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L Introduction

We analyze a finite volume cell-centered scheme to solve
the three dimensional Euler equations. For a uniform Carte-
sian mesh the scheme reduces to a standard central differ-
ence scheme. Hence, one needs to add an artificial viscosity
to prevent even-odd oscillations and also to suppress oscil-
lations in the neighborhood of steep gradients. In order
to accelerate the convergence to a steady state several ac-
celeration techniques are used. These include, local time
steps, residual smoothing and a multigrid strategy. We
also describe other changes to the original code that either
increase the accuracy of the steady solution or else improve
the convergence rate of the iteration process.

In order for the multigrid scheme to work it is essential
that the errors be smoothed by the relaxation technique.
Since, a central difference scheme does not include any dis-
sipation one needs to add an artificial viscosity to damp
the high modes. Hence, the artificial viscosity is needed
both to give the correct shock structure in the steady state
and also to eliminate high modes so that one can pass to
a coarser mesh. As one increases the level of the artificial
viscosity (up to some maximum) the high modes are more
dissipated and the scheme converges more rapidly. How-
ever, this higher level of viscosity smooths the shocks and
eliminates other features of the flow. Hence, there arises a
conflict between the requirements of accuracy and the need
to reach a steady state rapidly.

II. Finite Volume Formulation

The Euler equations for an inviscid compressible flow
can be written in divergence form as

3Q df  dg Oh
Bt + 3z + 5; + 3= 0 (1)
where
Q = (p, pu, pv,pw, E)* (20)
f = (pu, p4® + p, puv, puw, (E + p)u)’ (2b)
g = (pv, puv, pv* + p, pow, (E + p)v)’* (2¢)
h = (pw, puw, pyw, pw® + p, (E + pJw)*  (2d)
and for an ideal gas
p=(v—1)[E - p(u® + v* + w?)/2]. (2¢)
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We can also write (1) in the form

99 | div(F) = 0. (18)

at
We integrate (1) over a three dimensional cell and con-
sider Q; s+ as an approximation to the average of Q over

the cell. Hence,

aQ“,J‘,g + fffdﬂ)FdV =0
ot TIfav
or using the divergence theorem,
a -
Ewmm+//Fmﬁ—Q (3)

Hence, the time change of the average Q is governed by the
fluxes entering and leaving the cell [4,5].
One can arrive at a similar scheme by introducing new

coordinates
¢ =€&(z,y,2)
n = n(z,y,2) (4a)
¢ =¢(z,v,2)

such that £, n, ¢ = constant represent coordinate surfaces.
Using this mapping technique together with finite differ-
ences leads to a formula similar to (3). However, now the
volume is replaced by a Jacobian,

_ d(z,y, z)
T 3(&n.¢)

For an infinitesimally small cell the volume is equal o the
Jacobian. Also, in two space dimensions the area of a
quadrilateral is exactly equal to a central difference formula
for the Jacobian i.e., if

J (4b)

Jirp ey = (Grrger — g + &vrg — &) - (hirrgm

=Nirrg + Miger — M) /4 = (bisrin — Eirrg + &g (5)

=&i3) * (Mirrge1 = Miger + Mivrj — Mi) /4.
Ji; gives the exact area of the quadrilateral with corners
(&5omii)s  (Evrgsmivng)s  (Gijersmiger), and  (E4r541s
7i+1,5+41) However, in three dimensions there are differences
between the finite volume formulation (3) and the finite dif-
ference formulation based on (4). In three dimensions one
cannot find the volume of a three dimensional quadrilat-
eral. If we assume that each face lies .in a plane then we
can divide the three dimensional cell into six pyramids and
so calculate the volume. If the faces do not lie in a plane



then this gives an approximation to the volume. This ap-
proximation is no longer the same as that given by central
differences of the Jacobian, Similar differences occur in the
flux terms where normals to surfaces are required. The for-
mula that comes from a finite volume approach is no longer
exactly the same as that of a finite difference plus mapping
approach. However, both formulas agree to second order
accuracy. In a Cartesian mesh the finite volume and cell-
centered finite difference approaches are the same,

II1. Artificial Viscosity

Both the finite volume and the finite difference approach-
es lead to a pure central difference method for Cartesian
grids. Though this scheme is stable for constant coeffi-
cient hyperbolic equations it is subject to instabilities that
will prevent the convergence to a steady state. To force
this convergence a fourth difference viscosity is added to
the scheme. The fourth difference causes oscillations in the
neighborhood of shocks. Hence, a nonlinear second differ-
ence is added to control oscillations near the shocks and the
fourth difference is turned off. The total artificial viscosity,
V, is the sum of such second and fourth differences in each
coordinate direction.

Vie = V§+§-,j,k - Vf— bkt V-Zi+§.k - v:’,j—i-,k
e (6)
FViikey = Vs,j,k~;-
Hence it is sufficient to describe these terms in the £ direc~
tion. Since we only take differences at neighboring points
the artificial viscosity is always in conservation form.
The first difference is defined as

Diyyin = Qirrjr — Qijp (7a)
and the second ¢ difference is defined as
Eijr = Diyyin— Di_y i (76)

We then form the second and fourth differences. In partic-
ular the fourth difference is formed as a second difference
of a second difference with positive weights {3,8]. Hence,

A 2 4 4)
Vietin = 5§+)%',~,,,Di+ Lk (Et(-i-)l,j,kEHlJ.k - f;(,j.kEi.i.k)~ (8

Let,
P10 — 2P0 + P'-x,j,kl
Piprge + 2Pije + Pioyjpl

(9a)

Vije =

Then 1,5, is used to detect the location of shocks. When
Vi is large then the fourth difference is reduced. Other
ways of normalizing the second difference of the pressure
are also possible. Let,

(95)

We also multiply ¢ by a function of the Mach number to
reduce o near the surface. Finally let A be a measure of the
fluxes (this will be discussed in more detail). Then

)
Cirbin

= K3
Gi+tik = K max(”c’—-l,j,k:Vi,j,ksV-’+1,j,ksut'+2.i.k)'

(9¢)
(o)

=My Lok%i4 Lk

és,?,k = A;’j,k max(o, K“) - 0',',,";).

Let, A = '3%’ B= %g, C= %%, where F,G, I are the fluxes
in the coordinate system (£,7,¢). The original code chose
Aas

XE=A7= X = p(4) + p(B) +9(C)  (100)
where p is the the spectral radius of the matrix. For prob-
lems with a highly stretched mesh it was found [1,3,8,11,12]
that for increased accuracy one should choose

A¢ = p(4), A" = p(B), At = p(C). (106)

&, k(¥ are constants that determine the level of the sec-
ond and fourth differences. These constants are-given as
input to the code. In the result section these will be varied
to see their effect both on the accuracy of the solution and
on their convergence rate.

In all our calculations we use a C grid in each plane.
It was found important to calculate the artificial viscosity
across the wake and not to treat the wake as a solid surface.
In the spanwise direction we use either an H or an O grid.
The H grid leads to a simpler topology but does not give
sufficient resolution near the wing tip. With the O mesh
care must be taken to reflect the proper points across the
wake and near the wing tip. This is especially important
for the fourth difference in the ¢ direction which requires
several points on the other side of the wake.

IV. Results

We first consider flow past an isolated ONERA M6 wing
with M, = 0.84 and a = 3.06°. We use a coarse 96x16x16
C-H mesh. In Figure 1a, 1b we show the C, plots over the
upper surface. For this case

kB =2./2,
k¥ =2./64,

In Figure 1c we plot the convergence history for this
case. A five stage Runge-Kutta scheme was used with two
evaluations of the artificial viscosity. This scheme was used
once per iteration on the finest grid, twice on the next finest
grid and three times on all coarser grids. On the way up
from coarser to finer grids no smoothing was used and the
changes were just interpolated to the next finer grid. With
this scheme we were able to reduce the mean density resid-
val by 9 orders of magnitude after 100 iterations on the
finest mesh., Using a FMG method the initial condition
was obtained by using 10 iterations each on two coarser
grids. These convergence rates are close to those obtained
by Jameson [6] using a nodal scheme. Hence, we see that
there are no major differences in convergence rates and ro-
bustness between the cell-centered and the nodal versions
of the multi-stage methods.

In Figure 2 we plot the same case but with

(11a)

k) = 0.5/2.

k¥ = 0.5/64. (118)

We see that now the shocks are much sharper and that other
features of the flow are more pronounced. In addition, the
total lift was lowered from .299 to .287 and the drag was
changed from .0174 to 0.147. With this reduced x®, x(¥
the lift and drag are close to that given in the finer mesh
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of Figure 3. However, now the convergence rate is reduced
to a 5 order reduction within the 100 iterations.

In Figure 3 we plot the same physical case but using a
finer 192 x32x 32 C-O mesh. Looking carefully at individual
stations one can again see that the lower viscosity level leads
to sharper profiles but at the expense of a slightly reduced
convergence rate. With this finer mesh there is much less
of a sensitivity to the constants in the artificial viscosity
compared with the coarse mesh (see also [12]).

In Figure 4 we plot the convergence rate for a super-
sonic flow about a delta wing. For this case a 128 x 24 X 16
C-H mesh was used supplied by Moitra [7}. This further
demonstrates the robustness of the present code over dif-
ferent configurations and different flight conditions.
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Figure la. ONERA M6 wing, M, = .84, a = 3.06, 96 X
16 X 16 C-H mesh, () = %, 4 = i;_a’ station = 0.05.
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Figure 1b. Upper surface pressure plot.
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Figure 2b. Upper surface pressure.
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Figure 2a. Same as Figure la with k@ =1, x¥ = L. CASE 1 NMESH=3 NCYC=100
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Figure 2c. Convergence history.
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Figure 3d. Convergence history for Figure 3c. Note: Scale
is different than Figure 1c and 2c since fewer iterations were
done.

Figure 3b. Upper surface pressure.
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Figure 4a. Delta wing M,, = 2.5, a = 1.2°.
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Figure 4b. Convergence history.
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