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Abstract

A numerical method for computing flow fields
about fighter-type aircraft is described in the
paper. The time-dependent Euler equations are
discretized on a single-block mesh in finite volume
form and integrated to steady state via a Runge-
Kutta scheme with a local time step. Convergence
is accelerated by employing enthalpy damping and

residual smoothing, in addition to a multigrid
sequencing of the computational mesh. While
specifically designed for application in the

transonic regime, the method can be used efficient-
ly even at supersonic and low subsonic speeds.
Very realistic fighter configurations can be
handled as demonstrated by the examples presented.

I. Introduction

The advent of supercomputers and supermini-
computers has brought the solution of the Euler
equations into the toolbox of the  aircraft
designer. Indeed, methods for solving the Navier-
Stokes equations are available. However, the
current status of turbulence modeling lends a
measure of unreliability to predictions based on
Navier-Stokes formulations. In addition, such
codes require very large running times, even on
supercomputers and, therefore, cannot be exercised
frequently 1in a design environment. Currently,
numerical methods based on the Euler equations
offer an excellent compromise between reliability,
speed, and faithful representation of the flow
field.

In recent years, several methods [Ref 1-11]
have been proposed for the solution of the Euler
equation. Key elements that determine the extent
to which a code will be used in a project environ-
ment are its relative ease of use and its running
time. A1l numerical methods are based on a
discretization of the flow equations, which in turn
relies on a discretization of the physical space
about the configuration to be examined. Grid
generation has matured to the point that meshes
about very compiex configurations can be generated.
The grid generation step can be very complicated,
however, and, at times, it can by carried out only
by experienced users. It can, in addition, be time
consuming, a feature that may be unacceptable in a
preliminary design stage.

The space about relatively simple shapes can
be represented gquite well by a single-block struc-
tured mesh. In the present context, a structured
mesh is one that has a definite topological struc-
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ture. Single-block meshes are relatively easy to
generate. For more complicated shapes (e.g., an
aircraft with wings, nacelles, horizontal and
vertical tails, etc.), composite meshes made up of
several grids separately generated for each indivi-
dual component would seem more appropriate. In
such composite meshes, the individual grids, which
may be topologically different, either meet at pre-
defined interfaces [as in Ref 12, 13] or overlap
[as in Ref 14]. The generation of grids in the
latter class is considerably easier than that of
grids belonging to the former class. A recently
introduced, alternative discretization is provided
by unstructured grids [Ref 15 and 16]. However,
methods based on unstructured grids have not yet
reached the maturity level of methods based on
structured grids. With a mesh that is fine enough
to resolve a flow field adequately, the storage
requirements and running times of such methods are
beyond the capacity of most current computers and
the availability of most users. At present,
composite grids offer the most versatile approach
to the analysis of the flows about complex config-
urations. Unfortunately, these, too, have draw-
backs. First, as mentioned above, the grids are
not generated easily. Second, the existence of
interfaces or overlaps between the constituent
grids requires special treatment of such artificial
internal boundaries, inevitably leading to a deter-
ioration of the convergence qualities of the under-
lying flow-solution scheme and, as a result, longer
running times.

As will be illustrated in this paper, a
single-block H-0 mesh, which «can be easily
generated, can be used to represent the space

around a large variety of configurations, including
rather complex ones. With such a mesh, a fast
numerical scheme can be designed to take advantge
of the ordered sequence of mesh cells without the
encumbrance of internal mesh boundaries. Such a
numerical scheme will be described in this paper
along with the grid generation process. The basis
of the method rests on an algorithm by Jameson [Ref
17] for the integration of the time-dependent Euler
equations to steady state via a Runge-Kutta scheme.
Acceleration to steady state is achieved by the use
of a local time step. Additional acceleration is
provided by smoothing of the residuals and by
enthalpy damping. Finally, the ordered, regular
mesh system makes it possible to imbed the numeri-
cal scheme in a multigrid sequence of meshes to
provide further acceleration. Excellent conver-
gence rates have been exhibited by this method, and
flow fields over a wide variety of aircraft config-
urations have been computed in as little as 5-10
min of computing time on a CRAY-XMP-class machine.
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[I. Discretization of the Euler Equations

An inviscid, rotational flow is uniguely
defined at every point in space by the values of
the density (o), the three Cartesian components of
velocity (u,v,w), and the total energy (E). The
Euler equations describe the motion of such a flow
and are derived from the physical laws of conserva-
tion which embody the notion that, in the absence
of singularities, the time rates of change of mass,
momentum, and energy contained within any given
volume must be equal to the net flux of the
quantity through the boundary of the volume. In
integral form, the equations are written as

Sg 017w Wag + 1 M. as - o (1)
Q 1Y)

where t is the time, o denotes a given volume, and
a is the volume's boundary. w(m) denotes the five
scalar quantities that are conserved and FM) jig
the corresponding vector flux. In a Cartesian
coordinate system, the variables and fluxes are

given by
W) oo p(D lou,ov,ou]’, (2a)
W@ < ou, F@ - i 4 p, suv,oud T, (20)
W3 <oy, F3) louv,ov? + p, owul’,  (2¢)
WD < o, FO) 2 ouwsovw,ow? + p1T,  (24)
WO = 0e, FOO) 2 [ohu, ohiv, otiw] T (2e)

Assuming a perfect gas with a ratio of specific
heats equal to vy, the pressure, p, -and total
enthalpy, H, can be expressed in terms of the
density, velocity, and energy to close the system

of equations. Thus,
1
E= T;%TTE + 5 (W2 +v2 + w2) . (3a)
H=E+ % . (3b)

The solution to a specific flow about an aircraft-
Tike body is obtained numerically by first discre-
tizing the total external space into a large number
of hexahedral cells and applying Eq (1) to each
cell. It is assumed that the unknown variables are
to be solved for at the nodes of the mesh and that
each node (i,j,k) has a control volume consisting

of the eight cells meeting at that node (see
Fig 1). At each node, then
8 8
d (m) (m)
s (2 Vv )W+ Q" =0 )
dt pgyp 0 n nzl n

Here, V, is the volume of the nth cell and Q (™ is
the net flux through that cell. Denoting by S, the
directed area of the u¢-th face (of the n-th cell)

and by Fgm) the mean flux vector across that face,
the net flux through each cell is given by

(5)

- R s,

In Eq (4), the fluxes across internal faces cancel
exactly and, therefore, the net flux through each
control volume is the sum of the fluxes through the
external faces only. In Eq (5), S, is to be
computed by performing a cross-product of the
vectors joining diagonally opposite corners of the

9'-th face, and Fg(m) is to be computed using

averages of the values stored at the four
constituent corners of the face.

Spurious oscillations could be set up by.this
discretization scheme and can take two forms. One
type of oscillation can occur on either side of
discontinuities in the solution, such as shocks.
An odd-even point oscillation mode, which would
give a zero net contribution to the flux balance in
each control volume, could also be generated. It~
is possible that the latter mode might be suppress-

ed in a steady-state solution by the boundary
conditions, but it could adversely affect tran-
sients. A numerical device to control such

oscillations is to add to Eq (4) a dissipation term
that goes to zero in the Timit of zero mesh
spacing. The dissipation has a 1low background
level everywhere in order to suppress the odd-even
point oscillations, and it 1is increased in the
presence of a physical discontinuity in the flow
field. The dissipation is constructed in a way
that preserves the conservation form of the
eqza ions. It is implemented by sub?ricting from
Q,\™ in Eq (4) a dissipative flux, D,\™, which is
tne sum of three terms separately constructed for
each of the three computational coordinate direc-

tions. The term in the i-coordinate direction is
with
(m) _
P T i, gk T g0k (©)
with
= o[ (2) _ _(4)27,(1) (1) .
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FIGURE 1. Control Volume Around Point i, j, k
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Similar terms are define
tions. In Eq (7), &y

operator, and 5(2) and 5(4) are adaptive coeffic-
ients. The scaling factor, r, is based on an
estimate of the maximum local wave speed. This is
the speed at which the fastest wave could cross a
mesh interval and, denoting by at* the local time
step used to integrate Eq (4), it would be propor-
tional to 1/at*. The amount of background dissipa-

tion 1is controlled by 5(4), and the dissipation
near discontinuities is controlled by e(z). The

discontinuities are detected by making (2) propor-
tional to a normalized second difference of the
pressure.

for the j and k direc-
is a second-difference

This formulation introduces dissipation terms
that are of third order, except in regions of steep
pressure gradients. The discretization of the
convective terms can be shown to be second-order
accurate.

ITI. Time Integration

With a computational mesh that is independent
of time, Eq (4) can be rewritten as

G -

dat (8)

where R(w(m)) denotes the residual and it is given
by

R™M) = - Q57 D
Tads e

i3, (9)

and Qi,j,n,’ Di,j,n are, respectively, the total

convective flux and the total dissipative Fflux

Vi,j,k' The steady-

state solution is obtained by integrating Eq (8)
with a multistage Runge-Kutta scheme. If only the
steady-state solution 1is of interest, a locally
varying time step At can be used. As discussed by
Jameson [Ref 18}, this class of schemes can exhibit
excellent stability properties and very fast con-
vergence rates.

through the control volume,

With an N-stage scheme, the advance from time
(t) to time (t+at) in each variable W is computed
by the following recursive formulas:

w(n):= W(t) (10a)

W) o H(E) - oy ot rR(W(9)y (10b)
(™ = ) -0y ot r(n-1)) (10¢)
W(t + at) = Wl (10d)
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A five-stage scheme, with oy = 1/4, ap = 1/6,
ag = 3/8, ag = 1/2 and ag = 1, has worked véry well
ih practice. Also, in concert with the findings of
Jameson [Ref 19], the artificial dissipation terms
can be frozen at the values computed during the
second stage. This strategy not only decreases the
computing time, but also increases the stability
margin of the scheme.

IV. Residual Smoothing

As indicated in previous studies [Ref 3, for
example] computational efficiency can be enhanced
by a smoothing of the residuals. The maximum
permissible time step is set by the local Courant
number. This limitation is relaxed if each resi-
dual is replaced by an average of its neighbors.
This average, denoted by R, is computed implicitly
by solving

2 2 2y 5 .
(1- exsx)(l - eysy)(l - ezsz) R=R (11)

where R designates the unsmoothed residual, si, 55,
62 are second-difference operators, and ey, Eys €

z
are smoothing coefficients.

V. Enthalpy Damping

Another useful technique for accelerating
convergence to the steady state in the case of a
homoenthalpic flow is enthalpy damping. This
technique exploits the difference between the
transient value of the Tlocally computed enthalpy
and its known, steady-state value, which is also
the value at infinity. One can assume that the
rate of change of each variable is proportional to
this difference. Thus,

My G - H)=0 (12)

at

where 8 1is a user-defined constant. This
information can be used at the end of each time
step to obtain a new improved estimate of a
variable W by correcting the value # computed at
the end of the Runge-Kutta step through

W=0+psatWR-H)=0 (13)
In practice, a slight modification is needed when
applying this type of correction to the energy
variable. In this case Eq (13) is modified to

(E) - (FE) + gat[oE + B - #H_] = O (14)

VI. Multigrid Strategy

The evolution in time of the solutfon s
dependent on the mesh spacing through the
limitations that the grid sets on the Courant
number. Even though these 1limitations can be
relaxed by employing a smoothing of the residuals,
the implication remains that the time evolution is
faster on coarser grids than finer ones. It would
seem advantageous, then, to devise a strategy that



would use this faster approach of the steady state
on a coarser grid to generate information that can
be used to accelerate the approach of the steady
state on any given finer grid. Alternatively, one
could look at the time marching to steady state as
an iterative process of reducing the errors (i.e.,
residuals) at each node. Errors are reduced by an
exchange of information between nodes, and during
each iterative cycle, information to any particular
node comes only from nodes involved in computing
the residual at the node. Again, one can see that
an_exchapge of information between two particular
points 1in space takes place faster on coarser
grids. Such was the basic idea of multigrid
schemes when first presented by Brandt [Ref 20].
Here, the scheme described by Jameson [Ref 4] is
followed.

. A multigrid scheme involved the exchange of
information among nodes of different grids covering
the same physical (and computational) space. The
exchange is greatly simplified if a coarser mesh is
generated by eliminating alternate points in each
of the coordinate directions of a given mesh. With
such a setup, one can inject to each point on a
coarse mesh (K+1) the values of the variables W at
the coincident point on next-higher-level mesh (K).
Once this 1is accomplished, Runge-Kutta time steps
can be performed on the coarse mesh. The time step
on the coarse grid is done with a modified resid-
ual, however. The modified residual on the coarser
mesh is obtained by adding to the standard,
computed residual a term reflecting the difference
between the residual computed on the finer mesh and
the residual computed on the coarser mesh using the
values transferred from the finer grid. Thus, on
grid level K+1, Eqs (l0a-c) are replaced by

Ml = T Mg (15a)
“éi% = ”ég% - ap At (Rég% + Py (15b)
wéﬁ% = wéS} - ay At <Réf} * Pet) (15¢)
where Ry, is the residual, as computed on the
K+ 1 mesh and
Pst = QR ) = REY] (16)

is the additional term. QK+1 g s a transfer

operator denoting a weighted average of the resid-
uals at the 27 points nearest the coincident point
on mesh level K (including the point itself). Pr+1

is constant as long as one operates on the K+l mesh
without returning to a higher Tevel. A number of
time steps can be performed on any grid Tevel
before passing on to a coarser level or returning
to the next higher level, In returning to level K,
the correction to W calculated on level K+l is used
to provide an improved value of the variable on the

finer mesh. Denoting by wKil the improved value of

W on grid K+1 after various time steps and after
correcting for any passage to-a still coarser mesh
K+2, an improved value of W can be computed from

+ _ + (0)
We = W+ T ke e = Wged) - a7

Here, the operator IK,K+1 is defined in such a way

that at coincident points of the two meshes the
value of W is simply transferred. At intermediate
points, a trilinearly interpolated value of the
difference between values at two mesh levels is
added to the current value on the finer mesh.

The transfer of information between grids and
the computation of time steps on the coarser grids
obviously entail some computing times. However,
the time steps are performed in only a fraction of
the time needed on the fine mesh, and the projected
reduction in the total number of time steps more
than offsets the cost of sequencing through the
grids. In the current scheme, a typical multigrid
sequence calls for a single time step on each grid
level before passing on to a coarse grid and a
simple transfer of data without any time step in
stepping up through the grid levels. Occasionally,
better convergence has been observed by performing
one time step on the way up through the meshes.

VII. Computational Mesh

In this work, an H-0 mesh is used for space
discretization, and it is generated by combining a
series of two-dimensional meshes around selected
cross sections of the aircraft. Each mesh is
generated by conformal mapping technique in planes
normal to the longitudinal axis of the aircraft.
The technique was originally suggested by Moretti
[Ref 21] and has been used by Siclari [Ref 22] for
computing supersonic flows by space marching tech-
niques.

An arbitrary cross section can be mapped into
a near circle by removing corners through a
sequence of Karman-Trefftz mappings. Denoting by

Z = X+iY the physical ordinate and by ¢ the
corresponding point in the mapped plane,
7-1 -1 <
-2) = (—2)) (18)
z f ZO T+ Zo
where I, s the location of the singularity

and 76 its conjugate value. tn is the external

angle of the corner being removed. The number of
mappings is equal to the number of corners to be
removed, and on mappings subsequent to the first, Z
and Z, are identififed with the ordinates in the

most recently mapped plane. In the near-circle
plane, a computational grid is obtained in a
straightforward manner. One family of 1lines is
given by a set of radial lines centered on a point
equidistant from the vertical and horizontal
extremes of the mapped cross section. The mesh is
completed by a second set of lines wrapping around
the mapped -body. This second set is gradually
distorted to a perfect circle at a predetermined
distance denoting the outer boundary of the mesh.
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A typical cross section of the aircraft may
cut through one or more components (e.g., fuselage,
wing, nacelles, tails), and these may be connected
or separated. In the latter case, the separate
pieces are connected by slits. If slits are
present, care is taken to match up grid points on
either side of the slit. By having grid continuity
across a slit, application of boundary conditions
in the numerical scheme 1is simplified. The
distance to which each 2-D mesh extends is kept
constant. Upstream of the aircraft's nose, the
first mesh plane on the aircraft is extended to a
predetermined . distance with gradually increasing
spacing between the planes. This portion of the
grid s purely cylindrical; then, 1if the first
aircraft mesh plane is very close to the nose, as
it typically 1is, a degenerate axis is present in
the grid upstream of the aircraft. A similar
strategy produces a cylindrical grid downstream of
the aircraft. This part of the grid wraps around a
s1it, since the last cross section includes the
wing's trailing edge and/or wake. In a typical
grid, one-half of the planes is positioned along
the aircraft's length and the other half of the
planes is divided between the upstream and the
downstream portions of the grid. Representative
cross sections of the grid for a generic fighter
configuration are depicted in Fig 2. In Fig 3, the
grid in the symmetry plane and a coordinate surface
wrapping around the aircraft can be seen.

The grid generated about an F-14-1ike aircraft
(wing, nacelle, horizontal and twin vertical
control surfaces) is depicted in Fig 4 and 5. The
wing and both control surfaces have sweptback lead-
ing and trailing edges. In Fig 4 the surface grid
is shown reflected about the symmetry plane. The O
grid around several representative cross sections
of the aircraft are shown in Fig 5. On this
configuration, the wake s1it coming off the wing is
gradually warped to intercept the rearward
horizontal tail. As the back end of the aircraft
is approached, additional wake slits appear between

a) Plane Through Front Fuselage

b) Plane Through Wing

the engine nacelle and each of the horizontal and
vertical tails and the "pancake" between the twin
A1l the slits eventually join to

slit extending to
the grid appears as

vertical tails.
form an "inverted-T"
In the far field,
previous example.

infinity.
in the

N

v
N

N
RO

FIGURE 3. Grid in Symmetry Plane, on Surface,
and on a Shell Around the Aircraft

c) Plane at Trailing Edge

FIGURE 2. Representative Cross-sectional Grid Planes
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For supersonic free streams, a more efficient
use of grid points is to vary the distance to which
the 2-D mesh extends in each cross-sectional plane,
from a small value near the aircraft's nose to a
larger value downstream. In addition, because of
the restricted domains of dependence and influence,
a larger percentage of the grid planes can be
concentrated along the aircraft's length., Such a
"supersonic" grid is depicted in Fig 6.

VIII. Boundary Conditions

At node points lying on the aircraft, flow
tangency is enforced at the end of each time step
by setting to zero any normal component of velo-
city. In addition, fluxes through faces lying on
the aircraft surface are explicitly set to reflect
this condition. Continuity is enforced across wake
slits behind the wing by replacing the values of
each variable at matching nodes by their average.
Similarly, values at nodes sharing a common grid
point on the degenerate axis ahead of the aircraft
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FIGURE 5. Representative Cross-sectional Grid Planes on Aircraft with Twin Vertical Tails

1229



oy
S
‘:

NS
W5
09" 74

LA

FIGURE 6. Typical ““Supersonic’’ H-O Grid on
Biconic Missile Body

are replaced by the average. At the outer boun-
daries of the mesh, appropriate inflow or outflow
boundary conditions are imposed using Riemann
invariants to attenuate the spurious reflections of
outgoing waves into the field. With zero sideslip,
in addition, only one-half of the flow field need
be considered. In this case, symmetry is enforced
on the plane of symmetry of the aircraft.

IX. Numerical Examples

Flows over a wide variety of configurations
and covering a considerable Mach number range have
been calculated with the method. The solution
algorithm is very efficient. In the cases that
will be shown, including those representing extreme
flow conditions, convergence to steady state is
typically obtained in 200-300 cycles. Fewer are
needed for less severe flow conditions. The mesh
topology chosen is capable of treating very complex
bodies as was shown in Fig 4 and 5. Pressure
distributions computed on that configuration for a
Mach number of 0.80 and an angle of attack of 20
deg are shown in Fig 7. The mesh contained a total
of 65 half planes normal to the longitudinal axis
of the aircraft. Of these, half were on the air-
craft and the other half were split between the
regions upstream and downstream of the body. Each
plane in turn contained a 97 x 33 polar-like grid.
Representative portions of these planes were shown
in Fig 5. The computation over this 200,000-point
mesh  requires approximately 12 megawords of
storage. The cross sections at which the surface
distributions are displayed in Fig 7 correspond, in
ascending order, to: Station (30) behind the
glove; Station (35) just before the location where
the wing leaves the fuselage; Station (38) cutting
through the rear/outer portion of the wing and the
pancake/engine region; Station (42) past the
- trailing edge of the wing, where the horizontal and

vertical control surfaces are already present; and
Station (47) close to the tail of the aircraft.
Notice that the solution is continuous across all
wake slits. It is to be pointed out in particular
that at Station (47) where the control surfaces do
not touch the engine nozzle, four separate wake

slits are present. In Fig 7 there is indication of
a shock close to the leading edge of the glove and
the wing. This can be discerned more clearly as a
clustering of contour lines in Fig 8, which depicts
the isomach contours on the body surface and in a
mid-fuselage cross-sectional plane. The region of
supersonic flow can be seen to extend into the
field as a "bubble" leaning toward the symmetry
plane. A region of supersonic flow also is present
on the inboard portion of the wing, just past the
cross-plane that was depicted.

At a Mach number of 0.95 and an angle of
attack of 10 deg, the flow is supersonic over most
of the wing, and the shock moves back from the
leading edge, as can be noticed in Fig 9. Typi-
cally, shocks in the present method are smeared
over three or four mesh cells. Of interest in this
case is the shock on the pancake just in front of
the vertical tails, which can be discerned in Fig
10.

This example demonstrates the geometric
complexity that can be handled by the method. The
range of applicability and the accuracy of the
method will be examined in the following.
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FIGURE 7. Computed Surface Pressure
Distributions; Fighter-type Aircraft;
M_ = 0.80, « = 20 deg.
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FIGURE 8. Isomach Contours on Upper
Wing/Body Surface and in a
Cross-sectional Plane; Fighter-type
Aircraft; Mm = 0.80, o = 20 deg.

The next example 1llustrates the Tlow-speed
capability of the algorithm. Figure 11 depicts
surface distributions of pressure coefficients
computed on a generic fighter aircraft at a free-
stream Mach number of 0.20 and an angle of attack
of 15 deg. Streamline "ribbons" are shown in Fig
12 and 13. This configuration features a chine-
shaped forebody and a sharp-edged, cropped delta
wing. Typical cross sections are visible in Fig
11. This configuration is similar to one that has
been tested by Erickson [Ref 23], and a sketch of
his observations is shown in Fig 13.

This computation was carried out on a mesh
consisting of 49 longitudinal planes, each of which
contained 49 points in the azimuthal direction and
24 points in the radial direction. It is remark-
able that the flow features are captured with this
relatively coarse mesh. This example also has been
computed on a mesh containing twice as many points
in each coordinate direction on the CRAY-2 machine
of the NASA/Ames National Aerodynamic Simulator.
The flow features were largely unchanged in passing
to the finer mesh. The major noticeable difference
concerned the vortices, which were slightly tighter
on the finer mesh.

At this point, it should be mentioned that the
convergence rate of the algorithm for a particular
geometry and set of flow conditions has shown
little sensitivity to mesh size. Thus, on refining
a mesh, the time needed to advance one time step
increases in proportion to the number of grid
points, but the number of time steps needed to
achieve convergence (usually defined as a reduction
in the residual by three orders of magnitude) is
largely unchanged.

For this generic fighter configuration,
increasing the angle of attack to 25 deg increases
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FIGURE 9. Computed Surface Pressure
Distributions; Fighter-type Aircraft;
M_ = 0.95, « = 10 deg.

the interaction between the <chine and wing
vortices. The chine vortex 1is pushed outboard
sooner, as can be observed in Fig 14. Vortices can
be identified as "humps"” in a pressure plot. The
chine vortex starts wrapping around the wing vortex
earlier along the length of the body. The wing
vortex is substantially larger than it was at the
lower angle of attack. The streamliines computed
for these flow conditiens are shown in Fig 15 from
several different viewing angles.  The computations
are again in qualitative agreement with the obser-
vation of Erickson, as can be seen from Fig 16.

The last example addresses the flow past a
spherically blunted, on-axis biconic body at Mach
6. This configuration, which consists of a conical
shape with a half-angle of 12.84 deg in the front
part followed by another conical section with a
7-deg half-angle, has been tested in the Langley
20-in. Mach 6 tunnel by Miller and Gnoffo [Ref
24]. Computations were done with a mesh comprising
65 Tlongitudinal planes, of which 8 were located
upstream of the body and 8 were set downstream.
Each cross-sectional plane contained 49 points in
the circumferential direction and 33 in the radial
direction. The outer boundary of the mesh was
gradually expanded, as described earlier, to create
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FIGURE 10. Isomach Contours on Upper
Wing/Body Surface and in a
Cross-sectional Plane; Fighter-type
Aircraft; M°° = 0.95, o = 10 deg.
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FIGURE 11. Computed Surface Pressure
Distributions; Chine-forebody
Configuration; M _ = 0.20,
a = 15 deg.
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FIGURE 12. Streamline *‘Ribbons’’ on
Chine-forebody Configuration;
M, = 0.20, o = 15 deg.

FIGURE 13. Top View of Streamline ‘‘Ribbons”
on Chine-forebody Configuration;
M_ = 0.20, o = 15 deg.;
Inset: Experimental Tracks of Vortex
Cores (from Ref 23)
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FIGURE 14. Computed Surface Pressure
Distributions; Chine-forebody
Configuration; M_ = 0.20,
o = 25 deg.

a "supersonic" mesh. Predictions of surface pres-
sure distributions were in very good agreement with
experimental data for all three angles of attack
computed (0, 5, and 10 deg) as can be seen from Fig
17-19. Total force coefficients also were predic-
ted quite well, as can be noticed from Table 1.
Pressure contours on the surface and 1in three
cross-sectional planes are depicted in Fig 20 for
the 5-deg incidence case. As can be seen, the bow
shock is captured quite well. The clustering of
lines on the surface of the body just in front of
the second plane, which is depicted, is a result of
the change in body slope angle there.
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c) Rear View

FIGURE 15. Computed Streamlines on
Chine-forebody Configurations;
Moo = 0.20, o = 25 deg.



FIGURE 16. Top View of Streamlines on
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Chine-forebody Configuration;
M_ = 0.20, « = 25 deg.;

Inset: Experimental Tracks of Vortex

Cores (from Ref 23)
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FIGURE 17. Computed Surface Pressure

Distributions; Biconic Missile Body;
M_ = 6.0, = 0deg.
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FIGURE 18. Computed Surface Pressure
Distributions; Biconic Missile Body;
M_ = 6.0, « = 5deg.

X. Concluding Remarks

The algorithm described 1in this paper has
proved very reliable and efficient over a
considerable Mach number range, from subsonic
through transonic to high supersonic flow condi-
tions. Even in cases of extreme flow condition,
where substantial flow separation is encountered,
it has exhibited excellent convergence properties.
The mesh topology used simplifies the grid genera-
tion process, while it is capable of adequately
describing bodies of considerable geometric
complexity. The simplicity and speed of the
combined grid generation/solution algorithm
procedure make the method an ideal tool in a
preliminary design environment. Preliminary
qualitative and quantitative comparisons with
experimental data at both the low and the high ends
of the Mach regime have attested to the accuracy of
the predictions. Validation of the method against
experimental data is currently under way.
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FIGURE 19. Computed Surface Pressure
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TABLE 1. Computed and Experimental Aerodynamic 5.
Coefficient for Biconic Missile Body
THEORY EXPERIMENT 6.
o Cy Ca C Ca
0 [-0.005 | 0073 |-0.003 | 0.096
5 0.151 0.091 0.153 0.10= 7.
10 0.313 0.120 0.313 0.119
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FIGURE 20. Pressure Contours on Surface and
Three Cross-sectional Planes;
Biconic Missile Body; M = 6.0,
o = 5 deg.
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