across the laminate
thickness or ii) to start with a certain represen-
tation of the displacement field through the
entire laminate (or through each layer separately,
by preserving however its continuity between the
contiguous layers). Although the first approach
was used in several papers (see [10,11]), the
second one appears more promising. While the
stress field exhibits jumps, the displacement
field is to be assumed continuous through the
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laminate thickness. That is why, in the forth-
coming developments, the latter option will be
adopted. In this sense, the displacement com-
ponents are represented as:

() (1) , (2) 3 3

v (x ,x3) = Va + Xq Va + (x3)

The representation (1) has as a goal the exact
fulfiliment of tangential static coditions on the
bounding planes x3 = + h/2, expressed as:

lsg,] (sgs]
Sy |- = p +0, |S,.X = p » 0.
3a “h/2 a 32”3 -h/2 a

Here s3, denote the transverse shearing components
of the symmetrlc second Piola-Kirchhoff stress
tensor s; i3 Py and p_ denote the tangential
loads and” load couple #omponents, respectively
(measured per unit area of the reference sur-
face). It is worth mentioning that henceforth the
only nonlinearities which are retained there are
the ones associated with the transverse displace-
ment (and their gradients) only. This means that
the product of any variable quantity with the in-
plane displacements (or their gradients) will be
neglected.

Consistent with this assumption (which con-
stitutes an extension of the one introduced by
von Karman in the classical plate theory), the
Lagrangian strain tensor ej; expressed in terms of
the displacement components reads [3]:
2oy = Vi, * Vit Vs,iYs,5 (3)
where ( ); = a( )/ox;. Herein the Einsteinian
summation convention implied by the repetition of
one index will be used. Employment of (1) and (3)
into the constitutive equation

]
$43 = 2Ea3 €3 (4)

considered in conjunction with (2) yields

(2) (3) . (0 (1)
V=0 and V = -—( V3.0 V) (5)

Here S .3 and €3 denote the transverse shear
stress and transverse shear strain components,
respectively, while Ewg are the components of the
Egg;or of elastic moduli E1J of an anisotropic

Although a cubic variation of the in-plane
displacement components through the thickness was
postulated, in light of (5), the displacement
field contains the same number of dependent vari-
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ables as within the first order transverse shear

(0) (0) (1)
deformation theory, (FSDT), i.e. V3, Va and Va.

In terms of these basic unknowns the nontrivial
strain tensor components write:

) 5 (3)
eaB = eaﬁ * X3 eaB * (X3) eaB
{0) (2) (©)
0 2
€3 83t (x*)? a3

where the strain measures e ., e , are
——————— Taf a3

(0) (0) (0) {0) (0)

2 eaB = Va,B * VB,a * V3,a v3,6
(1) (1) (1)

2 e " Va,B + VB,a
(3) s (0 v

2 ep = " g;ﬁ-(Z V3,a6 + Va,B + B,a) (7)
(0) (1)  (0)

2e 3° Va + V3,a
@ 5, @ (©

2 83 T " ;?‘( va * V3,a)

Within FSDT, the non-zero components of the strain
measures (being identical to their higher-order
shear deformation theory (HSDT) counterparts), are
(7) while within the classical theory (based
on kiréhhoff constraints) for which

V== v (8)
a

3,a

the only non-zero strain measures are

(0) (0) (0) (0) (0)
2 e~

t
-
+
-
+
-

(9)

2¢. Determination of Transverse Normal Stress,
and of Stress Resultants and Stress-Couples
Governing Equations

From the third equation of equilibrium of the
3D elasticity theory

[5;0(640 + V5 )1 5 = 0 (10)

i.e. from the equation corresponding in (10) to
j=3, by using therein s , expressed in terms of
the basic unknowns, we %ay obtain through the



integration over the segment [O,x3), the following
expression of S$33

(1) ,(2) 5(3)

$33 = X3 33+ (x3)" s33+ (x3)" 533 (11)
where

M LM (o

533 7 B3l Vot V300

@ , 40 (0

S33° 7 EX3 V3.4 V3 (12)
3, 51

33 "2 B3 (Vo t V30

Now employment in conjunction with (7), (11) and
(12) of constitutive equations

33
s =E%e 4 ap s
ap af " wp A Egg’ 33
33
- Ewa33 (13)
_ opwd L EWp _ cWwp 337aB
a3 2Ea3 €w3 ¢} (EaB B EaB h )
E33

followed by their integration throughout the
laminate thickness yield the equations expressing
the stress-resultants and stress-couples in terms
of displacement quantities. These expressions
will not be displayed here.

In order to obtain the governing equations
expressed in terms of the displacement guantities
we need the 2D equations of equilibrium. These
are obtained by taking appropriately the moments
of order zero and one of the equations of equilib-
rium of the 3D nonlinear elasticity theory.

Upon retaining the nonlinearities associated
with the transverse deflection only, the pertinent
20 equations of equilibrium write as follows [3]:

(0)
LaB’a =0 (14)
(0) (0) (0) (0)
( Laﬁ V3,B),a + La3,a + P3 ~ 0 (15)
(1) - (0)
L“B,B - ch3 = (. (16}
(0)
where p, denotes the transversal load. By virtue
of (14),”Eq. (15) becomes
(0) (0) (0) (0)
LaB V3,aB * La3,a * Py = 0. (17)

As a result, the system of 2D equations of
equilibrium is obtained by adjoining to Eq. (17)
the equations (15) and (16). Substitution of
macroscopic constitutive equations into Eqs. (14)
and (15) yields a system of five equations in
terms of the basic unknowns
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(0)y (1) (0)
V., V and V,.
a a 3

These equations which will be not displayed here,
constitute the governing equations of shear-
deformable cross-ply symmetrically laminated com-
posite plate theory which incorporate the effect
of large deflections.

3. Transversely-Isotropic Laminated Plates

3a. Basic Equations

Let us consider the case of a transversely-
isotropic laminate. Let us assume that the plane
of isotropy of each layer is parallel to the plate
mid-plane and that the involved symmetry of the
structure is both of a physical and geometrical
nature. In this case, the tensors of elastic
moduli are appropriately given by [12,3]

=.E 1 B
Eaﬁwp T 1T [2 (6aw68p * 6a,Béwp) * 1-p 5w96a5]
33 ' (18)
E u'E
=0 = 5 3 EYS =g
E33 E{T-n) “wp’® a3 a
33

where E, p are the Young's modulus and Poisson's
ratio associated with the isotropy plane;

E', u' and G' denote the Young's modulus,
Poisson's ratio and transverse shear modulus in
the planes normal to the isotropy plane

while 5«6 denotes the Kronecker's symbol.
Qur first goal (whose sense will become evi-
(0)
dent later) is to express eaﬁ in terms
(0) {0)
of Laﬂ and Vs Employment of (7)y, (18) as well
{(0)
as the definition of Laﬁ allows one to obtain
(© (O (0 4 (0) (0)
Laﬁ = et bt ;§~5A T 8,0 v3’p v3,p
(19)
where
P [E<m+1>h<m+1> + E<r>(h<r> - h<r+1>)]
L+ v s r=1 T+ ues
. E<m+1>”<m+1>h<m+1>
B =7 [ 5
b= vemers
m E,  p.(h 5 -h )
+ 7 <t <r; [r+l> ] (20)
r=1 1- hers
+ 1
o2 [E<m+1>”<m+1>G<m+1> 3
3 E<m+1>(1 < p<m+17’ <m+1>
1 )
. m Eepsbersbers T
re1 E<r> 1 - beps <> <r+1>)]



Here, a letter into the brackets "<>" affecting a

quantity denotes the layer to which the respective
quantity is associated. In order to invert (19),

we postulate the following representation for

(0)

e

af
() ~(0)  ~0) ~ (o) (0)
eaB = LaB + B waéaﬁ + 6AT6aB V3,p Vs,p {21)

where 4, 5 and T are undetermined coefficients.

Inserting (19) into (21) and identifying the
coefficients of like terms we get

~
A

1l
[
~
a
-
%2
"
'
W

(22)

The equations (14) may be identically satisfied by
(0)

expressing LaB in the form

(0)

LaB = eaxeﬁuc,)xp. (23)

where ¢ = c(xl, x2) denotes a potential function

while €l stands for the permutation symbol

(e11 =gy = 0; €1y = “€pp = 1). In such a way,

instead of Eq. (14) we are to use the

compatibility equation (obtained by eliminating

(0)

Va from Eqs. (7)1). This equation given by
(0) L (0 (0)

eaneB)\( eaB,n)\ * z v3,aB V3,7\1t) =0 (24)

is to be adjoined to Eqs. (16)3 and (17).

3b. Governing Equations

Replacement of Eg. (23) and of the trans-
versely-isotropic counterpart of constitutive

(0)

equations for L,g into Eq. (17) yields one of the

B

governing equations

(0) (1)  (0) (0)

Eaxesuc,Xu v3,aB + s vw,w * V3,wu) top3 0
(25)
where
, m
s 50 = by * rgl Gers(Ners = Pepry)
4 o 3 T .3 3
- g;?'[e<m+1>h<m+1> * 2 G<r>(h<r> - h[r+1>)]} .
r=1
(26)
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The second governing equation may be obtained by

(0)
replacing in Eq. (24) the expression of eacﬁ given
by (21), considered in conjunction with Eq.

(23). This equation reads

0y (0) () (0)
"Mpp V3,00 Y37 V3,0 Y3 00!
~ (0) (0) (0) (0)

*2p 1 (Vg V3,0t V3,0 V3,00

(7 +3) c + %.(

)=0.
(27)

Substitution of constitutive equations pertinent
to the case of a transversely-isotropic body into
(16) yields the two last governing equations

(0) (1) (1) (1) (0)
- A V3,aBB + BV +C VO"pp -D{( Vo * V3’a)

Wy

(0) (1)

- &M (Y =0 (28)

+ Vv
3,nna n ,mx)

The expressions of rigidity quantities A, ... M

are not displayed here. By paraileling the pro-

cedure developed in [3] the equations {25) and

(28) may be recast exactly into two uncoupled
(0)

equations expressed in terms of V3 and a poten-

tial function ¢ = ¢(xw). Towards this end

(1)

Va is expressed under the following form:

(1) O e
va= -§Av3,a - (——DT
W (0 (0) (0
- 6A _[;Z)( p3,a + Lwﬁ V3,Buxx)
o
- v3,a ) Emad),w (29)

where A denotes the 2D Laplace operator. By
virtue of (29), Eqs. (25) and (28) reduce to

(0) (0) (0)

B+C
(A+8+C) v3,aaBB - LwB[ v3 - (—D—
v (0) (0)  gic

M
- 6I-\ ﬁ) V3,aa] »0B “L P35t 5/\ TJ‘) p3,aa]

=0 (30)
and

C -
oo, =0

In such a way the governing equations reduce to
the equations (27) and (30). It should be
remarked that Eqs. (27) and (30) define the
interior solution while Eq. (30)2 defines the
boundary layer effect (its solution decaying
rapidly when proceeding from the edges towards the



interior of the plate). In connection with the
boundary layer effect we are to underline the fact
that its influence is a local one and may be
neglected when dealing with global plate charac-
teristics (as e.g., buckling, eigenfrequencies,
etc.)., In addition, as it will be shown later for
simply-supported edge conditions the boundary-
layer solution may exactly be eliminated.

In scalar form the governing equations (27)
and (30) write as:

%1111+ S2222 * 2651212
s )@ @
) \3,1173,22 3,12
A h2 A+B 3,111 "3,1
(0) {0) (0) (0)
* V3001 V3t V312 Vi

(0)  (0) () (0)

* V300V Va1 Y3
(0) (o) (0) (o)
* V309 V30 v 2 V3 15 V3,9p) =0 (31)
(0) (0) (0) 1 (0)
Vaam V3,022 * 2 V31012 - 5 1620 Vi
(0) (0)
B+C
* €11 C3,00 m2¢ 15 V3 15 - (BT
(0 (0)
= w11 V3,2022 * €11 V31212
(0) (0) (0)
e V3212t 22 V3,111 26,12 Va2
(0) (0)
B+C
=2 1 V3 0001) - [Py - (7
O
-6 o Py * Py )1} =0 (32)
6 - £ (0017 * b4p,) = 0 (33)
D (®11 F ey .

Needless to say that for the actual problem the
(0)
load terms connected with py are to be dropped.

4. Postbuckling Analysis of Compressed Panels

4a, Several Considerations Related With the

Boundary Conditions.

In the forthcoming development the static
postbuckling behavior of simply-supported (SS)

353

composite rectangular (11 x 2,) panels will be

investigated. The panel”is agsumed to be composed
symmetrically of transversely-isotropic layers and
subject to a system of uniform biaxial compressive

(0) (0)
edge loads ,, and i,,. As a result of the
finite-defle&lion moggl an inherent coupling
between bending and extension appears requiring
the fulfillment of both transverse and in-plane
boundary conditions. Two different cases labelled
as A and B will be considered next.

A) Biaxial compressive loads are acted on
the plate whose edges are freely movable. As a
result the following edge conditions are to be
prescribed:

(0) (o) 1y (1)
and

(0) (0)

Lyp =7 fqp @t g = 054y

(0) (0) (1) (1)

Sty e o
and

(0) (0) -

L22 = - L22 at X, = 0,22.

B)
the free immovable edges x;
ones being unloaded and immovable.
the edge conditions write:

Uniaxial compressive loads are acting on
= 0,%,, the remaining
In this case

(0)y (0) (ry (1
3ttt Yot t?
and
(0) (0)
Lyp = -£qp 2t xp = 0,4 (35)
(0) (o) (1) (1) (0)
V3 = V2 = V1 = L22 = L22 =0 at Xy = 0,12

In Egs. (34) and (35) the underlined terms are
associated with the bending state of stress.
should be remarked that although the system of
equations (30) is decoupled, the boundary condi-
tions associated with the bending state of stress
appear coupled (in the sense that by virtue of Eq.

(1) (1)

(29), Va and LaB are expressed in terms of

(0)
both V3 and ¢). However, as it may readily be

It

shown they may be reduced to the following
decoupled form:



(0) (0) (0)
V, = 0; (EiE,_ &y %)( P3

(0) (0)

Pl Vs s 06, =0
at x; = 0,11 and (36)
(0) (0) (0)
s B+C M
V3 = 05 oV 00 + (5= - 83 p)( P
(0) (0)
tolyp V3 00) =050, =0

at X, = O,kz.

As it may be inferred, the governing equation (33)
considered in conjunction with the B.C.(36)5 and
(36)g admits the trivial solution ¢(=¢(x,,x ))

= 0. This shows that for the case of SS edQe
conditions the discard of the boundary-layer
solution does not constitute an approximation but
an exact result which nevertheless yields a
simplification of the problem, entailing the
reduction of the order of the governing equations
system from ten to eight.

The boundary conditions relative to the
potential function are determined on an
average. Towards this end, having in view that
the representation

(0)
Vg = mzn fonSTIA X STnp %, (37)

(A = mn/ll, By =

- nn/ Kz)

fulfills exactly the B.C. associated with the
bending state of stress, we may represent under
the form

(0) (0)
-7 G () + i)

(38)

C(X19X2) = Cl(Xl,xz)

Here cy{x ,xz) is a particular solution of Eq.
(31), %wh1ch is to be determined considered in

(0) (0)

Ly and Lo
denote the in-plane normal edge loads (considered
positive in compression). Upon imposing the
conditions which concern the function

conjunction with Eq. (37)) while

12 le
fo 1,22|9%p = jo ‘1,22|dxz =0
x1=0 x1=21
) 2
fo ‘i = jo ‘% =0
X,=0 Xy L, (39)
%, %
Jo €1,12|9%; fo 1,12 =0
x1=0 x1=11

dx =0,

1
Xo™2

= 912

(0) (0) .
the parameters and L acquire the meaning
of average in-pla%é normal gdge loads

2

© , %
STt BERRPYILL
270 2
X,=0,12
. 1704
@ M .
S b e RECRTI LS (40)
10 X,=0,8
2702,

In the case of the plate loaded in the x;-direc-
tion only, the condition of inmovability of the
edges x, = 0,8, expressed in an average sense,
1nvolves the rgplacement of the conditions (39); 7,8
by the following one

S (o)

I dx,dx, = 0 (41)
00 2 2771772

By virtue of Egs. (7);, (21) and (23) the condi-
tion (41) becomes:

Ql 12 - - -
IO IO [(a + &) ﬂll + 83’22

- L@ @
* 87 -7 V35, V3,
~(0) (0)

8T V3’1 V3,1]dxldx2 = 0. (42}

4b  Postbuckling Behavior.

For the sake of simplification we will
restrain ourselves to the case of a square
plate. Having in view [10] that in this case the
minimum buckling load is obtained for m = n =1 in
which case

(0)
Vg = fsinmagx;sinu x, (43)

where fllzf, xl =

usual, that the buckled form of the laminated
plate remains unchanged in the postbuckling range,
we obtain by following the procedured outlined
before:

Wy = n/%, and postulating, as

4 + 2
C(Xl,Xz) = &-(TTZT cos 2)\1X1
(4 + 28)
m cos 2A Xz
(44)
1
+ 8, 2 ;—;—;—cos 26 %; €OS 20g %51



(0) (0)
(g% + 1on(x)?).

[
r\)]»—l

The next and final step in the postbuckling
analysis is the evaluation of the coefficient f in
conjunction with the Eq. (32). This will be done
by applying Galerkin's technique to the Eg.
(32). To this end, substitution in Eq. (32)

(0)
of V, and ¢ given respectively by (43) and (44)
folloWed by its successive multiplication
by sin xlx sin xlx and integration of the
obtained e&uation o@er the panel area, yields:

(0)
L + L =

11 22

(0) i + 2 n4A(A + 25)
4

L9 642°(4 + »)92

+ f2 1'[6.4 (4 + 28) (B+C

M
—ar2e) (Bles 45
22" syl (D AD “9)

Equation (45) obtained for the case of a free
movable contour gives the relationship between the
average applied compressive loads and the maximum
lateral deflection subsequent to the onset of
buckling. However, in the case of inmovable edges
Xp = 0,12, employment of Eqs.(43), (44) in Eq.
(32) resilts in

(0) X
L = - (
22 ~ ~ '8

4 4+ B

2

1,2.2

1 ; 2 "(0)
17 ?’6A hlf + B Lll) (46)

Insertion of (46) into (45) yields its counterpart
for this case, i.e.

(0)
SO

4

L)
12 92

2 7I4A(A + 28)

+ f 3
6427 (4 + B)Q

~ ~
4 + B
4

2

C

2 1:6,4 (4 + 28)

(&
321;4 (2 + 3)92

+ M
¥ 7 " %D

21t2 1 _6f21[2 T]
TN
A4 + B R'i"l'B

+f

(47)

2

In Eqs. (45) and (47) we have denoted Q° as

2 n2

. B+ C

21:4 M
(1+ ;‘2‘* (-T- - 8 ﬁ)) (48)

Em—

while, one and two solid lines identify the terms
associated with transverse shearing effects and
the ones arising from s3; effect, respectively.

The term I'-2-5’—,2~ident1’fies the Eulerian
e

" buckling load in uniaxial compression denoted
henceforth as

o
(t1pdep = f?j? (49)

The equations (45) and (47) determine in closed
form the behavior of composite laminated plates
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subsequent to the onset of buckling. Needless to
say that the panel begins to bend at the critical
load predicted by the linear theory.

For the case of the first order transverse
shear deformation theory (FSDT) the counterpart of
Eqs. (45) and (47) may be obtained formally by
considering therein &, = 0; by suppressing in the
stiffness quantities ﬁ, C, D and M the underlined
terms and by replacing in the rigidity qgantity D
(§imp]ified as mentioned before) G' by K°G' where
K denotes a transverse shear correcton factor.
The Kirchhoff (CL) counterpart of Eqs. (45) and
(47) may be obtained formally by considering their
FSDT variant and by specializing therein the
rigidity D for G' » =,

It should also be reminded that for the case
of a single layered plate the previous equations
remain unchanged. However the associated stiff-
ness quantities are to be specialized by

considering therein
m
+ h/2 and § (...) > 0.

r=1
Numerical Results

h<m+],>

5.

Numerical results for single-layered and
three-layered square plates are presented. They
allow one to infer about the influence played by
transverse shear deformation, thickness ratio,
heterogeneity, character of the in-plane boundary
conditions, etc. Figures 2-5 display, (in terms
of the dependence of the normalized central
deflection vs. the nondimensional compressive load

(0) , ©  (© , ,
Liqs defined as L EORR /n"p where D

denotes the bending rigidity of the plate and in
the case of the composite, the bending rigidity of
the mid-layer) the postbuckling behavior of
single-layered transversely-isotropic square
plates.

In Figs. 2 and 3 the case of biaxial compres-

(0)y (o)
sjon with ¢ 1.5t 2) is considered all the edges
being assumea freel§ movable while in Figs. 4 and
(0)
5 the case of the uniaxial ( Ly * 0;

(0)

Loy = 0) compression is considered, the edges

parallel to the direction of applied load being
considered both immovable and freely movable.
Within these graphs, whenever the comparisgn with
FSDT was made, a shear correction factor K© = 5/6
was taken.

Figures 6-8 display the postbuckling behavior
for a three-layered plate whose mid-layer is two
times thicker than the external ones (i.e. that
heps/h (= h<3 /h) = 0.5 and h, /h = 0.25 - see
Fig. 1). Three instances‘labe??ed as Case 1-Case
3 are considered: )

Case 1

Within this case:



E E E E
<2> LS T3y L, kD> T3
T Ty T TR TG T
E<2> =2 E<1> - E<3> = 10
B T Eoy Ep
Case 2
Within this case:
E<2> = 30: E<1> (= E<3>) 10: E<1> E<3>) -5
= s T A= = ’ = -
o> G Geay (3SR 3N
E<2> =23 E<i> (= E<3>) 10
E<2> ’ E<2> Er<2>
Case 3
Within this case:
fo o _Ea o B _Far Ea
<2> G<1> G<3> ’ E<1> E<2> E<3>
F'<1> - E<3> =/1’l
E<2> E<2>

The last data imply that in this instance the
three-layered plate may be viewed as a single
layered plate. For all the previous cases it was
considered invariably

bepeys = 0425

Within the last three instances the uniaxial com-

(0) (0)

pression case ( Ly # 0; Loy = 0) is con-

' - o =
Beps = Peps T Bemels

sidered. Figure 6 displayes for the Case 2 the
postbuckling response for three cases of thickness
‘ratio as well as for freely movable and immovable
edges (parallel to the direction of the compres-

(0)
sive load Lll)' Figure 7 exhibits for the same

Case 2, the postbuckling behavior obtained within
three different theories (namely HOT, FSDT and
CL). The results associated with FSDT were deter-
mined for two ¥a1ues of the shear correction
factor, i.e. K = 5/6 and 2/3.

Figure 8 presents a comparison of the post-
buckling response of the composite panel with
h/% = 0.1 for the three cases labelled as Case 1-
Case 3. The results were obtained within EOT and
FSDT, (where the shear correction factor K
= 5/6). However in order to get a better picture
of the sensitivity of the postbuckling response
(including the bifurcation one) obtained within
FSDT to the variation of the shear correction
factor, the following results are displayed in
Tables 1-3.
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Table 1

Postbuckling Behavior Obtained Within FSDT and HOT
for a Composite Plate of h/% = 0.1 for Case 1.

HOT
©
f/h £yq % 10
0.00 0.2613
0.10 0.2619
0.20 0.2636
0.30 0.2664
0.40 0.2704
0.50 0.2755
0.60 0.2818
0.70 0.2892
0.80 0.2978
0.90 0.3074
1.00 0.3182

Table 1 Continued

FSDT (k2 = 5/6 FSDT (K2 = 2/3)

© ©
f/h Lyg X 10 f/h Lyq X 10
0.00 0.2986 0.00 0.2440
0.10 0.2992 0.10 0.2445
0.20 0.3010 0.20 0.2462
0.30 0.3040 0.30 0.2490
0.40 0.3083 0.40 0.2528
0.50 0.3137 0.50 0.2578
0.60 0.3204 0.60 0.2639
0.70 0.3283 0.70 0.2710
0.80 0.3373 0.80 0.2793
0.90 0.3476 0.90 0.2887
1.00 0.3591 1.00 0.2992
Table 2

Postbuckling Behavior Obtained Within FSDT and HOT
for a Composite Plate of h/% = 0.1 for Case 2.

HOT
o,
f/h Ly % 10
0.00 0.5125
0.10 0.5133
0.20 0.5168
0.30 0.5198
0.40 0.5255
0.50 0.5329
0.60 0.5418
0.70 0.5524
0.80 0.5647
0.90 0.5785
1.00 0.5940



Table 2 Continued

FSDT (k2 = 5/6) FSDT (K2 = 2/3)

© ©
f/h Lq X 10 f/h ill x 10
0.00 0.6215 0.00 0.5200
0.10 0.6224 0.10 0.5208
0.20 0.6252 0.20 0.5232
0.30 0.6298 0.30 0.5274
0.40 0.6363 0.40 0.5331
0.50 0.6445 0.50 0.5405
0.60 0.6547 0.60 0.5496
0.70 0.6667 0.70 0.5603
0.80 0.6805 0.80 0.5726
0.90 0.6962 - 0.90 0.5866
1.00 0.7137 1.00 0.6022
Table 3

Postbuckling Behavior Obtained Within FSDT and HOT
for a Composite Plate of h/% = 0.1 for Case 3.

HOT
©
f/h 1, x 10
0.00 0.4631
0.10 0.4644
0.20 0.4683
0.30 0.4748
0.40 0.4840
0.50 0.4957
0.60 0.5100
0.70 0.5269
0.80 0.5464
0.90 0.5686
1.00 0.5933

Table 3 Continued

FSDT (k2 = 5/6) FSDT (k2 = 2/3)

© ©
f/n £, x 10 f/h Z1q % 10
0.00 0.4423 0.00 0.3639
0.10 0.4436 0.10 0.3651
0.20 0.4474 0.20 0.3685
0.30 0.4538 0.30 0.3742
0.40 0.4626 0.40 0.3823
0.50 0.4741 0.50 0.3926
0.60 0.4880 0.60 0.4052
0.70 0.5045 0.70 0.4200
0.80 0.5235 0.80 0.4372
0.90 0.5451 0.90 0.4567
1.00 0.5692 1.00 0.4784

6. Conclusions

The obtained numerical results allow one to
infer the followings: a) With the increase of E/G’
{i.e. when the composite plate becomes weaker in
transverse shear) and of the thickness ratio, the
capacity of carrying still compressive loads
beyond the bifurcation point (manifested by the
plates rigid in transverse shear) tends to
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diminish drastically (see Figs. 2-8). This
tendency is also strongly manifested in the case
of geometrically thin plates exhibiting high E/G'
ratios. b) The effect of in-plane boundary condi-
tions is very significant both in the case of
shear deformable and of transversely rigid

plates. The constraint introduced by the
immovable edge conditions has a beneficial
influence on the postbuckling behavior (see Figs.
4-6), independently on E/G'. c¢) The first order
transverse shear deformation theory (FSDT) gives
in the case of a single layered plate more con-
servative results both as concerns the bifurcation
and the postbuckling responses (see Fig. 3 and
Table 3). 1In such a case, as is well known, k2
= 5/6 is reliable shear correction factor.
However, in the case of a composite laminate, a
high sensitivity to the selection of the shear
correction factor is experienced (see Figs. 7 gnd
8 as well as Tables 1-3). In this last case K¢ =
2/3 appears tg be a more reliable shear correction
factor than K¢ = 5/6, In this connection Tables
1-3 reveal once more the importance of approaching
the postbuckling problem in the framework of a
higher-order plate theory. d) Both the
bifurcation response and the postbuckling behavior
reveal a tremendous improvement when the
constituent layers of the composite experience
high ratios of in-plane Young's moduli.

Comparison of Tables 1 and 2 with Table 3 is
relevant in this sense. Some of these results
presented herein agree with the ones obtained in

[13].
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Figure 2. Postbuckling in biaxial compression of
a transversely-isotropic square thin
plate as predicted by HOT.
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Figure 4. Postbuckling in uniaxial compression
of a transversely-isotropic square
plate as predicted by HOT and
classical theories. The results
concern both the case of movable and
immovable edges x, = 0,2.
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2). Comparison of the results
obtained within HOT and FSDT.
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