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Abstract

In this paper, a parallel algorithm for implicit
approximate-factorization scheme-2 (AF-2) has been
developed to solutions of the plane steady tran-
sonic potential equation with transverse small
disturbance for flows about NACA-0012 airfoil.
Multi-pivot elements parallel elimination method
for solving a system of equations with tridiagonal
coefficients matrix is presented. The computation
efficiencies of parallel and serial operation are
compared by computation experiment.

The freestream Mach numbers considered are 0.8,
0.85 and 0.9.
and 4°.
spaced grid with 39%31 x, y points and 22 points
along the chord.

times the chord itself as is the y-mesh range.

The angles of attack are 0°, 1°, 2°

The solutions are obtained on a variable
The x~-mesh range is about twenty
The iterations are started from uniform flow.

The conclusions indicate that parallel operat-
ion is about sixteen times faster than serial oper-

ation.

I. Introduction

Low computation efficiency and slow convergence
is still one of the main problems in finite difer-
ence computation for transonic flow., The objective
of this paper is to investigate a fast and simple
computer method with satisfactory precision for
solving plane steady transonic potential flow.

The implicit approximate-factorization scheme-—
2(AP-2) [1] has been proved to give the same stable
and reliable convergence as SLOR [2] but faster
than SIOR.

for plane small disturbance and full potential

Good examples are given by ref. [1,3]
equation respectively. The precision of full-
potential equation is high but its computation is
complex. The calculation of small-disturbance
equation is simple but its precision is low, espe-
Copyright © 1988 by ICAS and AIAA. All rights reserved.

Here, AF-2

scheme is used to solve the plane steady transonic

cially near the stagnation point.

potential equation with longitudinal large distur-
bances and transversal small disturbances [4] which
is simple for computation and has satisfactory
precision.

The advantage of parallel operation is that
But a
good parallel algorithm is very important to obtain
high-efficiency parallel operation. In this artic-
le, the parallel algorithm of the AF-2 scheme will

A1l the computations are made on

datums can be treated with highe efficiency.

be investigated.
the computer Yinghe-1 (YH~1).

II. Mathematical model and AF-2

iteration scheme

A body-fixed Cartesian coordinates system with
origin at the leading edge is used as illustrated
in Pig. 1. Assume that the disturbance is large in
the x-direction and small in the y-direction. The
potential equation of steady transonic flow around

the airfoil is

y
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Fig.1 Illustration of coordinate

and mesh spacing
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where M is the local Mach number; q "

|-M?=

and M,
represent the uniform oncoming velocity and Mach
number respectively, Y is the ratio of specific
heats.

The boundary conditions on the airfoil surfaces

are

9,010 ={§C0 + 8, 400|422 _g_Sine
(3)
where o is the angle of attack; y, and y_ repres—
ent the upper and lower airfoil surface y-coordin-
At the blunt leading edge,

Fx = = futosa (4)

will be satisfied.

ates respectively,

The boundary conditions on the
trailing vortex surfaces are:

P 40) - PX,0) = §Ke 40) - PR,-0) ()
Py(x,40)= Py (x,-0) (6)

where x; is the x-coordinate at the trailing edge
of the airfoil. A far-field asymptotic solution
[4] is used at the far-field.

The relaxation iteration equations of AF-2

scheme at the subsonic and supersonic points are

respectivelys
(05x-8g ) F15 = a'.n.Lff""” (1a)

(v -Ai g‘) Cii L,J (o)

and
n) -
(0’3;;"5”)-&,,' =o—.n_[f3; Y (8a)
)
(r-AuiS)c =4 (8v)
where

Aig= (1-M?) 5
/ = Aiidet Spy
Ai-l,jgx"'(g” (for supersonic)

(for subsonic)

.
and 57( R 3)( are first-order, first forward, and

backward difference operators. g o SM and 8”

are second-order forward and centra.l difference op-

(n) an=t)
1') &
and (] are acceleration convergence para.meter and

erators respectively.

relaxation parameter respectively. Von-Neumann
analysis of the stability (See III) indicate that
0 £ (L <2 and fast convergence can be obtained by

circulary using a  (J -sequence
AL
0'i o-l. )K"’ ﬁ_’ ‘z

where the optimal values of [; , [y and X shoud
be determined by numerical experiments. fj j is an
intermediate variable, its boundary conditions can
be derived as follows:

On upper and lower airfoil surface,
fj(x,_to)zo (9)
On upper and lower surface of trailing vortex

—F,(x,w):{j(x,-o) (10)

£(x,40) - $(x,-0) =X +0) = (%¢,-0)
(11)
and at the far-field,

f&,9=0 (12)
Two algebraic systems of equations with tridiagonal
coefficients matrix can be obtained by expanding Eq.
(7) or Eq. (8) and imbeding boundary conditions.

ITI. Von-Neumann analysis of

stability and convergence

Assume that the coefficient of ﬁ“ s 1—M2, is a
constant, thus, set A; j=A=constant. Fq. (7) can

be written as:
nt-t)

(¢ ‘5-;(*573)(0"/43;)(4’-; ‘ﬂ.: )"fml‘f J =0
(13)

The solution of Eq. (13) may be expressed as
?(x, v, t) + £ (x, ¥y, t), where ? (x, y, t) is
the exact solution and £ (x, y, t) is the error.
€(x, y, t) also satisfies Eg. (13) and can be
represented by

gy, t)=ee

where i, =‘[ -1 , a and b are wave number. For the

“ax 5 b (1)

m-th wave component of the error, a=m%A/Nax , m=0,
1, 2, veey N3 b=mR/PAY , m=0, 1, 2, «s. , P. Ais
the function of a and b, and may be complex number.
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Using Egs. (13) and (14), we can obtain

em: b+ U-)a, (15)
b+ @,
where
~lo0aX c.aax
1-e° (i~cosbsf)(1-€
( ) wc‘y: )( (16)

(1 w.sw()uj;(/- cosbsy)  (17)

v
Stability requires that CA (:151 . Thus, the
linear stability condition of AF-2 scheme at sub-
sonic point can be derived from Eg. (15) as fol-
lows:

!

set {l=2, optimal (J7 value which minimizesleM t’
can be obtained from Eg. (1%) as follows:

(18)

(/+A)( ) (19)

for the longest wave and
o’ — aX 20
H 2/ (20)

for the shortest wave, where I,y is the longest
vwave length. Hence, the range of optimal§ values
is 0(1)~0(1/x) when (1 =2.

Making the similar analysis for Eq. (8), we can
obtain for supersonic points:

C,+Cy

(21)

where

-G, A8X
C:=[‘£!i+ 5—'%‘53(/—60554])](/-6 ) (22)

08X _{ 204K\ 2 .
Cz-‘;é,f'z("'ze e ) zg‘:(/ essbaj )
(23)

For long-wave components, the stability condition
can be obtained from Eq. (21) as follows:

0 <2 (24)

IV. The parallel algorithm of AF~2 scheme

Expanding Eqs. (7a, 8a) and {7b, 8b), we can

obtain for f and ¢ tridiagonal matrix equations
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respectively as follows:

o) o)
t,} ‘F(,,)'l 0] _)C e/b] ;,}rl ‘] f};]'fﬂq
}; 2,3, ., J-1; (25)
1:_-:2’5, cevy I,

and
Y o) m) (n)
'ai,jct—-la +b “3 (.3 «'IJ = d,‘,j
=23, ,1-1;
j 2,3,--,J-1.

P

(26)

All of the coefficients in the Egs. (25) and
(26) only depend on known values and are independ-
ent of each other, so parallel operation can be

organized. Parallel operation can also be organ-

ized for solving each tridiagonal matrix equation.

The parallel algorithm is as follows:

1. For 2£3X1-1, step 1 calculate the following
vectors in parallel:

(@2 %3, i3) T
(bia, bis,~shig)T
(€i2,€05,.- -0 0)7
(ﬁi,z, ﬁi,.;,-" ;‘ﬁi,J—l)T

(3@2 13{,]-!)1

,jt'.a,“‘

2. For 2£iLI-1, step1, make the following cycles

a). calculate the vector
(Ji,z, di,s, -, diz1)

The caculation formula is

ciem Bos . o)
dﬁ, B‘-t.] '}';,,’*‘f'&,’,’-

b). Solving the tridiagonal matrix equations
(25) in parallel, we can obtain the vector

)
(‘Fiyz )

) )
03, s fe,m)



3. For 2<£( £I-1, stepl, calculate the following
vectors

o - 7 0. T
(e(')z ) e't';J )y Ty e‘r"’)

(di2 dis L Ji,m)T

4. Simultaneously solving all the tridiagonal
matrix equations corresponding to formula (26),

we can obtain at a time all of the anj .
b

In this algorithm, steps 1 and 3 are parallel
operation for the coefficients of the Egqs. (25) and
(26) respectively. The parallel operations are
organized for the internal and boundary points
respectively, because the caculation formula of the
coefficients of internal and boundary points are
different and computer YH-1 can make parallel ope-
ation only for the same calculation formula. The
vector length for internal points is (I-2)* (J-4).
If the vector length is larger than the capability
of the computer, we can organize parallel opera-—
tions piecewise. For boundary points, the vector
length is the number or mesh roints on which the
same computation formulae can be used.,

Step 2.b is a parallel operation for the single
tridiagonal matrix equation. Multi-pivot elements
parallel elimination method for solving tridiagonal
It's basioc idea is
to select in the matrix at a time all odd or even

matrix equations is used here,

rows as pivol rows from the rows in which pivot
elements were not selected , then, eliminate in
parallel the elements which are not in the main-
diagonal in the other rows until the coefficient
matrix of the equations becomes a single diagonal,
For example, for an (8*8) trigiagonal matrix, the
schematic explanation of the history of multi-
pivot elements parallel elimination are as follows:
12345678
X
XXX

XX
X

s={1,2,3,...,8]

XXX
EIFd
XXX
e

M= {1,3,5,7]

CO-JONN Pl N

XX

12345678 123 45 1
1 XX X]0]01X
2 ol xlolx X101X
2 A géﬁo OlX]—>
x1olX =
2 xoxxx xIxlololxl™ -
xlolxfo O1X{ 01X
g X Far)
xloiX] X10
S={2,496a8} S={4’ 8}
M=_{2, 6} M={4}
12345 78 2345678
XTolalo X X
2ig1x]elo) X X
Aot = £
5 oixlolo[x xx
6 0] 0Ix[Ox %
g 010101% X
0101010IX
s-{8} End
¥={8}

In above diagrams, the bland (or "O") and "x"
represent zero and nonzero elements respectively,
S represent the set of order number of the rows in
which pivot elements have not been selected yet
and M represent the set of order number of the
rows in which pivot elements will be selected
respectively. In this example, only 4 steps are
needed for solution, and all calculations can be
made in parallel for the each step.

Step 4 is to solve in parallel at a time all
tridiagonal matrix equations corresponding to Eq.
(26).
equations is the same as that of serial algorithm.
This algorithm for step 4 can reduce the time of
parallel operation with no increase in the total
amount of computation and is about 23% faster than
the algorithm used in step 2.b.

Here, the method of solving each system of

V. Computed Results

The computations are made for an NACAOO12 aip-
foil, The freestream Mach numbers considered are
0.8, 0.85 and 0.9, The angles of attack are 0°,
1°, 2° and 4°. The solutions are obtained on a
variable spaced grid with 39%31 x, y points and 22
points along the chord. The x-mesh and y-mesh
extends about ten times the chord ahead and behind,
above and below the chord respectively. The itera-
tions are started from uniform flow (€P =0).
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A Present computations
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Fig.2. Surface pressure coefficient on
NACAOO12 airfoil at Mg, =0.85,
o=0°.

The converged solutions for My =0.85, a/=0°, in
terms of surface pressure coefficients, are com-
pared with known wind tunnel test results [5] as
shown in Pig.4. The computed results agree well
with the test results,
of the
parallel and serial operations for AF-2 scheme are

given in table 1. The results indicate that
the parallel operation is about sixteen times faster
than serial operation.

The comparisons
computational efficiency of the

V. Concluding Remarks

The present study indicates that the computa-

tional efficiency can be greatly increased by us-
ing parallel algorithm presented in this paper.
The solutions with satisfactory precision for
transonic plane steady flow can be quickly obtain-
ed by solving Eq. (1), using the AF-2 scheme of
difference computation and the parallel algorithm.
Present investigations is only for two-dimen-

We believe that the present method

is sufficient motivation for fast solving three-~

sional cases.
dimensional problems.
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[s]

v CPU TIME (Seconds)
Moo dv Parameters » %’_lnw 04 Serial Parallel

0.80 0 87 9321 25.3 1.57
0.80 1 =1 K=§ 87 +9836 25.3 1.57
0.80 2 66 +9652 19 1.20
0.80 4 N=08 K=8 T4 .6180 21.5 1.34
0.85 o |B=04 97 .4846 28.1 1.74
0.85 1 | =80 | =1 K=8 |gy | ,s635 25.8 1.60
0.85 2 _ 90 9328 26.1 1.62
0.85 4 =08 K=0 |, 5716 32.7 2.02
0.90 0 1.=08 K=l0 1o .8965 29,2 1.81
0.90 1 131 +94T3 37.8 2,34
0.90 2 n=07 K=8 |5 .6938 41.9 2.59
0.90 4 122 .9625 35.2 2.18

Table 1. The comparisons of the computational efficiency of serial and

parallel operations for AF-2 scheme.
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