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Abstract

A preliminary study of the numerical solution of the incom-
pressible Navier-Stokes equations in their vorticity /stream
function formulation is presented. Two different numer-
ical techniques are compared, a pseudo-spectral method
and an ADI scheme, in the solution of viscous flow around
circular and elliptical cylinders. The numerical solution
using the ADI scheme is reliable, robust and accurate for
both transient and periodic *steady state” conditions. The
pseudo-spectral algorithm is as accurate as the ADI solu-
tion for transient conditions, but is considerably slower.

1. Imtroduction

Slender body theory is widely used in aerodynamic analysis
and design. With a well defined vortex system, many mod-
erate to high angle of attack flows are successfully modeled
by the classical superposition of an attached fiow and a vor-
tical detached one {1, The technique requires knowledge
of the sectional drag coefficient in the cross flow direction.
Since this type of data is available predominantly from
experimental investigations, it is obviously restricted to a
limited number of cross sections. Indeed, the method is
frequently used for conventional configurations, but only a

few attempts have been made to extent it for noncircular
bodies (2],

With the growing interest in the aerodynamic characteris-
tics of smooth, noncircular bodies, a pressing need has been
felt to develop a basis for simple engineering design model
suitable for slender wings and bodies at various speeds and
angles of attack, providing the flow is quasi steady.

It is anticipated that accurate numerical calculations of
the two-dimensional drag coefficient for arbitrary cross sec-
tions will further extent this existing, well proven aerody-
namic technique. However, in order to study the feasibility
of the proposed approach, a preliminary evaluation of ex-
isting 2D numerical methods for the solution of viscous
flow is required.

In recent years, a wide range of numerical techniques
aiming at the solution of viscous flows problems, have
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been proposed [3l141[8], Many of them successfully sim-
ulate real flow effects for two-dimensional as well as for
three-dimensional cases. However, viscous flow simulations
are still under continuous development and generally they
still require extensive computing time and resources. In
the present study two numerical algorithms are compared,
the one is a common finite differences approach based on
an ADI technique, and the other uses a pseudo-spectral
method.

Spectral techniques are very efficient in solving Poisson‘s
equation for a prescribed level of accuracy [¢l. The main
advantage of this technique is its exponential rate of con-
vergence. However, in order to take advantage on the spec-
tral technique using Fourier representation, the problem
under consideration must be periodic at least in one di-
rection. For the case of a two dimensional flow, this is
not a severe restriction, providing the flow equations are
reformulated in a polar type coordinate system. An addi-
tional important feature of this method is the absence of
significant artificial viscosity.

On the other hand, finite differences algorithms like the
ADI, are robust, and flexible in handling boundary condi-
tions (7. This type of algorithms is well established and
widely used in many CFD fields, its behavior is well un-
derstood and the effort associated with its programming is
modest.

In the remaining of the paper, the mathematical formula-
tion is presented in chapter 2, the numerical implementa-
tion in chapter 3, followed by some results and discussion.

2. Governing Equations

In order to gain a better insight and understanding of the
acting mechanisms, the authors believe that the vortic-
ity /stream function formulation is superior to that using
primitive variables. To the extend of our understanding,
the vorticity plays the major role in all possible scenarios
of lift generation. Therefore it is only natural that the
numerical simulation ought to correctly describe both the
generation and the convection of vorticity throughout the
flow field in order to offer a meaningful lift prediction.

For simplicity, in the present study incompressible flows



are examined. This simplification reduces the amount of
numerical work without a significant loss in generality,
since compressibility effects are easily accounted for sub-
critical flows, while for supercritical cases an additional
logic must be included to enter correctly in the appropri-
ate branch.

The vorticity stream function formulation for this type of
flows is:
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where w is the vorticity, ¢ is the stream function, and the
Reynolds number Re = U,,l/v is based on the free stream
velocity Uo, and the length scale [ which in the present
study denotes the sectional width.

The right hand side describes the diffusion of the vorticity,
while the left hand side represent the convection of vor-
ticity. It is worth mentioning here that the stretching of
the vortex tube, which is an important mechanism in the
vorticity equation is unique to the 3-D formulation, and is
completely removed in the 2-D approximation.

The initial conditions for the general case of flow over a
solid body is characterized by a generation of zero thick-
ness vortex sheet that warp the solid surface. Mathemat-
ically, this vortex sheet is represented at its initial time
stage by a Dirac function. At any latter stage, that involves
diffusion of the vortex sheet into the flow field, where the
convection terms become the main mechanism in the vor-
ticity transport equation. Thus, the proper description of
the vorticity at the initial time stage is a major numerical
difficulties encountered, while solving these equations.

The boundary conditions required for the numerical sim-
ulation of a viscous two dimensional flow, are the no slip
condition along the solid surface and the far field condi-
tions along the outer boundary. While using vorticity and
stream function as the dependent variables, another set of
conditions must be supplied. The first difficulty originated
from the vorticity/stream function formulation is the solid
surface boundary condition. In the present formulation an
implicit condition is required along the surface, thus cou-
pling the two equations. The far field boundary conditions,
in terms of stream function and vorticity, are well defined
if the boundary lies at infinity. However, for a flnite size
computational domain, a outflow boundary condition has
to be imposed on both variables. As long as the entire
vorticity is confined into the computational domain, zero
vorticity and a multipole behavior of the stream function
18] are adequate conditions. However, the use of these con-
ditions is limited by time. When the vorticity is convected
through the computational domain, it is assumed that the
outer boundary is at a sufficient distance to allow negligi-
bly small diffusion terms. Thus, the conditions imposed on
the vorticity are those of an inviscid flow 13/, The bound-
ary conditions for the stream function have been modified
similarly to those of the vorticity.
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3. Numerical Approximation

Pseudo-Spectral Method

Using a conformal mapping to transform any section under
consideration from the physical domain defined by a set
of cartesian coordinates z and y, onto a computational
domain z + iy = f(£), where £ is the computational plane
deflned by ¢ = re*?. The flow is always periodic in the
circumferential direction therefore the vorticity and stream
function can be written;
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where B = Jow, and Jo = f¢f¢ is the Jacobian of the
transformation. B,, w, and ¥, are the Fourier coefli-
cients respectively. By using this type of transformation,
the grid generated in the computational domain is orthogo-
nal. Probably, the main advantage of an orthogonal mesh
is the simplification of all the terms in the equation, by
eliminating all existing mixed derivatives. Upon substitu-
tion the following equations are obtained;
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where D,, ; is the inverse transformation of the convection
terms for each Fourier mode. The number of computer
operation required to compute the nonlinear term is pro-
portional to O(NMlogM). Where N denotes the number
of grid points in the radial direction, however M is the
number of spectral modes which is smaller then the num-
ber of grid points in the 8 direction.

For each mode n, the linear part of equation (2) is written
in a tri-diagonal form, yielding the vorticity distribution
and the stream function at the x + 1 time level.
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where the terms a; are the coefficients of equation (2).
The vorticity, velocities and their first derivative obtained
at £+ 1, are than transformed to the physical domain with
the use of a F.F.T algorithm. By using the inverse trans-
formation of the F.F.T. Then all the D, ;’s are obtained
at time level k + 1.

The kinematic boundary condition, and the no-slip condi-
tion have been expressed accordingly to Lugt [3 as:
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As long as the vorticity is confined in the computational

domain, the downstream boundary condition is easily re-
duced to the multipole behavior of the stream function i.e:
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where 6, = 1if n = k, and 8, = 0if n # k. For
n = 0 the asymptotical behavior of the 1 is reduced to
the circulation theorem i.e;
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Since the vorticity is convected by the local velocity, and
in the same time diffused, the assumption that w, y = 0,
is acceptable as long as the vorticity is confined in the
computational domain,

where

ADI Method

Although the spectral method seems to be competitive
with the traditional finite difference method, there are still
problems that must be solved. One of them is the severe
restriction on the size of the time step, resulting from the
CFL condition. Thus, equation (1) is reformulated with
the use of an ADI method °! in order to reconstruct the
proper downstream numerical boundary condition for a fi-
nite computational domain.

Considered ¥**! = ¢* + ¢, and w**+! = wW* + wy, where
all quantities with subscript 1 denotes the correction at
the time level k4 1. The vorticity equation and the stream
function equation are rewritten in a non-conservative form,
in the £ plane as;
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where f is finite difference approximation of Eq. (1) at time
level . r; is the radial possition, v, and vy are the radial
and circumferential velocity components respectively.

A pseudo time step (a/Atd,1) is added to the stream func-
tion equation in order to make it of a parabolic type, which
is necessary for the ADI formulation. The parameter o
is chosen arbitrarily (value Of 1 has been used). This
scheme turns to be numerically more stable compared to
the pseudo-spectral algorithm.

The downstream boundary condition can be approximated
as:

Sw Aw
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which essentially is the Oseen approximation. Upon sub-

stitution
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which yields

However, in this study the right hand side of the obtained
downflow boundary condition has been set to zero. Unfor-
tunately we do not have a solid justification for neglecting
this term, except that the operator 8; + U9, may permit
the stream function to convect in the same sense as the
vorticity convection i.e;

(g +UNB0} ®)

4. Results and Discussion

Several numerical test cases have been conducted in order
to verify the capabilities of the two methods. The first case
is a flow over a circular cylinder, at low Reynolds number
flow conditions (Re = 5 to 20). Low Reynolds number is
used to prevent vorticity from leaving the computational
domain. The results of the pseudo spectral calculation are
illustrated in figures 1 and 2, these results are qualitatively
in good agreement with the experimental results of Van
Dyke 1191, The pseudo-spectral solution converges fast,
only 8 spectral modes are required to get to the single
precision machine zero.



The stream line pattern for a flow past an elliptic cylinder
is shown in Fig. 3 and 4 , where the Reynolds number for
both cases is 100, while the latter is at 45° incidence.

The vorticity contours obtained using the ADI method
with the downstream boundary conditions (Eq. 3) are il-
lustrated in figures 5 through 8. It is easy to verify that
the boundary conditions do not cause any kind of reflec-
tion problem. The wiggles appearing in Fig. 7, are the
result of insufficient resolution in the circumferential di-
rection along the computational boundary. Fig. 8 shows
the computed results of the vorticity contours at a time
when a new vortex core is generated near the trailing edge
while the previous vortex has been convected far down-
stream (about one body widths away). This sequence of
flow pattern repeats itself until a complete stage of Von
Karman vortex-street is generated.

Figures 9 through 11 show the instantaneous stream lines
pattern of the same flow field. However it can be noticed
that the approximated downstream boundary condition for
the stream function works well. The boundary condition
(Eq. 3) has been further simplified by replacing the z di-
rection of the original b.c. by the r direction, thus yielding
in the final approximation:

{¢,w}H! = {¢,w}"(r - UAL)

This downstream boundary condition generate a small
slope discontinuity in the stream lines in the vicinity of
the computational boundary, but this has only a local in-
fluence and does not affect the solution at large (Fig 10,11).

The comparison between the measured (11! and the com-
puted drag coefficient over a flat plate is shown in Fig. 12
(Re=100).

It can be observed that due to the symmetric case that
has been employed, no effect from the Von Karman street
vortex is introduced in the results. Thus the asymmetric
disturbance resulting from the numerical scheme, is too
small to generate the Von Karman street vorticies.

To conclude, two numerical algorithms have been tested
and compare for the case of incompressible flow about in-
finite circular and elliptical cylinders. The elliptical cross
section has been tested in symmetric and asymmetric flow
conditions. All numerical experiments have been con-
ducted on an orthogonal mesh of 60 x 100 grid points in the
radial and circumferential directions respectively. No sym-
metry has been imposed on the solutions, still only in the
elliptical cross section at incidence the Von-Karman vortex
street flow pattern has ban reached. When the methods are
compared on an accuracy basis, the two are very similar,
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However, they are extremely apart when their efficiency is
verified. For a transient type solution, after a non dimen-
sional time of 5 (the time required to a particle to travel
five body widths) the spectral method solution takes about
60 min on a DEC-8700 machine, while the ADI solution
requires about 5 min. This enormous difference in comput-
ing effort is directly related to the very severe restriction
on the size of the time step due to the CFL condition. At
the present stage in time the cost of the pseudo-spectral
solution is prohibitively high for all practical purposes. On
the other hand, the ADI method appear suitable to be part
on a prediction code.
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Fig. 3 Pseudo Spectral solution of laminar flow past an

Fig. 1 Pseudo Spectral solution of laminar flow past a
circular cylinder Re=6.5 elliptical cylinder Re=86.5.
Fig. 2 Pseudo Spectral solution of laminar flow past a Fig. 4 Pseudo Spectral solution of laminar flow past an
elliptical cylinder Re=20.

circular cylinder Re=20.
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Fig. 5 Vorticity Contours for Laminar flow past an ellip-

i d Fig. 7 Vorticity Contours for Laminar flow past an ellip-
tical cylinder at T = .6 and Re=100 (ADI).

tical cylinder at T = 1.8 and Re=100 (ADI).
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Fig. 6 Vorticity Contours for Laminar flow past an ellip- Fig. 8 Vorticity Contours for Laminar flow past an ellip-
tical cylinder at T = 1.2 and Re=100 (ADI). & y P P

tical cylinder T = 2.4 and Re=100 (ADI).
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Fig. 9 Stream function Contours for Laminar flow past Fig, 11 Stream function Contours for Laminar flow past

an elliptical cylinder T = .6 and Re=100 (ADI). an elliptical cylinder T = 1.8 and Re=100 (ADI).
Ca
Re = 100
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\\ Experimental
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Fig. 10 Stream function Contours for Laminar flow past Fig. 12 Drag coefficient over a flat plate at RE=100
an elliptical cylinder T = 1.2 and Re=100 (ADI). (ADI).
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