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Abstract

To support the aerodynamic design of the cowling of a
counter-rotating integrated shrouded propfan ( CRISP )
20- and 3D-flow calculations have been performed. For
the 2D-computations a computer program has been deve-
loped to analyse the axisymmetric flowfield through the
rotors and over the cowling. To solve the 3D-Euler equa-
tions the well known Dornier 3D blockstructured flow ana-
lysis code was used. The grid generation which meets the
special requirements for the CRISP configuration is des-
cribed. The method generates a contour fitted grid mee-
ting the demands of the finite volume flow solver. Becau-
se of the axisymmetric shape of the configuration an opti-
mized section grid was built up first by use of a sigularity
method, suitable stretching and shifting routines, a 2D-
optimization method and a smoothing operator. Later the
sectionwise grid was rofated and the total domain was
devided into multiple topological rectangular blocks. The
flow analysis method solves the 3D-Euler equations in
arbitrarily blockstructured grids by a finite volume discre-
tization technique and an explicit multi-stage time step-
ping scheme. The main advantage of the method is the
applicability to complex geometries of nearly any shape,
the capability to treat very fine grids with a theoretically
unlimited number of grid points and rather fast conver-
gence rates by means of incorporated multi-level and
multigrid schemes.

Introduction

For the aerodynamic design of a counter-rotating shrouded
propfan (CRISP) /1/ a computer program has been develo-
ped to analyse the axisymmetric flowfield of the connected
flow through the rotors and over the cowling. The main
purpose of this program is to design and to control the
aerodynamics of the cowling profile. The cowling pressure
distribution depends on the rotors and the hub contour and
is subjected to large differences in the inflow conditions.

In addition to a low drag velocity distribution along the
outer side of the cowling under cruise conditions, the flow
should not separate at the critical operating points “take-
offfinitial climb” and “windmilling” (engine out). At take-off
a high angle of attack is combined with a high fan mass
flow with imminent flow separation from the inside of the
lower cowling lip. A circumferential flow distortion at the
fan entry increases the danger of fan flutter. At windmilling
a separation of the flow from the outside of the upper cow-
ling is possible due to the considerably reduced mass flow
and the high angle of attack, which would lead to a strong
drag rise of the nacelle.

A well established streamfunction method is used which
meets the requirements of the calculation of a 2D-axisym-
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metric subsonic inviscid flow field; supersonic bubbles may
occur locally and can be treated satisfactorily by a trans-
onic approximation. The problem corresponds to the solu-
tion along a hub-to-tip streamsurface in a turbomachine
which is often experienced in the field of quasi-3D flow cal-
culations through cascades, e.g. /2/,/3/. The numerical so-
lution is performed using finite differences. The mesh is
generated numerically, and the resolution is finer near the
leading edge to capture the strong flow gradients at the dif-
ferent flow conditions mentioned above.

For three-dimensional configurations there has been a con-
siderable increase in the ability to compute connected flow
fields. The level of the ficld equations which could be con-
sidered has increased from the small disturbance potential
methods in the early seventies to full potential and Euler
methods to today Navier-Stokes solutions. The complexity
of the geometry which could be considered has also increa-
sed from singular components to more and more complica-
ted complete configurations. Because of the great general-
ity of the most commonly used finite volume technique the
main difficulty in analyzing more complex configurations
scems to be the grid generation for such complex geome-
tries. So it can easily be seen, that the grid generation pro-
cess becomes more and more important for the application
of computational fluid dynamic problems.

In the current case of the axisymmetric CRISP configura-
tion the block-structured grid technique is used /4/,/5/,/6/
and /7/ for the 3D-flow computations. The approach divi-
des the computational domain into multiplc topological
rectangular blocks, which can be defined arbitrarily to pro-
duce surface-fitted grids. Such a subdivision of the physical
space can be adapted to complex configurations with multi-
components in such a way as to reduce grid skewness near
the boundaries and provide good grid behaviour around the
surface slope discontinuities. It undergocs also the storage
restrictions of most of the today computers for fine 3D)-
grids because only one block has to be present in the main
storage during the grid generation as well as  during the
flow solution,

The flow analysis method /8/,/9/ .and /10/ solves the 3D-
Luler equations using the numerical scheme developed by
Jameson, Schmidt and Turkel /11/. This method is a central
difference finite volume method combined with a second-
and fourth-order dissipation. The steady state is reached by
applying a Runge Kutta time stepping scheme with a vari-
able number of stages. In order to accelerate convergence
rates, local time stepping, enthalpy forcing and implicit resi-
dual averaging are used. By using a sequence of mesh refi-
nements ( multi-level grid technique ) and applying a multi-
grid method /12/ at each of these levels, acceptable conver-
gence rates for 3D-cases have been achieved. The method
has been optimized with regard to computing time as well
as to the amount of 1/O which has to be performed. Also it
has been extended to an arbitrary block structure, which
allows the user nearly all freedom in the connection as well
as in the arrangement of the blocks.



Very recently the code has been extented to solve the 3D-
Navicr-Stokes equations /13/ and a version which uses the
benifits of parallising on virtual storage computers has also
been implemented /14/.

The method has been applied to various external and inter-
nal flow problems with and without viscous ecffects
/8/,/9/./10/. Because the Fuler equations arc able to treat
flow ficlds including vortices /9/. and variations ol total
pressure and total temperature, they can be applied very
casily to cascs including propulsion effects on acrodynamic
components or complete configurations.

Axisymmetric Streamfunction Method

Description of Method

A meridional flowficld is calculated along a single meridio-
nal (hub-to-tip) streamsurface which may be regarded as
part of a 3D-solution where scveral 21)-calculations along
meridional and circumflerential streamsurfaces are used ite-
ratively /3/,/15/. The partial solutions on the surfaces arc
2D when the kinematic condition -the flow must follow a
given surface- is satisfied. The prescription of a swirl distri-
bution is equivalent, and is used herc. The solution along
the single streamsurface surface is regarded as axisymme-
tric.

A streamfunction is defined by the continuity equation and
then introduced into the radial component of the inviscid
cquation of motion, which leads to a second order partial
difTerential equation for the streamfunction along a meri-
dional streamsurface. The type of the cquation is clliptic for
a meridional Mach number below unity. [For the purpose of
the numerical solution, using finite differences, the flowfield
is covered with a contour-fitted mesh. The coordinates of
the grid points themsclves are numerical solution of a sy-
stem of Poisson cquations according to Thompson ct
al./16/,/18/. A coordinate transformation is performed using
the grid lines as coordinate lines, so that the differentials
can easily be discretized by the usual central seccond order
approximations. The resulting systems ol algebraic cqua-
tions for the streamfunction or for the mesh coordinates
arc solved iteratively by successive overrelaxation.

The streamfunction equation is non-lincar because the coef-
ficients depend on the solution. The cocfficients are found
iteratively during the computation and can be determined
from the density. The density is derived {rom the stream-
function field with the help of the total enthalpy calculated
from the prescribed swirl and the angular velocity of the
rotors, Iispecially for transonic flowficlds the use of mass-
flow density (differential of strecamfunction) is not unique
and also the dependence of the density is indelinite. Ilere
the radial component of the equation of motion is solved
directly to determine the velocity.

The boundary conditions for the stream- function calcula-
tion are a homogencous fully prescribed inflow, an axial
outflow, a farfield condition along the outer radius of the
solution domain, and the contour condition of constant
streamfunction along the hub and the cowling. The cowlihg
trailing strcamline is a discontinuity line (slip line) in the
case where work is done by the rotors. It separates two re-
gions of different total state but continuous static pressure.
The streamfunction differentials are not continuous so that
no solution is possible across that line. The cowling trai-
ling grid line is regarded as a slip line and should have the
streamfunction value of the cowling contour. During the
course of the iterative solution it is fitted to the right posi-
tion of the trailing streamline. Under the condition of equal
static pressure on both sides of the slip line there exists a
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relation for the streamflunction value at a slipline grid point
(boundary condition). The value at the cowling trailing
edge is valid on the whole contour (Kutta condition). Du-
ring the iterative solution new trailing streamlines are inter-
polated with this valuc from the calculated strecamfunction
distribution, so that the mesh can be fitted accordingly and
converges with the solution

Results of Computation

To calculate the meridional flowficld of a counter rotating
shrouded propfan a numerically gencrated mesh is used, as
represented in Fig. 1.1 . The drawing demonstrates the ex-
tension of the solution domain. The detail in Fig. 1.2 shows
the fine resolution of the mesh necar the cowling, especially
near the leading edge. The profile of the rotors can be re-
cognized as gridlines.

A streamfunction computation has been performed on this
grid for the propfan under max climb conditions at zcro
angle of attack and at a freestream Mach number of 0.8,
The change of swirl through the rotors and their blockage
clfect are prescribed from a design calculation. The fan
mass flow depends on the specific rotor work (change of
swirl and angular rotor velocity) and on the Kutta condi-
tion at the cowling trailing edge, and results from the calcu-
lation. The computed Mach number field is shown in Fig.
1.3 for the rotor and cowling section. I'ig. 1.4 illustrates the
calculated shroud Mach number distribution over the cow-
ling.

Measurements of the pressure distribution over the cowling
of a turbine propulsion simulator (TPS) have been perfor-
med at the DFVLR /17/. To compare them with calculated
results the cowling profile has been taken scparately with
some simplification in the rotor region. In Fig 1.5 a detail
of the mesh is drawn together with the true TPS geometry.
A calculation has been carried out without rotor work but
with a given measured mass flow. The cowling trailing grid-
line has been fixed and treated as a solid wall. Fig. 1.6
shows the calculated profile Mach number distribution, and
the measured values arc added for comparison,

3D-Euler Calculations

Grid Generalion

The blockstructured grid used within these computations is
generated in a somewhat different way compared with to
the procedures described in /5/,/7/. Because the configura-
tion possesses axial symmetry the grid generation is done in
two steps. First a 2D)-section grid was calculated, which in
the second step was rotated.

Before generating the sectionwise grid the overall block-
structure is designed as shown in Fig. 2.1. The total grid
cxists out of six blocks in i-direction while the j- and the
circumferrential k-direction is kept unblocked. The blocks
are arranged in such a way that each blockface as only one
unique boundary condition.

Starting point for the grid generation is a singularity me-
thod with singularities placed in the nose of the center body
and the cowl. The exact location can be prescribed by in-
put to influence the behaviour of the grid lines in the vicini-
ty around the noses parts to get gridlines nearly orthogonal
to the contour.



Using such a singularity method, there is no direct influen-
ce upon the final point distribution throughout the total
domain. Thercfore we use the following subsequent steps to
get an improved mesh which also meets the requirements ol
a multi-level as well as a multigrid technique:

Prescribe and limit the outer farfield boundary.

Prescribe the behaviour of the wake of the cowl to
avoid cells with high aspect ratios near the upstream
farfield.

Shift the i-lincs in such a way that the i-index at the
block boundaries meets the requirements of a multigrid
method.

Revise the point distribution in j-direction to increase
the grid density at the body surfaces.

Optimize the grid generated so far by applying a 2D-
optimization method and/or an smoothing operator.

The optimization method used comprises the solution of a
partial differential cquations of the form ( here for 3D ) of
a Poisson equation /16/,/18/:

fxx + {yy + fzz - P(f,n,?.} (I)

N + Ny, + 0. = Q(€n,7)
7a + 7, + 7, = R(§1,7)

where (§,n,7) are the computational, and (x,y,7) the physi-
cal coordinates. P, Q and R are source terms which control
the interiour grid spacing. The above equations can be
transformed to the computational coordinates (£,7,7) by
interchanging the role of dependent and independent vari-
ables. This leads to a quasi-linear elliptic system of equa-
tions:

AXg 4+ BX,y + CXg + DX+ EX, + F X, = 0 (2)

wherein the X = (x,y,7) are the cartesian coordinates of the
grid points. These equations are solved for specified re-
gions of the domain by succesive line over relaxation
(SLOR). The coefficients A to ¥ are constant or specified
functions used for grid control. The grid control terms are
defined along each block boundary and then interpolated
across the interior grid. At the boundaries, the values are
estimated by the condition, that all derivatives normal to
the boundary in equation (1) vanish.

Across the boundaries of such a grid block a suitable
smoothing operator was applied to avoid kinks in the beha-
viour of the gridlines.

The final section grid can be seen in Fig. 2.2. IT has at le-
ast two features which schould be mentioned. One is that
special care has been taken to design the grid in the nose
region of the center body. The other point is the increased
grid density at the location of the actuator disk and the fact
that the i-lines became here also (x= const.)-lines ( Fig. 2.3
). The actuator disk plane is designed to be an internal
boundary and has also to match the multigrid require-
ments. It has been placed in the midplane between both
propellers. Fig. 2.4 shows a view of the total surface grid
while Fig. 2.5 represents a crossection at the location of the
propfan. The increased grid density towards the surfaces
can be seen quite clearly.

After the final step of rotating the total grid is separated in
i-direction into the six blocks according to the designed
block structure.

140

Flow Analysis Method

Governing Equations
The Fuler equations describing three-dimensional, unsteady
and compressible flows in conservation form read

oU , oFl , a2 , o3
At + Ox + oy + oz 0 @
where:
B
P
pu
U=] pv (@)
pw
| E
pu pv pw
pui+p puv puw
Fl =| puv , R=|pv+p |, FPB=|pw
puw pyw pw + p
| (E+ p)u (E+ p)v (E+ p)w

with density p and mean total energy per unit volume E:

E=pe+0.5u’+ " +w’) (5)

The perfect gas equation of state is used to define the mean
pressure p via the internal energy e:

p=(y—1pe (6)

Finite Volume Method

Applying equation (3) intcgrated in space to each cell of
the computational domain separately where all physical
properties are defined to be constant the resulting system of
ordinary differential equations are solved in time by the fol-
lowing explicit 3-stage Runge-Kutta-like multi-stage me-
thod /11/.

u® ="

W Z 0 _ g p®

u? =4 -aq, Pu(;) (7
WD =0 glp,®

£ = u(-'i)

where n denotes the previous time-level and P represents a
spatial central difference operator. Due to its cffectiveness
as well as to robustness the 3-stage scheme (7) has been
applied for all calculations. According to the necd to damp
out high frequency error during the multigrid cycle the fol-
lowing coefTicients arc used.

a, =0.60 a, = 0.60 a;=1.00 (8)
Filtering Techniques

To prevent an odd-even decoupling, blended second and
fourth order artificial dissipation /11/ is used. If the filtering
technique is applied only once, stability analysis indicates
the best damping property as well as the largest extension
of the stability region to the left of the real axis giving [ree-
dom in the introduction of dissipative terms. In practice,
the fourth order filter is active throughout the computatio-
nal domain providing a back ground damping except in
areas with larger pressure gradients where the second order
filter is switched on. Special filter formulations at solid
walls minimize the numerical error. Across block faces it is
insured that the construction of the filter terms across these
boundaries are the same as inside each block. An special
filter function has been applied in the nose part of the cen-
ter body decreasing the influence of the 4th-order term to
zero for the i- and j-direction while approaching this parti-
cular point.



Block Logic

The newest version of the flow solver is very flexible with
regard to the block logic. The different blocks may be dis-
tributed arbitrarily and arranged in the way of a lincar
graph. Only the neighbouring blocks which border on the
current block and/or the kind of boundary condition have
to be known. These is done by a five digit integer input
variable. Several further improvements have been coded in
the meantime. Across internal block boundaries index ran-
ge reﬁnem.ents as well as coarsenings arc allowed today and
segmentations arec possible. In principle the solution se-
quence is prescribed by the place of each block within the
linear graph but there is also the possibility to solve blocks
only every second or third cycle ( for blocks near the far-
field ) or to solve some other blocks for example twice or
even more during cach cycle. Also it may be possible to
solve different equations inside cach block. It seams to
make no sense to solve for example the 31) Navier-Stokes
cquations throughout the total computational domain whi-
le viscous effects are only concentrated around the gecome-
try and in wake or mixing regions.

Boundary Conditions

As mentioned above the boundary conditions for cach
block face must be known. Internal block interfaces are
treated as in an unblocked domain. At the solid walls
boundary no-flux conditions are used combined with a
pressure cxtrapolation to the wall. The flarficld conditions
are based on the introduction of Riemann invariants /9/ for
a one-dimensional flow normal through the boundary. FFor
supersonic flow however, all values are fixed for incoming
flow and linear extrapolation are used for outgoing Mow.

Beneath this standard conditions a lot of others havc been
incorporated such like:

!nﬂow and outflow conditions for internal or combincd
internal external problems.

Actuator disk conditions for cases with propellers, pro-
pfans or jets ( sec next part ).

Special conditions for singular lines or points if onc
block face has such an irregular shape.

A condition to conncct block faces by itsell in C-type
grids for example.

Propeller Simulation

The propeller is simulated by introducing an actuator disk
along a computational mesh plane as proposed by /8/. Both
tractor as well as pusher types can be treated by the current
version of the code. Because of the C-type mesh used the
disk is represented by a number of rectangular cells and is
not a real circle. If the distribution of the total pressure p, ,
the total temperature 7, and the swirl angle § is known
upstream of the disk the problem can be solved as follows:

Iixtrapolate the velocity ¢, from downstream. Calculate the
Mach number M, by use of g, and the total temperature 7,
(dimensionless quantity as usual).

M} =q;/(yTo—0.2}) (7

The static pressure p, can be obtained from M, and p,
through the isentropic rclation.

= PJ(1. +02M2)* (8)

In connection with the known swirl angle § the velocity
components i, , :
v;, and w, can be computed. Finally the density p, is calcu-
lated by the definition of the total enthalpy /7, The conti-
nuity across the disk i.c. the normal mass flux pg, is used
as boundary condition for the upstream part of the disk.
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Using this approach a problem ariscs with combining pro-,
peller simulation and Navier-Stokes calculations wheie to-
tal pressure losses are present in the boundary layer and in
separated flow regions. It is obvious that a propulsion sy-
stem changes the local flow properties instead of fixing an
absolute level. So the total pressure p, is rather calculated
by adding a prescribed delta p, to the local value in front of
the disk. The same problem may occur in a weaker form
during Euler calculations if total pressurc losses or gains
are derived.

Acceleration Techniques

Introducing the residual averaging approach /11/, i.e. col-
lecting the information from residuals implicitly, permits
stable calculations beyond the ordinary Courant number
limit and accelarates convergence. Other acceleration tech-
niques are the enthalpy lorcing, the usc of the local allowed
maximum time step and at last a multigrid method. Becau-
se of the actuator disk boundary condition the enthalpy
forcing idea can not be used. Throughout all calculations
three grid levels are used with at Icast three multigrid levels
in the finest grid.

Results

Two selected cases have been studied both being special
design points. The first is the maximum climb at M = 0.8
Alpha = 0.0 degrees and the other is the most critical ta-
keoff case at M = 0.25 Alpha = 24 degree. The ratios of
the total pressure across the actuator disk is shown in Fig.
2.6. IFor the increase in total temperature a isentropic efTici-
ency of n =.9 is assumed.. Because the propfan syste com-
prises two counter-rotating propellers no swirl angle & has
to be considered.

The 3D-Euler calculations are performed to see the trans-
onic effects and to get information about the three dimen-
sionality of the flow. These problems have not or only in-
sufficiently becn resolved by the streamline method used in
the design process.

Maximum Climb Case

In the maximum cruise casec at M = 0.8 and @ = 0.0 de-
gree the question is il high supersonic Mach numbers may
occur anywhere in the flow ficld. Tig. 2.7 shows the cp, the
Mach number and the total pressure behaviour around the
cowling and the centerbody. Because this casc is a symme-
tric one only the upper part of the flowficld is presented.
The work of the fan can be secn quite clear by the 25%
increase in total pressure. Becausc the cp-value is normali-
sed with p sub infinity it is positive behind the disk alt-
hough the flow is accelerated. The Mach number distribu-
tion shows a supersonic [low region at the inner side of the
cowl just behind the nosc caused by the shape of cowl sur-
face. After a small subsonic part the [low accelerates to
supersonic again towards the actuator disk. Through the
disk and behind the [low is subsonic because the local
speed of sound is incrcased by the total temperature chan-
ge. The acceleration at the center body is quite continous.
A linc plot around the surface makes the situation more
clear ( Fig. 2.8 ).

Takeoff Casc

The takeolT calculations at M = 0.25 and @ = 24.0 degree
is a rather critical case. As Fig. 2.9 shows is there a region
of high total pressure losses at the inner side of the lower
part of the cowl. This losses originate from the nose as
Iig. 2.10 illustrates where Mach numbers up to 1.8 are
achieved at the leading edge. Because of the high angle of



attack the stagnation points is located relatively far away
from the nose at the outside of the cowl ( Fig. 2.11 ). The
acccleration of the flow around the now ” wrong shaped ~
cowl gecometry leads to such a high machnumber peak. The
total pressurc losses on the other side lead to flow separa-
tion in the region of deceleration in front of the disk as Fig.
2.10 also indicates. I'ig. 2.12 shows thc machnumber distri-
bution for the mid planc.

The 3D-Euler calculations show, that it is necessary to
modily the cowling contour in the nose region to guarantee
undisturbed operation of the rotors for the most critical
operation points where especially in the takeolT case non
satisfactory results have been obtained.

Conclusion

A 2-d streamfunction method for axisymmetric flowfliclds
and a 3D-Euler method have been successfully used to sup-
port the design of an counter-rotating shrouded propfan (
CRISP ). The computational results for some critical flow
conditions have been presented. They stress the capabilitics
of both methods.

It has been shown that the Dornier blockstructured 3D-
[uler method is capable to solve three-dimensional flow
problems with incorporated propulsion systems and that it
is very flexible in the applicability.
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Fig. 2.5: Grid in a Crossplane
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. 2.7.a: Cp-Distribution (M = 0.8 Alpha = 0.0 )
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Fig. 27.b: Iso-Machlines (M = 0.8 Alpha = 0.0 )
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Fig. 2.8:  Machnumber around the Contour of Cowl and Center
A actuator disk Body

(M = 0.8 Alpha = 0.0)
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Machnumber Distribution ( M = 0.25 Alpha = 24.0 )
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Fig. 2.11:  Velocity Vectors ( M = 0.25 Alpha = 24.0 )
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Iso-Machlines ( M = 0.25 Alpha = 24.0 )




