TOWARDS A GENERAL THREE-DIMENSIONAL
GRID GENERATION SYSTEM *

L. G. Tysell and S. G. Hedman
The Aeronautical Research Institute of Sweden (FFA)
Stockholm, Sweden

* This work, which is a part of joint project between FFA
and NLR in the Netherlands, was sponsored by the National
Swedish Board for Technical Development.

1047

ICAS-88-4.7.4

TOWARDS A GENERAL THREE-DIMENSIONAL

GRID GENERATION SYSTEM *

L. G. Tysell and S. G. Hedman
The Aeronautical Research Institute of Sweden (FFA)
Stockholm, Sweden

Abstract

The first version of a general purpose 3-dimensional
grid generation program system has been devel-
oped. The program is interactive and very user-
friendly. It can be applied to 2- or 3-dimensional
grids. The grid can be composed of a number
of blocks, both patched and overlaid grids, where
each block can have its own topology. The patched
grid blocks can be either continuous or discontinu-
ous at the block interfaces. The grid is generated
by means of transfinite interpolation. A procedure
for smoothing of the normal vectors to a surface is
presented, as well as a procedure for smoothing of
grids. Grid generation routines developed for spe-
cial applications can be added to the program. The
program can also be used to postprocess grids from,
or preprocess grids to, other grid generation pro-
grams. An example with a grid around a wing-body
configuration is given.

1. Introduction

Numerical grid generation contains many problems.
Different approaches can be applied to solve these
problems, as can be seen in a review of grid gen-
eration methods!. To make good grids for finite
volume calculations about realistic 3-dimensional
geometries is a very difficult task. Therefore, the
tendency in grid generation so far has been to de-
velop a new grid generation program for each new
type of application. But this is very expensive. In
the long run it would be better with grid generation
programs of a more general nature. Recently some
more general codes have been developed?3%. A gen-
eral code should be interactive’, so the user can
build up the grid step by step, inspect it, and grad-
ually improve it. The program should also be able
to handle grids composed of a number of blocks,
both patched grids®®"8 and overlaid grids, where
each block can have its own topology. To write an
interactive program for 2-dimensional grids is rela-
tively easy, since the user in such a case can treat
all areas of the grid where difficulties arise one at
a time. There is only one grid plane to inspect,
and the user can run the program without too much
work, even if such a program can do only very basic

* This work, which is a part of joint project between FFA
and NLR in the Netherlands, was sponsored by the National
Swedish Board for Technical Development.

Copyright © 1988 by ICAS and AIAA. All rights reserved,

operations. On the other hand, to write a general
purpose grid generation program for 3-dimensional
grid generation is a much more difficult problem,
since it is impossible for the user to inspect all grid
planes and treat them one at a time. That implies
that the operations for such a program must be per-
formed on large regions of the grid each time they
are used. Thus, the operations must be very robust,
they must be reliable and function within a range
of geometry variations.

Although it is possible to generate grids for arbi-
trary geometries with this type of general opera-
tions, it is useful to have the possibility to add rou-
tines, developed for special applications, to the pro-
gram. That will reduce the number of operations
the user has to do. This type of program will then
be a very powerful grid generation tool, since one
will have the access both to more general functions
and more specific functions. The program can, of
course, be used to postprocess grids generated by
other grid generation programs, if only the grid file
has the proper format.

2. Program Structure

The aim of this work has been to write a user-
friendly interactive general grid generation pro-
gram. In all types of interactive programs the user
has to give a lot of input. It is important to reduce
the amount of input to a minimum. We have done
that by using a form for each command. From the
user’s point of view the program can be decomposed
into five levels, see also Figure 1.

1 - Main Program

2 - Command Interpreter

3 - Form Manager

4 - General Grid Generation Routines

5 - Grid Generation Routines for Some Applications

The Main Program calls the proper routines. It also
gives a journal file of the run, so that all input data
given on the screen are saved. This journal file can
be used for a new run.

1048

Geometry
Data Base

| Main Program I

|Command |nterpreterl Graphics

Screen
or
Work
Station

[Form Manager ’

| General Routines]

lApplication Routines]

Grid
Data Base

Structure of the grid generation
program.

Figure 1.

At present the user has access to about 30 com-
mands. A command is executed by typing the com-
mand name. The Command Interpreter takes care
of the given command and calls the proper form.
Abbreviated command names are allowed as long
as they are unique. A list of the commands is given
in Table 1, but only a few of them will be explained
in this paper.

OUT-UNIT INPUT
SETUP-ARRAY OUTPUT
FILE-SIZE ARRAY-SIZE
FIG-INIT FIG-TEXT
FIG-PLOT FIG-EXECUTE
COPY INPOINT
INVECTOR MULTIPLY
MIXING TRANSFINITE
SMOOTH SPLINE
INTERSECTION NORMAL
DIRECTION-SMOOTH CIRCLE
VOLUMETRIC COORDINATE
STATUS-NUMBER WINGBODYGRID
OLD-FORM STOP

Table 1. List of interactive commands.

The Form Manager then shows the form on the
screen with filled up default values. With use of
the keyboard one can go around with the cursor
and change all, or just some values. The Form Man-
ager checks that the user given input values do not
exceed bounds. Then the Main Program calls the
proper program routine and executes the command.
If the program cannot find any obviously erroneous
input data and no execution error appears, the data
are saved on the journal file. Otherwise the user has
to do the command again. Another alternative is
to save the input data on the journal file without
execution. The journal file can then be executed
in a later run, preferably in batch mode. The form
for the transfinite interpolation command is shown
in Figure 2 as an example of the forms. This form,
with exactly these values, has been used to produce
the grid in Figure 6. The I, J and K index for the six
sides of the computational cube are specified on the
third row. The number of boundary conditions on
these sides are specified on the fourth row, and the
parameters for the stretching function are specified
on the fifth row.

The general grid generation routines are, for exam-
ple, routines for surface spline fitting, calculation of
normals to surfaces, grid generation inside a given
region, smoothing of irregular grids or plotting of
grids. The general routines are independent of ge-
ometry, as well as grid topology. They can be ap-
plied to any region of any grid block. :

It is convenient to have routines, besides the general
routines, that make grid generation more easy for
special applicatons. Therefore it is easy to add such
routines to the program. They can be composed of
the general routines. One application routine we
have is a routine for grid generation around a wing-
fuselage configuration.

3. Program features

The grid generation program is composed of mod-
ules, which are as independent of each other as pos-
sible. Then it is easy to replace old modules and
add new ones. The program, which is written in
Fortran 77, consists of almost 10,000 statements,
excluding comment lines and library routines. In
the Command Interpreter and the Form Manager
some statements are dependent of the type of com-
puter and terminal. At present the program runs
on VAX computers and VT'100/240 compatible ter-
minals.

A code of this type differs very much from a
non-interactive code only used for grid generation
around some particular type of application. The
program can be used irrespective of the number of
grid blocks and their sizes, up to a certain level.
Consequently there is only one array in the pro-
gram, and all the grid blocks are put into that ar-

1049

TRANSFINITE

PURPOSE: To do transfinite interpolation of a grid.

GRID TO BE INTERPOLATED
GRID DEFINING THE BOUNDARY

SELECTED REGION

.

NUMBER' OF. BOUNDARY CONDITIONS <1l>

INTERPOLATION PARAMETERS <2>

INTERPOCLATION FOR X-Y-Z ?

. Bt o G e Rt e e S B i A e P i Sk S S S S T o S

WING/BOX-GRID

BOUNDARY~GRID

1 57 1 10 i 1
0 0 2 2 0 0
1. 1. 1.5 1.5 1. 1.
YES YES NO

<1> 0 = No interpolation.
1 = Only the boundary points are specified.
2 = Also the layer next to the boundary is specified.
<2> 1 = Normal value. Large value => the condition at the boundary is

extended inside the region.

Figure 2.

ray. The program is also coded in order to prevent
all errors that could have been caused by erroneous
input. For example, it prevents division by zero.
Otherwise there will be a fatal error and several
hours of work might be lost.

4. Some Difficulties with General Geometries

There are two dominating types of methods for
grid generation, viz. algebraic methods and ellip-
tic methods®!%. We have used transfinite interpola-
tion®!H1%13 which is an algebraic method, since
an interactive program should have short execution
times. Transfinite interpolation is much faster than
elliptic methods. The main disadvantage with tran-
finite interpolation, compared to elliptic methods
using a Laplace system, is that there is no inherent
guarantee against grid inversion. But this guaran-
tee against grid inversion is based on the maximum
principle for the Laplace’s equation. The maximum
principle assumes that the boundary is smooth, but
that is not the case in the discrete formulation®.
Anyhow, the Laplace grid generation system is not
so attractive, since it does not give the desired grid
point distribution. Usually a Poisson system is used
instead. Then the maximum principle is lost. Nev-
ertheless, these elliptic methods are probably safer
than transfinite interpolation.

Using transfinite interpolation, the grid points in
the interior of a region are calcululated by interpo-
lation from the grid points on the boundaries. That
means, if the boundaries are non-smooth the grid
will not be smooth either. Thus the grid must be
postprocessed after the transfinite interpolation in
order to smooth the grid and remove cross-overs.

The transfinite interpolation form.

The input to the transfinite interpolation is usually
both the grid points on the boundary surfaces and
the desired out-of-surface derivatives, i.e. the direc-
tion and spacing of the outgoing gridlines. For the
2-dimensional case it is usually possible to estimate
the out-of-surface derivative. For example, to make
an O-grid around a wing profile is easy. The out-
of-surface derivatives to the wing can be taken as
the normal derivatives to an ellipse with the same
chord. But it is almest impossible to do something
similar for more complicated 3-dimensional geome-
tries. It may seem natural to take the local normal
direction to the surface as the out-of-surface direc-
tion. However, that will give rise to a very coarse
volume grid where the boundary is strongly con-
vex. This is the reason why the ellipse was used
for the wing profile case to get a good grid also
at the trailing edge. Furthermore, grid inversion
(cross-overs) may arise at concave areas. A way to
solve this problem is to take the normals as a first
guess, and then smooth them. But the ordinary
Laplace smoother is not suited for that. We have
formulated a new smoother that works very well for
general surfaces.

To generate a 2-dimensional grid on a specified sur-
face is a problem of its own!4, since this can be
very difficult for more complicated surfaces. These
grids are input to the 3-dimensional transfinite in-
terpolation. If the surface can be represented by
a spline formulation the grids can be generated by
the program. Otherwise the surface grids has to be
provided by a CAD-system!®. We have done some
studies where the grid has been generated on a sim-
pler surface and then projected on the real surface’.
But we still do not have any final general solution
to this problem.

1050

In section 5 through section 9 we will give our so-
lution to the problem of how to calculate the out-
of-surface direction and how to remove cross-overs
and smooth the grid.

5. Examples Demonstrating the Grid Generation
Procedure

All commands used for 3-dimensional grids can
be used for 2-dimensional and even 1-dimensional
grids, if they make any sense for these dimensions.
The algorithms in the next four sections are given
for a 3-dimensional grid, but they can easily be
modified to lower dimensions. The first demonstra-
tion example is a wing profile inside a 2-dimensional
box. The geometry for this example is shown in
Figure 3. The second example is the grid in Fig-
ure 8, which has a severe cross-over. Note that no
modifications of the formulae to suit these particu-
lar geometries have been made. The formulae can
be applied, just as they are, to general geometries
much more complex than these examples. The fi-
nal example is the grid in Figure 10, showing the
3-dimensional grid around a wing-fuselage configu-
ration. All the grids presented are generated and
plotted only with use of the interactive commands
in table 1.

Figure 8. Geometry for the 2-dimensional

example.

1051

6. Calculation of Normals to Surfaces

Assuming the surface grid on the boundary already
exists, the next step is to calculate the out-of-
surface derivative at each surface grid point.” The
magnitude can be specified, but the direction must
be computed. A natural first guess is to take the
local normal direction to the surface. The surface
grid might have discontinuities, so a spline formula-
tion for the surface is not suitable. We want a for-
mula that gives a "normal” also in corners. The sur-
face grid might also be very irregular. That means
that the formulae for the normal calculation must
be very robust. The simple scheme below satisfies
these conditions. The normal is calculated by just
summing the cross-products of the vectors drawn
from the current surface grid point to the surround-
ing grid points.

Let the vector Xp denote the prescribed value of
the grid

X (4,4, k) = (25, 3, £), y(, , k), 2(3, 4, k))
on the sides of the computational cube

ia St <1
jaSijb
kaskskb

The normal vector ﬁ(j, k) to the surface X"B(i,,,j, k)
is calculated by the simple formulae (1)-(3) below.

(G, k) =(XB(ia,j + 1, k) — Xp(ia, j, k)X
(XB(iasir k +1) — Xp(iasd, k)

B, k) =(X8(iay i, k +1) — Xp(ia, 3, k) x
(X5(iarj — 1,k) — Xp(ia, i, k))
1)
Rs(j, k) =(Xpliaj = 1,k) = Xp(ia, 1, k)%
(XB(iayjrk — 1) — Xp(ia, 3, k)

Ri(G k) =(XB(3ards k — 1) — Xp(ia, J, k))x
(XB(iarj + 1,k) — XB(ias 4, k))

Normalize each vector in order to give them the
same magnitude, independently of the surface grid
spacing. Then they are summed to

5 R.G, k)
Rk = 2 O o ®

and to achieve the desired magnitude

Nspec(j’ k)

NG, k)= +=2£
U8 =3G9

R(j, k) ©)

where Nyp.c(j, k) is the specified magnitude.

The coefficient C, is given by

C1={0 ifg=jyor k==k

1 otherwise

C, , C3 and Cy are defined in the same way.

When having a multi-block grid generation pro-
gram, it is not suitable to store both the surface
grid and the out-of-surface derivatives. The logic of
the program would then be more complicated than
necessary. Thus, calculate the next layer of points
instead. Then only points need to be stored.

Xp(ia +1,j,k) = XB(ia, j, k) + N(j, k)

The other sides of the computational cube are
treated in the same way.

Figure 4 shows the grid points on the boundaries
and the grid points next to the boundaries cal-
culated by this method. It can be seen that the
method did calculate a “normal” at the trailing

L T T T 1T T 1717

Figure 4. Out-of-surface derivatives.

edge of the wing and at the corners on the outer
bondary. The branch cut is located at the leading
edge. It should always be placed where the bound-
ary is smooth, since the formulae in this section and
in section 7 and section 9 work well only if there are
no discontinuities at the branch cut.

7. Smoothing of Normals

The layer of points next to the boundary can usu-
ally not be used as input to the transfinite interpo-
lation, unless it is modified. Otherwise the grid may
become inverted (cross-overs) where the boundary
is strongly concave. The grid would also become
very coarse where the boundary is strongly convex,
see the sharp corners in Figure 4. The points next
to the boundary must be smoothed. The ordinary
Laplace smoother is not suited for that, but the
smoothing scheme defined below works very well.

Define the 2-dimensional Laplace operator A J]((.X‘")
operating on the surface i =constant

Asr(X(5,5,8) = X(6,j + 1,k) + X (3,5 — 1,k)
+ f(zvj,k + 1) +)_{.(l’]’k - 1)
~4X(i,j, k)

Define also the unit normal vector

L N(j, k)
A, k) = b2
0 = 6.0

where ﬁ(j, k) is the original normal vector calcu-
lated by the formulae in section 6.

N(, k) = Xp(ia + 1,5,k) — XB(ia,j, k)

Define the smoothing operator F(XB) operating on
the surface i =i, +1

[(Xp(ia + 1,4,k)) = Asx(Xp(ia + 1,4, k)
- AJK(XB(iavjs k))
+ A sk(X B(ias 4, k)) - A, k)[R, k)

The first term is the ordinary Laplace smoother.
By adding the second term the smoother can be

used also for surface grids having discontinuous grid
point distribution. Otherwise the smoother would
work only for equally spaced surface grids without
any discontinuities. The third term is added in or-
der to take care of convex corners.

1052

The new normal vector is then given by

Nucw(i k) = Xp(ia + 1,5, k) — Xp(iay i, k)

- . 4)
+ Cral(Xp(ia + 1,5, k))

where Crer is a relaxation factor. Then

ING, k)|

Xp(ia+1,,k
Got 13 k) Noew(G,)

= X‘B(ia,j, k)+— new(]”") (5)

Now go back to (4) and do as many iterations as
necessary. Note that N is unchanged throughout
the iterations. The other sides of the computational
cube are treated in the same way.

Figure 5 shows the grid after the smoothing. The
grid is much smoother than in Figure 4, but it is
still mainly orthogonal. The smoother keeps the
grid as orthogonal as possible. The grid can now
be used as input to the transfinite interpolation.

AN NN VT T T 7 777 7

[[[

/
\

\
7

L ~
L N
< N
77 7 [[| 1 1 ¥ VYV XXX
Figure 5. Smoothed out-of-surface derivati-

ves.

8. Transfinite Interpolation

Transfinite interpolation is an algebraic grid gener-
ation method. Thus, it is very fast and suitable for
interactive use. It also offers good control of the
grid generation procedure. The method used below

is a standard transfinite interpolation scheme. The
input to the grid generator is two, one or no layers
of points at each boundary. That makes it easy to
use for multiblock grid generation or regeneration
of subregions.

The grid X in the interior of the cube
P i< ib

jaSijb
ke <k <k

is obtained by use of the transfinite interpolation

¥ = 1(X5)

defined by the recursive transfinite interpolation
scheme

X =01(Xp)
X;=Xr+0Xs-X))
Xk =X5+x(Xp - X))
X=Xk

(6)

where the operator Q is the interpolation operator
given by

= X (ayd, k)9a(€) + X (ia + 1,5, k)ata(£)
+ X(iy — 1,5, K)e5-1(6) + X (G, 4, k)5 (€)

u(X))

The operators Q; and Qg are defined in the same
way. The functions ¥(£) are called blending func-
tions.

The stretching function £(i), which can be any
monotonic function, is used to control the grid point
distribution.

0<E@ ST, in<i<ip

Now define the two parameters N, and N .

=0& XB(za,], k), XB(ia+1,7,k) are not specified
N =1& Only X5(ia,j, k) is specified
N, =2¢& XB(z.,,],k) XB(za +1,7,k) are specified

N, is defined in the same way.

1053

Let the operator Q; be the Lagrange interpolation
operator. Then the functions ¥(¢) are the Lagrange
polynomials given by

$a(€) = pL(E)P5(€)

Yat1(£) =0
N,=1,Ny=0 =

Yp-1(6) =0

»(§) =0

[$a(€) = pE(€)
Yat1(§) =0
$5-1(£) =0

L ¥e(§) = p5(£)

pa(€) = pi* (O)Ph(E)PE()
Yat1(6) = a1 ()Pl 1 ()Pl 41 (€)
Pp-1(€) =0

(€)= 0

$a(€) = peTH(E)PA(E)
Ya+1(6) = Pi11()Ph41(6)
¥s-1(6) =0

L ¥6(€) = pE(EIP,™(E)

ba(€) = pat (E)ph 1 (©)PL(E)
Yat1(€) = par (E)paza (€)ph11(6)
¥s-1(6) = P§_1 (P21 (£)ph-1 ()
L ¥s(8) = p§(O)ps ™ ()~ (€)

N,=2,Ny=2 = {

where

_ £0) = &lim)

S v o

The blending functions ¥(¢) for the other three pos-
sible combinations of N, and N, can be derived from
the cases given above.

In the recursive transfinite interpolation scheme (6)
the I-direction is the first interpolation direction.
But it can be shown that with the interpolation
operator (7) and the Lagrange polynomials, the in-
terpolation scheme is independent of the order in
which the successive interpolation steps are taken.
There is only one exception, the directions where
N, or N, is zero must be the last ones.

Figure 6 shows the grid after the transfinite inter-
polation.

AN \\ \\ \\ \ \\]\ I/ // VAR A
N NN A A7
SO [[/ /r
\\\ ///
N g
\\\ ///
Iy ¢quil
[L
N
i=d NN
//; \\\
1% //////// AN
LA ——
7 // 77 T 11 AV N R N N
Figure 6. Grid obtained by transfinite inter-

polation.

9. Smoothing of Grids

In transfinite interpolation all types of discon-
tiuities on the boundaries will propagate into the
volume grid. If the grid line slopes or grid spac-
ing are discontinuous on the boundaries, this will
also be the case in the volume grid. Thus, the vol-
ume grid must be smoothed after the transfinite
interpolation. But that is not an easy task, since
it is almost impossible to formulate, in mathemat-
ical terms, what the grid should look like. If the
grid is improved in some region, it might be less
good in some other region. Has the overall grid be-
come better? The only way to finally judge if one
grid is better than another is to run the flow solver
on both grids and see which grid that gives the best
convergence. One suggestion to obtain a better grid
is to minimize the overall discontinuities'®'?. But
does that give the optimum grid? Anyhow, this
method is slow for 3-dimensional grids!®. Another

1054

way is to use the well-known Laplace smoother.
This smoother is very fast, but not reliable. It tends
to give an equally spaced grid, whatever the sur-
face grids are. Another problem with the Laplace
smoother is that it easily gives grid inversion where
the boundary is concave and too large cells where
the boundary is convex. We have developed a
new smoother. The smoother is a type of Laplace
smoother. But it is reliable and works very well for
general geometries.

Define the 3-dimensional Laplace smoother A(X)
+ X0, + L,k + X(i,j — 1,k)

+ X4, k+1) 4+ X(5,5,k = 1)
- 6X-’(27]1 k)

and the 1-dimensional Laplace smoother AI(X) op-
erating along the line ¢ = constant

Ar(X(i,5,k) = X6+ 1,5,k) + X - 1,5,k)
~2X(3,5,k)

AJ(X) and AK(X) are defined in the same way.
Now we can define

X, = M(X)
on the computational cube

tat+1<i<ip—1
Ja+1<j<i—1
ka+1<k<ky -1

and

X = A (%) »
Xeg=As(Xs) ®)
Xk = Ax(X,)

on the six sides of the computational cube

ta+2<i<ip—2
Ja+2<j<jp—2
ko +2<k<ky—2

Interpolate the values of X,; , X47 and X,;K into the

interior of the cube with the transfinite interpola-
tion formula

Xirt = (X)) + Y(Xas) + T(Rar) (9)

where the blending functions for the transfinite op-
eration T(X4;) are

{ ¢'a(§) =1~£
I — Direction = (&) =¢
Yat+1(8) = hp_1(€) =0

{%(6) =(1-¢)
J —and K — Direction => (€) =&
Pat1(€) = ¥p-1(€) =0

where v is a smoothing factor , v = 1. X4 is
smooth on boundary surfaces i=constant, but can
be non-smooth on boundary surfaces j=constant
and k=constant, since these surface grids them-
selves can be non-smooth, With the blending func-
tions above the influence from these irregularities
will be small. The blending functions for T(X,;)
and Y(Xx) are given in the same way. Now smooth
Xz(i,j,k) with the scheme

Xpew = Xy + Cra(A(X2) - X™)
X‘z = X‘;ew

(10)
11)

where C,; is a relaxation factor. Then, go back to
(10) and do as many iterations as necessary.

The last step is to smooth ff(i,j, k) on the compu-
tational cube

lo+1<i<ip—1
Ja+15.7.<.]b—1
Fet+1<k<k—1

with the scheme

(12)
(13)

—

Xrew = X 4 Cra(MX) - X2)
X‘ = Xrew

Go back to (12) and do as many iterations as nec-
essary.

1055

A simpler alternative is to skip equation (10) and
(11) and apply the 1l-dimensional Laplace opera-
tor in (8) on X instead of on X;. This will give a
stronger but not as safe smoothing.

Figure 7 shows the grid after the smooting. The
smoothing effect is strongest in the interior, and the
grid close to the boundaries is almost unaffected,

compare Figure 6. The grid line slopes in the inte-
rior are smoothed but the spacing is almost unaf-
fected, since it already was smooth. Figure 8 shows
another grid with discontinuous grid line slopes and
cross-overs. This grid was generated in order to get
a really poor grid. It is not generated with trans-
finite interpolation. As seen in Figure 9 the cross-
overs and kinks can be removed by the smoother.
Note that the smoother works well even if the grid
is not equally spaced on the boundaries.

[7 [/ 7
\ \ \ \ \ \ AV
\ \\\\\\ 177 1]
AN NN | g
N b
N 4
~ / P
L) giss
] gaii
L Lt :::___
/// \\:\
rd \\\
§ /777 7T TV
d N
S HH e\
L 7 7 7 T T 1 \\ \\T\ \\
Figure 7. Smoothed grid.
A N KS
i 4 ™
TORE
e // /\\ N
o ¥ \\
oV 2\ N
MOZEANNN
474 N
/ N\
Figure 8. Grid with cross-overs and discon-

tinuous grid line slopes.

S EmRaN
L u
|41
L]
// P~
// -
// \\
d ™N
e N
d N
4 N
)/ N

Figure 9. Smoothed grid.

10. Application Routines

The first application routine added to the program
is a routine for generation of a single block grid
around a wing alone or wing-fuselage configuration.
This routine has been developed to match a full po-
tential code developed by NLR!®. The grid can be
either of C-H or C-O type. Conformal mapping
is used to transform the fuselage to the symmetry
plane. The grid is generated in the transformed
space by means of transfinite interpolation. The
size of the fuselage contour line conformity region,
as well as the location of the wing wake, are input
parameters. The grid can even be completely con-
tour line conforming or not contour line conforming
at all. The grid can be characterized as a wing grid
for accurate calculation of wings with reasonable
consideration of the presence of the fuselage. The
grid is generated with the WINGBODYGRID com-
mand, where the user has access to a large set of
input parameters by which the grid can be tailored.
A grid generated by this routine is shown in Figure
10 and Figure 11.

1056

T
il

i

% l.-.-n...sg\\\\\\s\-\-\n

T
L

I
il

|

l
|

|

.
Il

|
.

e

;
\mw

I
Il

|

W
W
A
\

N
W

NN

W

N
QAN

NN

==
===
,’*

N

NI

L

222
‘l;

NN
| ,,%

)
A
“.‘...

)
.

)
.

,ﬂﬂw//

|

h

plane. The fuselage contour line

Figure 10. Grid on fuselage and symmetry
is also shown.

_—
{
1

411
T
| Lt

|t

RREE o

NEE o

|||||

Figure 11. Spanwise section of C-O grid.

1057

11. Future Work

The program, in its present state, can be used for
grid generation of overlaid grids around complex
configurations. It can also be used for generation
of patched grids, with a reasonable number of grid
blocks. What might be needed is some routines to
set up the overall block stucture in order to make
it easier to handle grids composed of a large num-
ber of blocks. The work will be directed into that
area. ‘We will also study the problem of surface grid
generation for general surfaces.

12. References

1. Thompson, J. F., ”"Grid Generation Tech-
niques in Computational Fluid dynamics”,
ATAA Journal, Vol. 22, No. 11, 1984,

2. Thompson, J. F., ” A Composite Grid Genera-
tion Code for General 3-D Regions”,
AIAA paper 87-0275, ATAA 25th Aerospace
Sciences Meeting, 1987.

3. Holcomb, J. E., "Development of a Grid Gen-
erator to Support 3-D Maultizone Navier-
Stokes Analysis”,

ATAA paper 87-0203, AIAA 25th Aerospace
Sciences Meeting, 1987.

4. Woan, C. J., "Three-Dimensional Elliptic Grid
Generations Using a Multi-Block Method”,
AIAA paper 87-0278, AIAA 25th Aerospace
Sciences Meeting, 1987.

5. Smith, R. E., "Three-Dimensional Algebraic
Grid Generation”,
ATAA paper 83-1904, ATAA 6th Computatio-
nal Fluid Dynamics Conference, 1983.

6. Eriksson, L. E., "Flow Solution on a Dual-
Block Grid Around an Airplane”,
Computer Methods in Applied Mechanics and
Engineering, Vol. 64, 1987.

7. Rubbert, P. E. and Lee, K. D., "Patched Co-
ordinate Systems”,
Numerical Grid Generation, Thompson, J. F.
(Ed.), Elsevier Science Publishing Company,
1982.

8. Shaw, J., Forsey, C. R., Weatherhill, N. P, and
Rose, K. E., A Block Structured Mesh Gen-
eration Technique for Aircraft Geometries”,
Numerical Grid Generation in Computational
Fluid Dynamics, Hauser, J. and Taylor, C.
(Eds.), Pineridge Press Limited, 1986.

9. Thompson, J. F., Warsi, Z. U, A. and Mastin,
C. W., ?”Numerical Grid Generation: Founda-
tions and Applications”,

North-Holland 1985.

10.

Sorenson, R. L., ?Three-Dimensional Elliptic
Grid Generation About Fighter Aircraft for
Zonal Finite-Difference Computations”,

ATAA paper 86-0429, AIAA 24th Aecrospace

- Sciences Meeting, 1986.

11.

12.

13.

14.

15.

16.

17.

18.

19.

1058

Eriksson, L. E., ”Practical Three-Dimensional
Mesh Generation Using Transfinite Interpola-
tion”,

SIAM Journal on Scientific and Statistical
Computing, Vol. 6, No. 3, 1985.

Eriksson, L. E., ”Generation of Boundary-
‘Conforming Grids Around Wing-Body Config-
urations Using Transfinite Interpolation”,
AIAA Journal, Vol. 20, No. 10, 1982,

Smith, R. E., ”Algebraic Grid Generation”,
Numerical Grid Generation, Thompson, J. F.
(Ed.), Elsevier Science Publishing Company,
1982.

Snepp, D. K. and Pomeroy, R. C., A Geome-
try System for Aerodynamic Design”,

AIAA paper 87-2902, AIAA/AHS/ASSE Air-
craft Design, Systems and- Operation Meeting,
1987.

Edwards, T. A., ”Definition and Verification
of a Complex Aircraft for Aerodynamic Cal-
culations”,

AIAA paper 86-0431, ATAA 24th Aerospace
Sciences Meeting, 1986.

Kennon, S. R. and Dulikravich, G. S., A Pos-
teriori Optimization of Computational Grids”
AIAA paper 85-0483, AIAA 23rd Aerospace
Sciences Meeting, 1985.

Carcailett, R., ”Optimization of Three-
Dimensional Computational Grids and Gener-
ation of Flow Adaptive Computational Grids”
AIAA paper 86-0156, AIAA 24th Aerospace
Sciences Meeting, 1986.

Mastin, C. W., Soni, B. K. and McClure, M.
D. "Experience in Grid Optimization”

AIAA paper 87-0201 AIAA 25th Aerospace
Sciences Meeting, 1987.

van der Vooren, J., van der Wees, A. J. and
Meelker, J H., ”"MATRICS Preliminary Design
Document”,

National Aerospace Laboratory NLR, The
Netherlands, NLR TR 84076 L, 1985.

