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égstract

Turbulent flows through single and
tandem cascades of airfoil are numerical
simulated using finite analytie numerical
method. The k-& turbulent model and wall
function approach are utilized to des-
crible turbulent flow process and wall-
proximity region in the numerical simu-
lations. In order to solve more practical
engineering problem, the body-fitted
coordinate transformation is incorporated
in the finite analytic method in the
present study. The finite analytic method
is firstly introduced into the numerical
calculations of cascade . flow fields., In
the present study, the excellent agreement
with other's solutions and experiment data
is obtained.

EL IntrodugE}gg

Now, the tandem cascade of airfoil has
been used on stators and rotors in some
fans and compressors of aero-engines, in
inducers and diffusers of high-pressure
centlrifugel compressors.{t,2] It seems to
be one of nopeful way to raise stage load
and enlarge the range of stable operation.

There have been several reseachers
studid the flow fields through the tandem
cascade of airfoil using various numerical
methods, such as, Spralin{3) (1951),
Mikolgjczuk 431 (1970), Sanger (57 (1971),
and Bammert {6] (1960). But, as its geome~
trical cownplicacy, the turbulent flow
fields through tandem cascade of airfoil
has never veen studid numerically until
now.

A recently developed finite analytic
method (FA) is adopted in the present
study to .study the incompressible, steady
and turbulent flow through the single and
tandem cascades of airfoil in general cur-
vilinear coordinates. The basic idea of
the FA is to invoke the analytic solution
of governing partial differential equation
in the numerical solution of the problem,
In the FA method, the total calculating
region of problem is divided into a number
of small subregions in which the governing
equation, if nonlinear, such as the Navier
-Stoltes equation is locally linearized,
The local analytic solution is then exp-
ressed in an algebraic form, relating an
interior nodal value of the subregion to
its neighboring nodal values. The system
of the algebraic equations derived from
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the local analytic solution is then
solved to provide the numerical solution
ol the total problem,. {71

At present, there are many numerical
approaches to deal with the Navier-Stokes
equations, such as the finite difference
(FD) method and finite element (FE)
method, Many successful application of
FD method in turbulent flow field calcu-
lations have been obtained (83} . But, with
FD method, the instability of solution
of difierence equations is often encoun-
tered when the character of the partial
differential equation is not properly
considered. An error known as "numerical
di ffusion' may result wnen the nonlinear
or quasi-linear term in partial differen-
tial equation is not approximated (9] .
Fi method is also widely used in the
numerical calculations of the Havier-
Stokes equations. Instability also occurs
in solving the system of algebraic equa-
tions derived from the FE method at high
Reynolds number flow Cie) ,

The FA method, developed by Chen et
al, {7.1], is adopted in the present study
to solve the turbulent flow through
single and tandem cascades of airfoil. As
the FA solution is derived from local
linearized analysis of partial differen-
tial equations, it has good accurate, and
also due to its analytic nature of solu-
tion, it puildsin automatically upwind
shifting of influnce for the neighboring
nodals on the solution, As Chen said, the
stability of the algebraic equation
derived from the FA method is quite good.

Although the general principle of the
present study follows the original idea
ot Chen, the present study suffers seve-
rely from geometric limitation since in
the original work of Chen the Navier-
Stokes equations were written in Carte-
gian or cylindrical polar coordinates and
the numerical calculating was only done
in such coordinates. Applicatioa of FA
method to curved surface such as the
single and tandem cascades of airfoil
must involve interpolation between grid
points not coicide with the boundaries.
This may adversely affect the accuracy
of the solutions. In the present study,
this geometric limitation is removed by
adopting a general curvilinear coordinate
system, Thus the FA method is introdued
into the numerical solutions of single
and tandem cascades of airfoil in the
general curvilinear coordinates.



At present, one cun not solve the N-§
equations directly as the limitation of
computer storage. The time-averaged N-§S
equations and k-& turbulent model has
been used in the present study. The wall
function method is also employed to deal
with the wall-proximity region and boun-
dary conditions on solid surface.

The numerical simulation of flow
through a single cascade of airfoil is
very important in the aerodynamic design
of turbomachinery components. As a test-
ment, the turvulent flow through a single
cascade of NACA6S alrfoil was simulated
using the FA method in the body-fitted
coordinate system, The numerical results
compared with the experimental data show
excellent agreement, The turbulent flow
through a tandem casacde of airfcil, then,
was calculated using the same method. The
numerical results compared with the
authors' experimental data is guite good.

II. Numerical Hethod

Governing Equations

The present study is based on the
numerical solution of two-dimeunsional
form of the time-averaged continuity, N~-S
and high Reynolds number k-& turbulent
equations. With this approach, the equa-
tions for the present study can be written
in the general form in Cartesian coornate

2PUP)fax+a(PVP) oy =
2 22 Jax)/oxt ¢ (G aP/oy)/oy
+ 5

where ¢ stands for different aependent
variables for which the equations are to
be solved. The equations used in the pre-
sent study are summarized in the Tab.l

(1)

Tab.l Summary of Governing Equations

Equation ¢ /% Ss
Continuity 1 0 0

-o0/d x+2(ypa U/ax) /0%
+o Uy 2 V/ay) /oy

X-momentum U a+i4

-2pk/3
Y-momentum V 4+t -op/ay+d{lyil/oy)/ex
+ 222 V/2y) /0
~2pi3 7
Turbulence o
energe k % PP-re
Energe Lz - Y
dlis.::,:'Lpatimn8 "L+°§ Ci PER/k - CaPEVK
where My =Cup KVE
and Pz (2((2U/o )+ (2V/ay S )

+((2U/2y) + (2V/2x))*)
and the constants are
Cu Ce Ca % G
0.09 1.45 1.90 1.0 1.3
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The turbulence scalar transport equa-
tions are only valid for full developed
turbulent region. An additional model must
be introduced to treat the laminar sublayer
region on the wall-proximity region. The
wall function method was used in the pre-
sent study to treat wall-proximity region
and to eliminate the large number of grid
points needed to resolve the laminar sub-
layer region. The wall function is given
as

- L .
wEg EYT ) a0syts12 (2)
v = 0O
{u*= y* 12 >yt>0 ( 3)
v =0
where ut = ufug , yrzy-w/V

where ue is the friction velocity and
ul=t, /(PU*), T, is the wall shear stress.
E and Hare constants.

In order to solve more practical engi-
neering problem, the body-fitted coordi-
nate transformation was incorporated in
the present study.

t=f( x, ¥y )
7':’?( Xy y)

When new independent variables § and #
are introduced, the form of the governiug
equations will be changed as follow

(5)

where coefficients A, B, C and D are ge-
nerated by coordinates transferring. G is
regarded as source term.

The scurce term in Eq.5 can be elimi-

nated by further assuming that

P'=¢ - (a8 +Br )G/« 2<A’+(B;>§

(&)

2hy% + 2B =Codr + Dy, + Gy

Then
2% + 2B = Gy + D%y, (79

Finite Analytic Method

The basic idea of the finite analytic
method is to incorporate analytic solution
in the numerical solution of linear or
nonlinear partial differential equations.,
In the FA method, the whole calculating
region of the problem is divided into a
number of small elements in which the go-
verning equation is solved analytically.
An algebraic equation which approximates
the governing equation is then obtained
for numerical solution.

In term of the notation shown in Fig.z2
for a typical grid nodal P enclosed in its
cell and surrounded by its neighboring
NC, SC, WC, EC, N, NW, SE and SW, an
analytic solution of governing equation
can be obtained in the element due to
its simple geometry. However, if the go-
verning equation is nonlinear, such as
the Navier-Stokes equation, the equation
may be locally linearized in the element
so that an analytic solution can be ob-
tained, In this fashion, the overall non-



linear effect can still be approximately
preserved by assembly of local linearized
analytic solutions which comstitute the
numerical solution of partial differen-
tial equation over the whole calculating
region of the problem.

In order to derive an analytic sclution
in an element, as shown in Fig.Z2, the £q,7
is linearized, i.e. the coefficients in
Eq.7 are assumed to be constants in the
element., The central node P 1s surrounced
by its four voundaries (easl, west, north
and south ). The ellipticity of Eg.7 in
space requires that the four boundary con-
ditions ¢ , &, » $ s and R, be specified.
We choose the approximate functions from
class functions which satisfy the governing
equation to approximate the boundary con-
ditions where three nodal values are avai-
lable for each boundary. For exaumple, the
north boundary condition is approximated
by

B(E)= a,(exp(2A8/C) - L)+bgec, ( 8 )
where
ay = B+ By ~2%)/ (4sinh(Ab/C))

by =( B+ By —coth(AD/C) (By+ Bs -2%,))/2h
(9)

The boundary conditions for south, west
and east sides can be similarily approxi-
mated as north side. With the coefficients
in Eq.7 considered to be constants in an
element, a simple analytic solution can be
obtained for Eq.7 by method of separation
of variables when proper boundary condition
is specified. The local analytic solution,
when evaluated at the center node P of the
element, gives the FA algebraic eguation
relating central nodal values # and its
eight neighboring nodal values as

7 = CacRACuRhct Cueet G+ Coni
+ Coutr +ConFrutCre Pe
Substitute relation Eq.©6 into Bq.10,
we get the FA algebraic equation

% = Coefirt CuePe "R * Cre B+ Conon
+ C;g@g"cywéw“'cwe¢we*cf g

€
Cp= (Ah (Cow*Cry+Cuwes Cae ~G~Csp) .
+Bk (Cy+Co+Com Cua =mw Cw/2/ (K+BY)

g=G - b (12)

The FA coefficient C's are given in
the appendix. ‘hese coefficients in general
are the function of 4, B, C, D, h and k.
They are tabulated for various Yalues of
A, B, C, D, h and k and stored in the com-
puter for later use. )

Although the overall solution procedure
is similar to that of the SIMPLE procedure
8] , we employed an ordinary griq systen
because of simplicity, instead of the sta-
ggered grid system suggested py Patankar .
In the FA method, the algebraic egquation
is developed from nine points scheme, no
pressure osilation occured [14],

-— 4
Ca —ﬂvc

( 10)

(11)

wher

Generation of ngr@igaﬁq-System

The grid generation scheme developed by

Sorenson and Steger (12]is adopted in the
present study. In the scheme, the body-
fitted coordinates are generated by solving
the elliptic equations

~2P XtV Xy
—ZPY17+ YY;,
After the grid is constructed, a

simple exponential stretching tecihnique is
used to cluster the points neur the solid
surface. This is done in order to resolve
the high gradient flow within the boundary
layer. The resulting grid system is illu-
strated in Fig. 3.

& Xy

=0
mYﬁ =0

(13)

I1I1. Results and Discussion

Turbulent Flow through Single Cascade

The objective of the present study is
the investigation of the turbulent flow
through the tandem cascade of airfoil, and
comparison of the computed results with
the experimental data. As a: testment, the
turbulent flow through the single cascade
of NACA6S ailrfoil is simulated firstly
because the surface pressure data of such
cascade is availableliz). We calculated
only the case of the single cascade of
NACAGS airfoil at 13.1° incidence. The
Reynolds number based on chord and upstream
condition is 2.86X10, The upstream turbulent
kinetic energe is assumed to be O,4%. The
grid system is shown in Fig.3(a). 4 51X19
grid points are used. The front and rear
bounbaries are located 1.0 and 1.5 chord
length respectively. For inlet voundary
condition, the velocity, turbulent xinetic
energy and turvulent energy dissipation
rate are given and for outlet boundary con-
dition, the velocity components and the
turbulent scalars are extrapolated from the
inner. solution by assuming that the first
derivatives of flow properties along{ =const

lines vanish. The velocity profile
normal to the exit plane is then adjusted
to satisfy the principle of the global con-
servation of mass,

The calculation was carried out in the
transformed calculating plane, and the
convergence was obtained from initial
start in about 60 iterations with the con-
vergence being determined by checking the
flow field residual less then 3.0X107., The
calculation for single cascade of airfoil
required about 27 minutes of IBM4341 CPU-
time,

The comparison between measured data
and predicted result for surface pressure
distribution are given in Fig.4. The surface
bressure coefficient is defined as

Cp=(p, - p )/ (A W2) (14 )

where reference values are taken at upstream
boundary. As can be seen, the agreement is
excellent. Only slight discrepancies are
shown near leading and trailing edge,

Turbulent Flow through Tandem Cascade

As the method and the procedure deve-
loped by authors have been proven, the pre-
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sent work is to calculate the turbulent
flow through the tandem cascade of airfoil
and comparison of the calculated result
with the experimental data. We calculated
three cases of the tandem cascade of air-
foil at incidence angle of 105 0’and ~10°
respectively. The Reynolds number based on
the front chord and upstream condition is
2.0X10% The upstream turbulent kinetic
energy is given as measured value O,4%.
The grid system is shown in Fig.3(b). A 69X
21 grid points are used. The front and
rear boundaries are located at 1.0 and 2.0
front chord length respectively. For inlet
boundary condition, the velocity, turbulent
kinetic¢ energy and turbulent energy dissi-
pation rate are given and for outlet boun-
dary condition, the velocity components and
the turbulent scalars are extrapolated irom
the inner solution by assuming that the
first derivatives of flow properties along
= constant lines vanish. The velocity
normal to the exit plane is then adjusted
to satisfy the principle of the global con~
servation of mass.

The calculation was carried out in the
transformed calculating plane, and the
convergence was obtained from initial
start in about 80 iterations with conver-
gence being determined by checking the
flow field residual less then 1,0X107 The
calculation for tandem cascade of airfoil
required about 30 minutes of IBM434l CPU
time.

The comparison between measured data
and predicted results for surface pressure
distribution are given in Fig.5. The sur-
face pressure coefficient is defined as

Cp= ( p - B, )/ (EW2) (15)

where reference values are taken at up and
down stream boundaries respectively. As

can be seen, the agreement is quite good.
Only slight discrepancies are shown between
front row cascade and rear row cascade zone

1V, Conclusions

The FA method developed by Chen et al.
for the two-dimensional Navier-Stokes equae
tions and energy equation are further de-
veloped to study turbulent flow in the ge-
neral curvilinear coordinate system. The
incompressible, steady and turbulent flow
through the single and tandem cascade of
airfoils are simulated using the FA me-
thod. The k-& turbulent model and wall
function are used in the present study. The
comparison between the calculation results
and the experimental data shown good pre-
dictions of the surface pressure distribu-
tion. Although further study may be
required, the results here are quite encou-
raging.
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Appendix
C,.=E-exp(-Ah/C - Bk/D); G,=E.exp( Ah/C-Bk/D)
C.zE.exp(-Ah/C + Bk/D); C.=E exp( Ah/C+Bk/D)
C..EB-exp( Ah/C);  C.=EB-exp(-Ah/C);
CyzEA- exp(Bk/D );  C, =EA exp(-Bk/D);
C.=(an(c, +C_ +C, -C,-C_-C..)
+Bk(C_+C . C, ~C,-C, -C))/(24r2B")
(E, +E/)/2 -(Ab/C)- coth(Ah/C) E,
-(Bx/D)- coth(Bk/D) K.
EA = 2(Ah/C) cosh(Ah/C) coth{Ah/C) E,
EB = 2(Bk/D)- cosh(Bk/D) - coth(Bk/D) E|
Eﬁ-E;::l/(Zcosh(Ah/C)-cosh( Bk/D))
E/ = (D/C)- (b/k)" E,+ (Ak-tanh(Bk/D) - Bh-
tanh(Ah/C))/ (4(Bk/D) Ak- cosh(Ah/C)

E =



cosi_l(Bk/D))
E=> (-(-1)/%,, - h)/an/cy + GX_ b))

TzBShQQMﬁ k))
An=(mic /20); 4,=(& /C+B*/D+CA.); m 1,2,..
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