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Abstract

Models for predicting delamination buckling
of laminated complete thin cylindrical shells and
cylindrical panels are developed. The load cases
are uniform axial compression and uniform
pressure, applied individually. The models are
different for the two load cases and by design
they are kept as simple as possible. This is done
in order to keep the mathematical representation
of the model and the associated solution simple
enough to permit extensive parametric studies.
Through these studies one can identify important
structural parameters and fully assess their
effect on the critical load. Among the general
conclusions one may 1list that (a) the most
influencing parameters for a given laminated
geometry is the size of the delamination, and its
through-the-thickness position for both Tload
cases, and (b) the effect of boundary conditions
(along the straight edges) has an important effect
for the case of pressure. On the other hand, for

axial compression the effect of boundary
conditions (ends) is insignificant for large
delaminations.

I. Introduction

Cylindrical shells and panels are widely used
as primary structures in several applications.
These are often subjected to destabilizing loads.
Therefore, buckling is an important failure mode
and it forms a fundamental consideration in the
design of such systems.

The advent of fiber reinforced composite
materials has resulted in a significant increase
of their use as a construction material, because
of their many advantages, especially their high
potential weight and overall cost savings. It was
necessary then to investigate the buckling
characteristics of laminated cylindrical shells.
Initially, the studies were confined to
configurations, which are free of defects, such as
delaminations.

Composite structures often contain
delaminations. Causes of delamination are many
and include tool drops, bird strikes, runway
debris hits, and manufacturing defects. The

presence of delamination in a composite material
may cause local buckling and therefore a reduction
in the overall stiffness of the structure. The
problem of delamination buckling has received
attention in recent years.
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A finite element analysis was developed by
Whitcomb [1] to analyze a laminated plate with a
through-the-width delamination. The postbuckling
behavior was studied. In the parametric study,
stress distributions and strain-energy release
rates were calculated for various delamination
Jengths, delamination depths, applied loads, and
lateral deflections. Some delamination growth
data were obtained through fatigue tests. Another
paper in this subject was presented by the above
author and Shivakumar [2], in 1985, in which the
buckling of an elliptic delamination embedded near
the surface of a thick quasi-isotropic laminate
was studied. Both the Finite Element and the
Rayleigh-Ritz methods were used for the analysis.
The Rayleigh-Ritz method was found to be simple,
inexpensive, and accurate, except for highly
anisotropic delaminated regions. In that paper,
effects of delamination shape and orientation,
material anisotropy, and layup on buckling strains
were examined.

Yin and Wang [3] derived a simple expression
for the energy release rate associated with the
growth of a general one-dimensional delamination.
The energy release rate was evaluated by means of
the path-independent J-integral. Yin and Fei [4]
jnvestigated the buckling characteristics of a
circular plate with a near-surface concentric
delamination.

Angle-ply composite sandwich beams with
through-the-width delaminations were studied by
Gillespie and Pipes [5]. Reduction in flexural
strength was found to be directly proportional to
the length of delamination and varied from 41% to
87% of the original value.

Wang [6] investigated the behavior of
angle-ply composite Taminates with edge
delamination. Based on a recently developed
theory of 1laminated anisotropic elasticity, the
problem was formulated using Lekhnitskii's complex
variable stress potentials. An eigenfunction
expansion method was employed to solve the
singular elasticity problem. With the aid of a
boundary collocation technique, complete stress
and displacement fields were obtained.

A  two-dimensional analytical model . was
developed by Chai and Babcock [7] to assess the
compressive strength of near-surface interlaminar
defects in laminated composites. The postbuckling
solution for the delaminated elliptic sections
was obtained by using the Rayleigh-Ritz method,
while - an energy balance criterion based on a
self-similar disbond growth governed fracture.
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Simitses, Sallam and Yin [8-10] investigated
delamination buckling and growth of flat composite
structural elements. A simple one-dimensional
model was developed to predict critical loads for
delaminated plates with both simply supported and
clamped ends. The effects of delamination
position, size, and thickness on the critical
Toads were studied in detail. The postbuckling
behavior as well as the energy release rate were
examined. The results revealed that the damage
tolerance of the laminate was either governed by
buckling or by the fracture toughness of the
material.

Almost all the papers about delamination
buckling deal with beams and plates. Owing to its
complexity in mathematics, very Timited
information on the subject of delamination
buckling of shells is currently available.

Troshin  [11] studied the effect of
longitudinal delamination, in a Taminar
cylindrical shell, on the critical external
pressure. The shell was assumed to be separated

by the delamination into three panels. A system
of eight ordinary differential equations were
derived from the governing partial differential
equations. The system along with boundary and
continuity conditions was integrated by the
Kutta-Merson method with intermediate
orthonormalization of solution vectors. Critical
pressures for various locations and sizes of the
delamination were found. In another paper [12],
the same author investigated the delamination
stability of triple~layered shells with almost the
same method.

This paper deals primarily with the question
of delamination buckling of cylindrical shells and
panels and how the presence of the delamination
affects the global load carrying capacity of a
laminated structure.

II. Description of Mathematical Models

Models for predicting delamination buckling
of Tlaminated, complete, thin cylindrical shells
and cylindrical panels are developed (see Fig. 1).
The load cases are uniform axial compression and

uniform pressure, applied individually. It is
assumed that under subcritical Toads the
delamination does not expand.
I1.1. Axial Compression Case

In the axial compression case, the
delamination extends along the entire
circumference of the cylindrical shell, on a
surface parallel to the reference surface (see
Fig. 1la). The location and size of the
delamination s arbitrary and the boundary

conditions are either simply supported or clamped.
Delamination separates the cylindrical shell into
four regions (four thin-walled cylindrical
shells), such that each region is symmetric with

respect to its own mid-surface. Let Ugs Vis Wy (i

= 1, 2, 3, 4) be the displacement components of
material points on the mid-plane of each region
(each cylindrical shell) in the x, y and z
directions, respectively.
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In Fig. la, a denotes the size of the
delamination, while 1 and b denote its Tocation
from the left and right ends, respectively.

The buckling equations are derjved by
employing a perturbation technique. Since the
perturbed state can be chosen to be

infinitesimally close to the primary state, only
first order terms in the admissibie variations are
retained.

In terms of the in-plane and transverse small
additional displacements (ui,vi,wi)(i=1,2,3,4),

the buckling eqdations take the form

(a) Axial Compression

(b) Uniform Pressure

Fig. 1. Geometry, Loading any Sign Convention
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and Aij’ Dij (1,3 = x,y,s) are the extensional and

flexural stiffnesses. Note that in deriving the
buckling equations, Donnell-type kinematic
relations are employed.

The buckling equations are subject to
auxiliary conditions. These conditions are
grouped into three categories: Boundary
Conditions, Kinematic Continuity Conditions, and
Balance of Moments and Forces at the common
boundaries.

Boundary Conditions:

Along each end of the cylindrical shell four
boundary conditions have to be satisfied. For
both simply supported and clamped boundaries, the
following possibilities hold [13].

a) Simply Supported

SS1 wj = wj,xx = Nxx. = ny_= 0
J J

$S2 w_ = w, =y, =N =0

m 3, xx ] xyj (4)
SS3 wj = Wj,xx = Nxxj = vj = 0
Ss4 wj = wj,xx = uj = Vj =0

b) Clamped Support

CCl w, = w., =N =N =0

N Jax — Txxg XY
cc2 wi - Wix YT nyj =0 (5)
CcCc3 wj = wj,x = NXxj = vj =0
CCA w, =w., =u.=v, =0

where j=latx=0and j=4atx=1, N
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are small additional stress resultants needed
to move from the primary state to the buckled one.
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where M.. are the small additional moment

ij

resultants and QX is the small additional shear

force resultant, needed to move from the primary
(membrane) state to the buckled (bent) one.
11.2 Pressure Case

In the case of pressure, the circular
cylindrical shells and panels with longitudinal
delamination over the entire length are

considered. The geometry, loading and coordinate
systems are shown on Fig. 1b. The straight edges
of the panel are either clamped or simply

supported. The location and size of the
delamination ‘is arbitrary. Angle o denotes the
region of the delamination, while g and y denote
the location of it from left edge and right edge,
respectively.

The panel is separated into four parts (four
panels) by the delamination. Each part has a set
of coordinates attached to it (see Fig. 1b), and
the natural plane of the panel 1lies on the
xy-plane. The panel is subjected to uniform
external pressure, g, over the entire outer

surface. Let h’ (i =1, II, III, IV) denote the
thickness of the ith panel (see Fig. 1b). The

nondimensional parameter h = hI/hIII is used to
describe the thickness of the delamination. Let
u', v, w (i = I, II, III, IV) be the
displacement components of material points on the
midplane of each part (each panel) in the x, vy,
and z directions, respectively. Note that the
sign conventions for the two models are different
(see Figs. la and 1b).

The panel becomes a complete cylindrical
shell when the total angle ¢(¢ = o + B + y) equals
2m.

The Koiter-Budiansky [14] buckling equations -

have been deduced from those given in the Appendix
of Ref. 14. The version given below corresponds
to a set obtained from Sanders-type of kinematic
relations [15]. This version, in terms of the
small additional displacement components, u, v,
and w, is:
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where Aij’ Dij (i,j = 1,2,3) are extensional and

flexural stiffnesses, qx, qy and qZ are
corrections to surface loading due to load
behavior during buckling, and g is the applied
pressure.

auxiliary
constant

The various boundary and
conditions, associated with y =
positions, are Tisted below:

Boundary conditions at 8 = 0

(a) Clamped (b) Simply Supported
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11 _ 11 _
4 =0 My 20 ) (@3
T _ 1 _
v =0 Nyy 0
G- g JIT 2
Auxiliary Condition at 63 =B (e1 = 92 = 0)
WI = wII = WIII
1. II_ 1II
¢y ¢y ¢y
I Il II1 h II

v - (v + ¢ /2) =0

y

G- I ¢)1/11 hl2) = o
R R A
N
R
Niy + Ni§ - Ni;l =0
Miy + Ni L2+ MII N;; h 12 - M;;I =0
;(eff) Ny hII/Z * Qy (eff) ~ i; h'r2

= Qy(etf) = O
where + 2M

U efr) = Myy,y XY X



Auxiliary Conditions at 8q = O(el =6, = a)

oo

1 _ 11 11
¢y ¢y ¢y
VII _ (VIV + ¢;V hII/Z) =0
VII _ (VIV . ¢;V hI/Z) =0
T R A V7 I

. (25)
uI _ (uIV _ ¢thI/2) =0

I I v
N + =

yy Nyy Nyy 0

I oIV
ny + ny ny =0

I I II II I1 .1 IV
M+ N h + - - =
yy yy /2 Myy Nyy h"/2 Myy 0
I I II II
QY(eff) * ny,x h™'/z + Qy(eff)

o1, v
ny,X h*/2 Qy(eff) =0

Boundary Conditions at 04 = Y

(a) Clamped (b) Simply Supported
WV =0 wi' = o
IV _ v _
¢¥V =0 (a) M vy © 0 (b)
v
v = 0 =
N vy 0 (26)
ulV = 0 ulV = 0

Note that the simply supported conditions,
Egs. (23b) and (26b) correspond to the classical
simply supported conditions, $S-3 [13].

ITI. Solution Procedure

Axial Compression Case

Elimination of u, and v, -through the use of
Egs. (2) and (3) and through Substitution into Eq.
(1) yields a single higher-order ordinary
differential equation in w, alone. Thus, the
buckling equation for each region, i, becomes

4 } 4, 2 2
XyAss AxxAyy)ia /3x°3y

4 2
[{AxxiAssia fax = (Axy+2A

+A

4, 4 4, 4
vy, Res B /3y }{Dxxg /ax
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4 2. 2 4, 4 2,..2

+ z(ny+ZDss)ia /ax"ay“+ Dyyia /oy + Nxxia /ax°}
4,. 4 2.

+ Assi Axxi{A /AXx 3 /ax ]wi/R =0

_ .2
vy Axy }i

i=1,2,3,4 (27)

The solution of the buckling equations can be
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written as in [13]:

. L ox (%R ye
ij R 9y i
wi = 2 ij(e )X
j=1
oy (PR (28)
sin Sy v G
cl
where
%,= ___Ell;________ Ei
i 3(1 - V1o v21) R
Aij are the characteristic roots of the buckling

equation, (Eq. (27).

The solution to the buckling equation
requires knowledge of 32 constant (Aij’ i=1,2,3,4,

j=1,2,3,...8). There exist 32 boundary and
auxiliary conditions, which are homogeneous in Uy,

Vs and Wy and their gradients. These consist of

eight boundary conditions, four at each end, Egs
(4) or Egs. (5), sixteen kinematic continuity
conditions, Egs. (6)-(13), and eight balance
conditions in moments and forces, Eqs. (14)-(21).

The use of the above system of boundary and
auxiliary conditions yields a system of linear,
homogeneous, algebraic equations in Aij' For a

nontrivial solution to exist, the determinant of
the coefficients must vanish. The determinant
contains geometric parameters (L,R,a,h), material

parameters (Ell’ E22, G12’ v12)’ the applied load,

p, and the circumferential wave number, n.

For a given geometry and material properties,
the circumferential wave number (n) is varied and
the corresponding load which makes the determinant
vanish is obtained. The lowest of these loads is
the critical load.

II1.2 Pressure Case

For each part, a separated solution is
assumed, which satisfies the classical simply
supported boundary conditions at x = 0 and L.

This 1is done for the special construction for
which there is no coupling between extension and
bending, extension and shear, and between bending
and twisting action. This means that for all
parts

B. =0

§5 7 M3 T P23 T P13 T Uz

The classical simply supported boundary conditions
are denoted by

= A A, =D., =D (29)

‘(30)

SS3: w = Mxx = Nxx =v=20
The separated solution is characterized by
u{x,y} = U(y) cos mﬁi
u(x,y) = V(y) sin B (31)
wW(x,y) = W(y) sin T



Substitution of Egs. (31) into Egs. (22) for
the special construction, Egs. (29), yields

Lllu + L12V + L13W =0
L21U + L22V + L23W =0 (32)
0

Lyl + LoV + VggW =
where the Lij are linear differential operators.

Elimination of U and V through the use of the
first two of Egs. (32) and substitution into the
third one yield a single higher order ordinary
differential equation in W alone. This higher
order equation assumes the form

8 6 4 2
dw d'w d'w dw
Fo g+ F,—4+F, — +F, —5 +F, =0 (33)
8 d68 6 d66 4 de4 2 dez 0
where the F's are constants that contain the

external load g and structural geometric

parameters (Aij’ Dij’ h, R, etc.). Note that some

of the F's change according to the case of load
behavior during buckling.

The solution procedure is similar to the one
described for rings and arches in Article 7.3 of
Ref. 16. The number of equations is greater, the
equations themselves are more compiex, and a
closed form solution is not expected as in Ref.
16. Nevertheless, the overall procedure can be
followed and a numerical estimate can be achieved.
Thus, first assume for W(e) a solution of the form

W = Cexp(re) (34)

Since the order of the equation is eight,
then substitution into Eq. (33) yields an eighth
degree polynomial in r. Thus, eight roots are
expected for each geometry and load level. If the
eight roots are distinctly different, the general
solution for W(8) is given by

8

W(o) = Ciexp(rie) (35)

i=1

If double roots occur, is

modified accordingly.

the form of Eqg. (34)

The form of the solution for U(e) and V(8) is
similar to that of Eq. (35) and the solution for
U, V and W is given in terms of eight constants.

1
There exist eight unknowns, C.s, for each
part, and the total number of unknowns is 32. Use
of the 32 boundary and auxiliary conditions leads
to a system of 32 linear, homogeneous algebraic

equations in 32 unknowns. For a nontrivial
solution to exist the determinant of the
coefficients must vanish. This yields the

characteristic equation.

IV Applications

IV.1 Axial Compression Case

Results are generated for a cylindrical shell
made up of isotropic laminae and for both simply
supported and clamped boundary conditions. Since
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for each type of supports (simple and clamped
supports) there are four types of boundary
conditions, results are generated for the weakest
and for the strongest configurations, which are

known as SS1 (w = w,xx = Oux T Txy = ) and CC4 (w

=W =us=vs 0), respectively. The boundary
conditions are assumed to be the same at both
ends, i.e. both ends are SS1 or CC4. The

dimensions of the cylindrical shell are such that

L/R=5, and R/t=30, where L, R and t are the
Tength, radius and thickness of the shell,
respectively.

Figure 2 shows the effect of delamination
length and through-the-thickness position on the
critical loads of a simply supported cylindrical
shell (SS1). The delamination is assumed to be
Tocated symmetrically with respect to both ends of
the shell. The critical loads are normalized with
respect to the critical load of the classical
theory. The figure shows that for a delamination
in the middle surface of the cylindrical shell,
the delamination has a negligible effect on the
critical loads as long as the delamination is far
from the edges (effect of position with respect to
the edges will be discussed in another figure).
As the delamination moves away from the middle
surface of the shell, its presence _becomes
important. For a delamination thickness h = 0.3,
the delamination has no effect on the critical
loads, as long as the delamination length is small
(a <.08). As the delamination length increases
the critical 1load decreases and it approaches
asymptotically a value, which is, approximately
60% of the «critical load of the perfect
configuration. As the delamination moves closer
and closer to the other surface, a sharp drop in
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Fig. 2. Effect of Delamination Length on the
Critical Loads (Complete Cylinder; SS1)



the critical load 1is noticed at a very small
delamination length (a = 0.01). This drop in the
critical load continues till it reaches a constant
value (20% of that of the perfect shell), at a
value for the delamination length parameter of a =
0.1.

A similar set of curves is obtained for
clamped boundary conditions. The effect of
delamination length on the critical loads of a
symmetrically delaminated cylindrical shell, for
different values of the delamination thickness, is
shown in Fig. 3. This figure, illustrates that,
only for very small values for the delamination
length {(a < .01), the delamination has no
significant effect on the critical Tloads,
regardless of the value for h. For larger values
for the delamination Jlength parameter, a, a
noticeable drop in the critical loads is observed.

The effect of Tlengthwise delamination
position on the critical loads is also studied.
Figure 4 presents resylts for a = 0.1. For
delamination thickness h < 0.3, the delamination
position, 1, has no appreciable effect_on the
critical loads. For Tlarger values of h, h > 0.3,
the position of delamination has an important
effect on the critical Toad, and this effect
increases as h  increases. For instance, a
reduction of about one third in the critical load
is noticed for a delamination near the edge (by
comparison to the critical load of a delamination
far from the edge; 1> .08), for a midsurface

delamination, h = 0.5. _ The position effect
decreases as the value of h decreases.
Unlike the simply supported case, the

position of delamination w.r.t. the edges of the
shell with clamped ends, has virtually no effect
on the critical loads, for delamination length a =
0.1, regardless of the value of h, as.shown on
Fig. 5.
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Fig. 3. Effect of Delamination Length on the
Critical Loads (Complete Cylinder; CC4)
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Fig. 4. Effect of Delamination Position on the
Critical Loads (Complete Cylinder; SS1)
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Fig. 5. Effect of Delamination Position on the
Critical Loads (Complete Cylinder; CC4)

IV.2 Pressure Case

Critical loads for complete thin laminated
cylindrical shells and thin laminated cylindrical
panels, with delamination of - constant width and
extending over the entire length, are calculated.
The material used is graphite/epoxy and the
orthotropic axes of each ply are at 0° and 90°
with the structural axes.



The engineering constants, of this

material, are

typical
EL/ET = 40; GLT/ET = (0.5, vt = 0.25 (16)
where EL is the tensile modulus in the filament

direction (20.685 x 1010 N/mz; 30 x 106 psi),

ET is the modulus in the transverse direction
(0.517 x 101%/m?; 0.75 x 10% psi),

GLT is the shear modulus (0.759 x 1010 N/mz;
0.375 x 10% psi), and

T is Poisson's ratio.

The generated results are used to assess the
effect of various parameters on the critical load
for symmetric cross-ply delaminated shells
primarily with stacking sequence [90°/0°/90°]10T.

Note that each part is a regular symmetric
cross-ply laminate, repeated ten times.
Fig. 6 shows the effect of

"through-the-thickness" delamination position, h,
and of delamination (size) width a on the critical

load parameter, |[Al{x = qR3/Di{I).

It is seen that for small values of «a
(delamination size) the presence of delamination
has a small effect on the critical load regardiess
of h- values. As the delamination size or width
increases the reduction in the value of the
critical load is very pronounced, especially as
the position of delamination (h) moves closer to
the free surfaces of the laminate (h = 0.3 or 0.7
and 0.1 or 0.9). Note that because the employed
analysis is a linear bifurcation analysis the
critical loads corresponding to h and (1-h) are
identical. It is expected that the postbuckling
behavior of shells with h will be very different
from that of shells with (i-h).

T T T T T i

7.0+ ‘\5 - 7

Y Rth= 100 -

[90°/0°/90% )y

sol \

N3 OF
101 C— . . 01(09)
L 1 1 1] 1 L
0.0 20 4.0 2n

Fig. 6. Critical Pressures for Symmetric,
Cross-Ply, Delaminated Cylinders
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The effect of delamination width (size) a for
various length to radius values, L, is shown on

Figs. 7 and 8, for a panel of ¢ = a/2, with
clamped and simply-supported edge boundaries,
respectively. These results correspond to R/h =

100 and to midsurface delamination, h = 0.5, but
they are typical of almost all other
configurations corresponding to different R/h and
h values.

100

h=05
R/h=100
80~ ¢ =72 —
- 98°/0°/90°T;57 -~
60 [=13
Al
40
207

Fig. 7. Effect of Delamination Width on the

Critical Pressure (Clamped Panel; ¢= %)

100 I T T
B h=05 N
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80— ¢=m/2 7

98°/0°/90°1y 57

Fig. 8. Effect of Delamination Width on the
Critical Pressure (Simply Supported Pane1;¢=g)



It is seen from Figs. 7 and 8 that the
critical load parameter decreases with increasing
delamination width «, and with dincreasing L
values. A comparison between the results of Figs.
7 and 8 shows that clamping the straight edges has
a stabilizing effect. This effect is influenced
by both L and a. Note that for L 1/3 the
initial load is increased by approximately 25% for
a = 7/2. This increase changes as o decreases and
it becomes approximately 44% when o = 0. Similar
trends are observed for other L- values but the
percentages become higher with increasing L-value.

Moreover, the effect of delamination position
from the edge of the panel, B, on the critical
load parameter is shown on Tables 1 and 2. The
results correspond to an isotropic laminate of ¢ =
7/2 with clamped and simply supported boundaries,
respectively, and for a delamination size, a, of
0.2 radians. Results are presented for various
positions, B, and several through-the~thickness
positions, h. It is_seen that this effect is
relatively small for_h 0.5 and 0.3 (0.7), but
negligibly small for h = 0.1(0.9) and 0.01 (0.99).

Table 1. Effect of Delamination Location on
Critical Pressure (Clamped Panel; ¢ = %;a =0.2)
3 h 0.5 0.3 0.1 0.01
0.0 28.8847 29.6901 20.1663 0.2018
0.1 29.2059 30.6522 20.1665 0.2018
0.2 28.9962 30.2359 20.1668 0.2018
0.3 28.4068 28.6646 20.1673 0.2018
0.4 28.0669 27.8684 | '20.1673 0.2018
0.5 28.3650 28.5085 20.1668 0.2018
0.6 28.9675 29,9942 20.1665 0.2018
0.6854] 29.2115 30.7097 20.1663 0.2018

Table 2. Effect of Delamination Location on the
Critical Pressure (Simply Supported Panel;
¢ = n/2;a = 0.2)

8 h 0.5 0.3 0.1 0.01
0.0 8.2869 10.7108 | 2.2364 0.0224
0.1 8.0421 9.6941 2.2366 0.0224
0.2 7.7323 8.9581 2.2366 0.0224
0.3 7.5215 8.6057 | 2.2366 0.0224
0.4 7.4127 8.5228 2.2366 0.0224
0.4854| 7.3854 9.4696 | 2.2368 0.0224
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V. Discussion and Recommendations

A linear bifurcation analysis was performed

and critical loads were derived for Tlaminated
complete cylindrical shells and panels of
isotropic or special cross-ply construction under
axial compression and uniform pressure,
respectively.

An important observation 1is that for very
small values of the delamination width the

presence of delamination does not appreciably
alter the perfect (free of delaminations) geometry
critical Toad. In this case it is safe to say
that the critical load, adjusted by some
reasonable knockdown factor to account for the
presence of initial geometric imperfections, is a
good measure of the load carrying capacity of the
system. On the other hand, for large delamination
widths, especially as the position of delamination
moves closer to the free surfaces of the laminate,
the critical load is very small. In this case,
one should not relate the critical load to the
Yload carrying capacity of the system. Instead,
failure will be governed by delamination growth,
which of course depends on the fracture toughness
of the material. This point has been addressed
extensively in [8-10].

It 1is observed that the wmost influencing
parameters for a given laminated geometry is the
size of the delamination, and its through the
thickness position for both load cases.

Another observation is that for the pressure
case, the effect of boundary conditions (along the
straight edges) has an important effect (see Figs.

7 and 8). On the other hand, for axial
compression the effect of boundary conditions
(ends) 1is insignificant for large delaminations

(see Figs. 2 and 3).

It is also observed that the effect of
delamination position from the edge of the panel,
under pressure, is insignificant. For the axial
compression case, the effect of the delamination
position along the length of the cylinder (effect
of 11; see Fig. la) for clamped boundaries is also

negligible, while for simply-supported ends it is
small but not negligible.

The results obtained for the two load cases
seem to be reasonable. However, there exist two
points that need special attention. One is that
in some cases the buckling mode of the two parts
that are separated by the delamination (parts 2
and 3 in Fig. la, parts I and II in Fig. 1b),
suggests contact over a certain portion. The
second one is that, for the pressure case, the
values of the pressure load acting upon the two
parts {part I and II; see Fig. 1b) may take a
finite jump during the buckling process, i.e., in
the prebuckling state, the Toads upon two parts
are hq and (1 - h)q, respectively, while in the
fully developed postbuckling state they become q
and 0, respectively. The above two points are not
taken into account in the present model for
buckling analysis, which may have some influence
upon the accuracy of the solution.



Needless to say that further and more
detailed studies need be performed before we
acquire complete and full wunderstanding of
delamination buckling and growth of laminated
shells. It is necessary to derive a new
mathematical model which will account for the
contact between delaminated layers and finite
change of loads, during buckling. Moreover, the
model must be applicable to postbuckling behavior.
This is needed for performing delamination.growth

studies.
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