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Abstract
The paper describes an efficient solver for two dimen-

sional turbulent boundary layers based on OCI techniques.
The boundary conditions are given in a general problem in-
dependent way. The method is applicable to any two equa-
tion turbulence model. The application of the method to
two equations turbulence models is discussed. A rational
way to utilize the method for optimization of two equation
turbulence models is presented. Sample results are shown.

1. Introduction
1.1 The Problem Considered

This paper is concerned with the calculation of tur-
bulent boundary layers using a two equation model of tur-
bulence. The numerical solution of this problem is diffi-
cult due to two reasons. Firstly the second model equa-
tion, representing the scale of the turbulence is difficult
to model. This is a difficulty with any scale equation, be
it the popular dissipation equation, or any other second
model equation. Secondly, the distribution of the velocity,
turbulent energy and turbulent scale is not very regular.
Each of the variables has steep gradients in a different part
of the field. Thus a fine mesh is required in most of the
field, which is expensive to compute. These two difficulties
make the numerical modeling of turbulent boundary layers
a demanding and uneasy task.

The aim of the present research is to study an op-
timal scale equation for two equation turbulence models.
The optimization should be done by comparison of exper-
imental and computed results for many cases. In order
to do this it was necessary to develop efficient boundary
layer solver. Therefore the research is concerned with two
topics: (i) efficient method for the numerical solution of
turbulent boundary layer equations; (ii) optimization of
the second model equation utilizing the efficient scheme to
be developed according to (i) above. In this paper the gen-
eral strategy is discussed and the special efficient numerical
methods developed for the project are presented.

1.2 Literature Survey

The closure problem of turbulent flows is well known
for a long time. Various answers to the problem have been
proposed, ranging from the simple integral methods, to the
direct simulation using super computers, as was demon-
strated in the Stanford 1982 conference on complex turbu-
lent flows (). Typically these two extreme cases offer very
distinct advantages. The simple integral methods as well
as the mixing length models offer fast and cheap means
for the calculations. Moreover they work very well for a
surprisingly large number of cases. Yet there are cases of
practical significance in which these methods can not offer
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an acceptable solution. In the other extreme of direct simu-
lation the quality of the results is very good if the Reynolds

number is not too high and the mesh is sufficiently fine.
Yet the price of the computation is immense. Thus it be-
comes necessary to employ higher order turbulence models
for many practical applications. Various modeling options
have been studied, but the two equation turbulence mod-
els are without any doubt the most acceptable choice due
to their relative simplicity and ease of computation.

Two equation models are based on the eddy viscos-
ity hypotheses. In this sense they share some weakness
with the simpler mixing length model. They differ from
the mixing length model by relating the eddy viscosity to
the amplitude and frequency of the turbulent velocity fluc-
tuations, obtained by a solution of two partial differential
equations. Thus they can predict cases in which the his-
tory of the turbulence is important at the price of heavier
needs for computer resources.

The amplitude of the velocity fluctuations is usually
related to the turbulence energy. The frequency is ob-
tained from the scale of the turbulence as well as the
turbulence energy itself. The standard practice today is
to use the dissipation equation as formulated by Jones
and Launder () as the standard second model equation.
The energy-dissipation model was discussed in some de-
tail in the 1982 Stanford Conference on complex turbu-
lent flows (1), The evaluation committee of this conference
wrote: ”The weakest point of present one-point closure
is the epsilon equation. The computed results of many
flows can be brought into good agreement with the data
by tweaking the epsilon equation constants. A better equa-
tion should make these changes in value an automatic part
of the calculation. A corollary effect of the epsilon equa-
tion defects is the too large length scale in adverse pres-
sure gradients and near separation.” This conclusion was
substantiated by Mansour et. al. (3) who found large dis-
crepancies between the modeled term of the dissipation
equation and the ones computed using direct simulations.

With this remark in mind it seems appropriate to seek
alternative formulation for the second model equation. Of
course the dissipation equation has been used for this pur-
pose for a very long time. Wilcox and Rubesin () has used
an energy-vorticity model, while and Arad et. al. (® used
an energy-length scale model. It was found that these mod-
els may produce results which are of the same quality as the
dissipation model, but they are more cumbersome. Other
models were proposed by Lin and Wolfshtein (¢) for a "vol-
ume of turbulence” and by Zeierman and Wolfshtein (7) for
a "time scale of turbulence”. These models were not seri-
ously tried in numerical simulations.

Numerical solutions of the turbulence models equa-
tions are performed often these days. However, such so~
lutions are not simple and require considerable computer



time. The problem becomes much easier when boundary
layers are considered, and the character of the governing

equations change from elliptic to parabolic. A major prob-
lem in the numerical solution of boundary layer problems
is the growth of the boundary layer thickness, requiring an
expanding mesh along the flow direction. Two approaches
are possible here: Either to widen the mesh using a given
formula for the boundary layer thickness {(e.g. Pade et.
al. (8)), or to use some approximate method for the calcu-
lation of the boundary layer thickness any time a new step
is performed (e.g. Patankar and Spalding ().

The CPU time requirements for a given (high) ac-
curacy may be reduced by using a high order numerical
scheme. Yet, high order schemes may impose stability, al-
gorithmic and programming problems. Thus Patankar and
Spalding (9 preferred a first order scheme to avoid stabil-
ity problems. Cebeci and Smith (19 used the second order
Keller box scheme (11) as a means to get an efficient solver.
Arad et. al. () found that even a second order accuracy
requires many mesh points for a solution of boundary lay-
ers with a two equation turbulence model, due to the steep
gradients of different variables in different parts of the flow
field. Postan et. al. (1?) report similar conclusions for fiows
with high pressure gradients and concluded that a fourth
order scheme is to be preferred.

High order finite difference schemes of various kinds
have been reported in the literature. Of the many possi-
bilities we prefer in this work those which retain the tri-
diagonal nature of the matrices, and do not require solution
of auxiliary differential equations. This preference leads to
the choice of ”Operator Compact Implicit” fourth order
schemes proposed by Swartz (13),

The application of the OCI scheme to boundary layer
problems is usually done by approximating the lateral part
of the differential operator by high order scheme. The
methods reduce to tri—diagonal form. Ciment, Leventhal
and Weinberg (14) applied this approach to the solution of
parabolic equations.

The stability characteristics of the OCI scheme are
of serious concern. Berger, Solomon, Ciment, Leventhal
and Weinberg (15) who used the OCI schemes for the so-
lution of the boundary layer equations treated the prob-
lem of limiting stability requirements, originating from the
small value of the diffusion coefficient ¢, typical to high
Reynolds number problems. Similar boundary layer equa-
tions, with strong pressure gradients, were solved using the
OCI scheme by Postan et. al, (12),

Another way to reduce the computational load is
to use wall functions, as suggested by Patankar and
Spalding (®), Arad and Wolfshtein (1) showed that in
certain cases the use of wall functions may bring a dra-
matic reduction in the number of mesh points required for

a given accuracy. Yet, the application of wall functions re-
quires very good one dimensional solutions for the region
very near to the wall. This is not an easy task for the

turbulence model equations.
1.3 Definition of The Problem
In view of the above, the aims of the paper are to

describe an efficient method for the solution of boundary
layer problems and its application to turbulence modeling.
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The problems of wall functions, boundary layer thickness
adaptive grids and mesh stretching are addressed as well.
The application of the method to the optimization of two
equation turbulence modeling is discussed, and the associ-
ated mathematical problem is described.

2. Two Equations Turbulence Models
Two equation turbulence models are based on the as-
sumption that turbulence may be described by two vari-
ables representing the amplitude and frequency of the tur-
bulent fluctuations. In most models ever used the ampli-
tude is represented by the turbulence kinetic energy de-

fined by
(2.1)

The second variable may be viewed as a product of the
energy and the scale raised to some power. The variables
considered in this work are the dissipation {¢), the length
scale of turbulence ({), the volume of turbulence (V}, the
time scale of turbulence (T') and a generalized variable (4).
We define the generalized scale ¢ by

[ ]
€= uu;

L=Cre*¢? (2.2)
where Cp, is an empirical coefficient and ¢ may stand not
only for the generalized variable but also for any of the
explicit scale variables. The values of the constants o and
B for the four models considered here are:

¢ e—¢€ e—- L { e— Vi I e—T I
o 15 -1 —% -3
B -1 1 3 1

The energy-dissipation turbulence model is undoubt-
edly the model used for the large majority of computa-
tions nowadays. However, it is easy to derive the govern-
ing equations for the other variables from the dissipation
equation, and it is possible to make all such models fully
identical in the sense that they will yield exactly the same
eddy viscosity. It should be noted that this is not the way
these equations are usually derived: In most cases some
physical meaning is assigned to the scale variable, and a
corresponding mathematical definition is applied. The re-
sult of modeling the exact equations obtained in this way

is very similar to that obtained when the equation for the
variable is derived from the dissipation equation. The dif-

ferences are almost always confined to the source term of
the equation as is shown below.

The governing equations for both the turbulent energy
and the scale always have the following form:
convection = diffusion + production - decay + source.
Thus the conservation equation for the turbulent energy
is:

De 8 ut\ e av\?
= 2y = =} - 2.
"Dt = By [(n+ Ue) 6y] + pe (ay) pD. (2.3)

where D, = ¢ is the turbulent energy dissipation.
The conservation equation for the generalized scale, ¢ is:

D
—¢=T¢+P¢—D¢+S¢

Dt (2.4)



1t is common to treat the diffusion term Ty as gradient

dependent:
_ 9 ue\ 8¢
T¢ h a.'l:" {(u—i_ 04,) az,'

where 04 is the empirical turbulent Prandtl number for ¢.
The production term P, is formulated using the produc-
tion term in the turbulence energy equation (P.):

(2.5)

P¢ = Cyiépe (2.6)
In the same manner, the decay term Dy is:
Dy=2C ¢D
¢ =Ca_D. (2.7)

The turbulent viscosity is calculated by the following for-
mula:

pt = CuCre®tigl (2.8)

Seven empirical coefficients are used, namely:
Cy,C1,Cr,Cq,Cp,0.,04. The length scale has a physical
meaning and significance. However, it is often the case
that in the calculations we wish to predict correctly only
the eddy viscosity, and not the length scale, or its rep-
resentative variable ¢. In this case C; may be taken as
unity without any loss of generality and either C,, or C;
can be fixed arbitrarily as well, thus reducing the number
of empirical coefficients to 5.

The list of these coefficients is written below:

¢ e—¢ e— L \ e—Vy; ‘ e-T \
Cy 1. 0.09 1.
Cy 1.44 0.98 0.173
Cyq 1.92 0.055 1.
C, | 009 1. 0.09
O 1. 1. 1.46
o4 1.3 1. 10.8

The coefficients of the energy-volume model are not known
at the present time. The energy-length model has the fol-
lowing source term:

L q
Sy =~— (c.,—) -eLP,

(2.9)
Yy

Cs = 8.83 qg==6

Computational experience suggests that the energy dissi-
pation model does not usually require a source term in the
dissipation equation.

We wish to emphasize that all models can be brought
into a generalized form. In this form the coefficients related
to the generation and dissipation are about the same in all
models, and the corresponding terms are exact transfor-
mations of one another. The main difference between the
models is in the diffusion terms. Transformation of these
terms from one model to the other always leaves a resid-
ual term which must be added to the source term. The
residual source term created by transforming the diffusion
term of the energy-dissipation equation to the generalized
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formulation is:

S4 =
7} 1 1) 8
o (o) 3]
+3/2~a(i_i)_¢é__6~( 8e
B o, 0/ €dz; ’“5}?>~

dfise(,ym) 2008

O¢

The two leading terms have the form of diffusion terms for
e and ¢. The second part has the following form:

de \? o \? de 3¢
ay (5;;) + ay (:9?_.,) + ag (5;]—5;) (2.11)

An optimal two-equation model may be defined as one
which gives best agreement with experimental data while

still requiring no source term, or at least the simplest
sources term. This optimal model is not necessarily any of
the four models presented above. The optimal model may
be defined as this model which uses such a combination of
a and g, which satisfies the optimization demands.

The most important feature of an optimal model is the
capability to handle a large range of physical cases. Vari-
ables which can be directly measured are superior, since
the model results can be easily validated by experiments.
Comparisons with full simulation, may yield better under-
standing as well. As shown, the source terms often contain
mixed terms (from both the energy and scale equations).
It is therefore always advantageous to use a model with
smaller source term thus reducing the coupling between
the equations.

3. Mathematical Presentation
3.1 Formulation

A detailed formulation of the problem is given by Arad
et. al. (5}, Thus, only a brief summery is presented here.
The conservation equations of mass, momentum and en-
ergy, for a steady boundary layer are:

dpur  Spvr -0
dz ay
Ou du dP 18 Ou
Sty =422 > 3.1.1
—rr +pv6y dz + r dy (“‘ff'ay) ( )
ui’.‘?_.*. v%——
oz TPy T
a5 (15 sy ()]}
~.;51;{"[0;. dy ! ok "‘ffay 2

The unknowns in these equations are the velocity com-
ponents u and v, and the stagnation enthalpy ho. The
effective viscosity is defined by:



Beff = p+ pe (3.1.2)
The turbulent viscosity (u.) is calculated by a turbulence
model.

One of the boundaries for the problem is a solid wall
with no-slip boundary conditions. The second boundary is
usually the main stream which is governed by the poten-
tial flow equations. Specification of the no slip boundary
conditions on the wall requires a solution right through
the viscous sublayer and up to the wall. This procedure
requires fine grids to handle the strong gradient near the
wall. Moreover, a set of viscous damping functions is re-
quired in order to represent the viscous sublayer well. 1t is

difficult to devise such functions in a universal way. The
other possibility is to use wall functions, thus eliminating

the need to solve up to the wall. The universality of the
wall functions is similar to that of the damping functions
mentioned above.

When the solution is carried out up to the wall, the
velocity, the turbulence energy and the length scale of tur-
bulence are zero on the inner boundary. The implications
to various models have to be worked out. For the enthalpy,
two boundary conditions are possible: Either a given heat
flux or a given temperature.

When wall functions are used the computational
boundary is removed from the solid wall. The distance
between the two, ys, should satisfy the following condi-
tion:

30 <y <150 (3.1.3)
where
v = %@ (3.1.4)

u is the friction velocity. The universal law of the wall”,
determines boundary conditions for the momentum equa-
tion. For computational reasons it is easier to use the
power law approximation for the law of the wall:

1/n
*ea() »
ou _ v o
dy ny
where
n = log (EY,)
n_ 1 (3.1.6)
a = ;Y+
E=9, x = 0.41 (Von-Karman constant). Experimental

data suggests that the boundary condition for the the tur-
bulence energy, e, is given by:

10
=3 (3.1.7)

ﬂgu[ «

Assuming a balance of generation and decay (e.g. when
the convection and diffusion are negligible) in the universal
wall region, the following condition is obtained for ¢:
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¢Fex  [Cy k €V/?

y - 6;6;:“1'

(3.1.8)

On the main stream boundary the velocity and enthalpy
are determined by the external solution, which is usually
potential and isentropic. The turbulent quantities may be

calculated there by neglecting the turbulence generation
and diffusion, yielding equations for the other variables:

DU; _ _ép

Dt = 9z

%:i —_D, (3.1.9)
Dé _

D =D

3.2 Transformations

The coordinates transformations used in the present
work are designed to allow the mesh to expand with
the boundary layer thickness and to concentrate more
mesh points near the solid wall, where the gradients are
steepest. The first goal is obtained by transformation
to the Patankar and Spalding normalized stream function
coordinates (9), v

YE — Y1

o[ e

and Yz and Yy are the stream function values on the ex-
ternal and internal boundaries, respectively. In this co-
ordinate system, the continuity equation is satisfied au-
tomatically due to the use of the stream function co-
ordinates. Moreover, the grid is self-adaptive to the thick-
ness of the boundary layer. Arad et. al. (5) showed, that in
this co-ordinate system, the cross-flow derivative of veloc-
ity is singular near the wall. This singularity was removed
using a square root transformation to the (x,z) plane,where

w= (3.2.1)

where

(3.2.2)

1/2 (3.2.3)

z2=w
Under this transformation, an equation for a general vari-
able F can be written, as follows:

)+

dF b OF 16(0

9z v2%9: T 2292
The general variable F represents the velocity, total en-
thalpy and the variables of the turbulent model (turbu-
lence energy and scale, in the present case). The equation
coefficients for these variables are the following:

dF

- (3.2.4)

remy r2pl'u e
= C=—r—"p TI'= — 3.2.5
b e 2V bt (3.2.5)
The source term is split into two parts:
d; = s;,y + 8;,pFi,p (3.2.6)



Thus the the source is given by:

(_14dP
pu dz
] 1 (0
- =
8y[( a;.) 0
9 ,u? 1/2
Siv =4 Besr & (Y- Sip= B
U pu ay(z)] D fl lu
ut OU 2 ca el/?
= _Gae”
pu ' By Ts ul
(et Faylie 20
\ Ja' pu'dy

For stability reasons, it is preferable to make the explicit
part (Sy) as small as possible.

The former transformation is sufficient for obtaining lam-
inar flow solutions. Yet the strong gradients which char-
acterize the turbulent regime require a finer mesh in the
wall vicinity. Such a refinement may be obtained using
logarithmic transformation:

In (1. + fﬁz—‘l)

S‘zln(l.+lj'?‘l)

For small 8, a very dense mesh is created near the wall.
An equivalent stretching is obtained by Arad et al. ®),
using an arc-tangent function. Here the lower boundary
is 20, which is not necessarily zero (as in the case of wall
functions). This clustering transformation is sufficient for
wall function version. Yet, when solution up to the wall
was performed, the strong clustering which is required near
the wall results in a very poor resolution in the external
regions of the boundary layer, and large errors in the in-
tegral coefficients. The problem becomes significant in the
coarse grids which are used for the fourth order solution,
and is negligible in the fine grids which are required for
the second order solutions. Pade et. al. (8) proposed a two
layer transformation, to overcome this difficulty: The inner
region of the boundary layer is mapped by a fourth order
polinom, while the external part is mapped by a power low
transformation:

(3.2.7)

_JAz+B22+C2+ Dzt for ¢ < ¢m
z* for ¢ > ¢m
(3.2.8)

In the matching point, continuity of the derivatives up to
the second order is maintained. Allowing a slight discon-
tinuity in the third derivative releases another degree of
freedom in the grid control, without any problem in the
solution of a second order equation.

3.3 Boundary Layer Thickness and Entrainment

The boundary layer thickness, §, does not have a sig-
nificant importance in this formulation of the boundary
layer problem. It is needed only for the coordinate trans-
formation and for calculating the marching step (Az). Fol-
lowing this philosophy Patankar and Spalding (1) and Arad
et. al. () estimated the boundary layer thickness from the
entrainment, e.g. Qé!} for each step in the marching direc-
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tion. The entrainment was calculated using a reduced ap-
proximate form of the momentum equation on the external
boundary. The justification for this formulation, presented
in ref. (®), is rather frail, particularly in the laminar case
where the external boundary is not definite. Moreover,
the entrainment, and hence the boundary layer thickness,
appear to be dependent on the lateral step size Ay near
the external boundary, which have no physical meaning.
As a result, the boundary layer thickness depends on the
number of points in the lateral direction.

All this is acceptable in a second order solution with
many mesh points as the solution does not really depend
on 6. The friction coefficient as well as the displacement
and momentum thicknesses, are not affected by the error in
estimating the boundary layer thickness. However, when a
fourth order method is used with coarse grid, large errors
occur in all these quantities. Therefore a better approxi-
mation of the boundary layer thickness is required. This
was achieved by using the boundary layer integral momen-
tum equation:

do  © U,
dzx Uy dz

The values of the shape factor, H, and the friction co-
efficient Cy can be taken from the previous step. Then
equation 3.3.1 becomes an ordinary differential equation
for the momentum thickness © with the solution:

(2+H-M2) = -;—Cf (3.3.1)

du,
9U+-1—CfA:c for X =0
o 2 dz
b= ¢y Cr\ —ans dUso
—2-;+(6U~-2:)e for Iz #0
(3.3.2)
= (2+H-M2)

Using the definition of the momentum thickness, the
boundary layer thickness of the next step is estimated:

9n+1
- a)e
o U. Ues n
The entrainment which is defined as the derivative of the

stream function with respect to x on the external bound-
ary, can be calculated using the definition of the stream

function:

6n+l —

(3.3.3)

dvg d [° % 8 (pru) ds
&F _ ¢ = bl U/ ) =
dz dz J, purdy /(; oz Y t+esusre dz
(3.34)
and the continuity equation:
a 8
F {pur) = ~ 3 (pvr) (3.3.5)
Substitution of (3.3.5) in (3.3.4) yields:
d¥g dé
—Ex—' = —JpEvErE + pErEuEa; (3.3.6)

and the x derivative of § is calculated by a forward second
order scheme:



d6 367t 44n 4 671
dz = 2Azx to (sz)

(3.3.7)

3.4 Wall Functions

The simplest way to use wall functions is by matching
the finite difference solution with the wall functions over
the two innermost points (indexed ”1” and ”2”). This is
very simple when the power law formulation (3.1.5) is used
as the boundary condition is reduced to:

v _ (!1) v
Uy Y2

It is not difficult to define a two point formula using the
logarithmic profile as well, but in this case the formulation
is implicit and non-linear.

In two point matching the universal law of the wall must
hold not only for the point y; but also for the point ys.
This may require a fine mesh spacing near the inner bound-
ary.

A different possibility is to use a single point formu-
lation. Let us consider first simple central second order
approximation, using a fictitious point yo outside of the
physical domain. We start by writing the finite difference
analog of eq. (3.1.5):

(3.4.1)

Ua-Uo _ Uy

4.2
2h ny, (34.2)

Considering this equation as the one for Uy, it is not diag-
onally dominant, and the formulation is not stable. First
order approximation of the normal derivative yields a sta-
ble formulation:

3.4.3
o (3:43)

(1+-—-’£—)U1~—U2=0

Arad and Wolfshtein (16) suggested an alternative ap-
proach which achieves both stability and second order ac-

curacy. It uses the finite difference equation (4.1.2) at the
boundary point y; together with the second order bound-
ary condition formulation (3.4.2). In this case the variable
Uy is eliminated and the equation becomes:

(b1 - -1h—> Uy + (a1 + c;) U;=d; (3.4.4)
ny1

3.5 Calculation of Skin Friction

When the interior boundary conditions are defined us-
ing wall functions, the *universal law of the wall” is used
to calculate the skin friction. The expression is simplified
using the law of the wall and its derivative with respect to
the distance from the wall:

U=f(y,%r,,p)

au

(3.5.1)
¥ e g urmp)=1

When the logarithmic law of the wall is used the skin fric-
tion is calculated from:

32z

T x?

;—3 = In {Eﬂﬁx (p—:,—) 1/2]2

Where E and « are universal constants, and u, is the fric-
tion velocity. This expression is implicit, and its solution
requires iterations. If Newton-Raphson iterations are used
converged solution may be obtained within 2-3 iterations.
The wall functions, like the friction law which was
given here, do not formally conserve the fourth order ac-
curacy. Yet, the significant saving in computational effort
which is the benefit of their use (16), makes this con-
cept attractive. The formal fourth order accuracy may be
conserved when the solution is performed up to the wall.
Compact approximation was used in this case, where an-
alytical information was used to conserve the fourth order
accuracy. The first derivative was calculated using Tay-
lor series expansion, and the higher derivatives in the se-
ries where given by the laminar, incompressible momentum
equation, which is valid in the close vicinity of the wall.

(3.5.2)

4. Numerical Formulation
4.1 OCI Formulation

The numerical method used in this work belongs to
the OCI family (Operator Compact Implicit). The prop-
erties of this type of numerical methods are discussed in
chapter 1. The particular scheme described below is due
to Israeli and Livne (*7) for the solution of a partial differ-
ential equation of the following form:

0d
32 = L(®)
where
%% ad
L(®) = i P(‘D,y)b; +Q(®,4)8 - f(y) (4.1.1)

If N is the number of grid points in the y direction, and
the constant cell size in the transformed plane is A = L

N
then the general OCI scheme is:
a;®; 1+b;®;+¢;P541 = ajfi1+8if; +7;fi+1 (4.1.2)

The scheme 4.1.2 is of the p > 1 order, if for any function
v
LV =LV + 0 (h?)

where Ly, is.a finite difference operator.

Let Vi=¢ 0 < J £ 4, then for LyV; =0,
fly) =30 - 1)¥""2+ P(y)j¥" ' + Q(y)y’. Equating L,V
tozerofor 0 < j < 4, gives five linear equa-
tions, with six unknowns: a,b,c,a,8,7: One of the con-
stants may be arbitrarily chosen without loss of generality.
If we choose 8 to be

(4.1.3)

B =60+ 16k (Pjyy — Pj_1) — 4h*Pj  Pj (4.1.4)

then the other coefficients are defined as follows



a=6+h(2Pj41 — 5Pj_1) — K’ P;Pj1.
¥=6+h(5P; —2P;_1) — h*P;P;_,
_at+f+y + =3aP;j_1— P + 1P

= TR 2h +aQj-1
b= —2°‘+f2+'7 +2°’P"‘1;"d’p"+l +8Q;
a+f+ —aP;_1+ BP; + 3vF;
c= ﬂz '7+ ary.y ﬂj+7]+l+’7Qj+1
h 2h
(4.1.5)

Equation 4.1.2 is tri—diagonal and can be easily solved by
a recursive algorithm, once the proper boundary conditions
are introduced.

4.2 High Order Boundary Conditions

The second order differential equation requires defi-
nition of boundary conditions, on both the external and
internal boundaries. The most general form of the bound-
ary conditions is

Wi =Tp®L + S.(9y),,
Wu =Tp®n + Su () g

These expressions contain the first derivatives on the
boundaries which should be approximated to at least the
same order as the solver. To avoid multi—point fluctua-
tion sensitive formulae, the derivative is discretized by the
following simple Taylor expansion:

(4.2.1)

_%411-% h., R h?
= e

h
The higher derivatives are evaluated using the differential
equation (4.1.1). For simplicity, the method is explained
for second order accuracy:

o'—-—8¥ 10 (h%) (4.2.2)

®"=f-Pd' - Q2 (4.2.3)

Substituting equation 4.2.3 into equation 4.2.2, and re-
arranging the equation to solve for &', yields:

Ao\ ., 1 1 h h ‘
(1— —Z-P) Q' = —’;Qj.f.l + (—',; +§Q) ®— §f+0(h2)
(4.2.4)

Differentiation of (4.2.3) results in expressions for the third
and fourth order derivatives:

@l" — f’ _ P@” - (Pl + Q) @I - QI@

@iv — f” — P — (ZP' + Q) " — (P" + qu) &' — Q”Q

(4.2.5)
Expression 4.2.5 is substituted into 4.2.2. Solving for ®’, in
the same manner used for the derivation of (4.2.3), yields
fourth order formulation for the first derivative:

h  h?
{1- sP+5 (P -P-Q)+
3 .
+’2'—4 [-P" +3PP'+ P (2Q - P%) - 2Q'] }<1>' =

1
“h

-1 A h? ,
+{-h—+§Q+“6—("PQ+Q)+

i1+

h3 " !
+31 (@' - PQ'-Q(2P' - P* + Q)] }@,-+

h, h? R,
3t Br =)+ ="+ Pf'~

~f(P*-2P' - Q)]
(4.2.6)
Expression (4.2.6) is substituted into equation (4.2.1), giv-
ing the difference equations for the boundary nodes.

4.3 Application of The OCI Scheme to
The Boundary Layer Equations

In chapter 3., the general conservation equation
(3.2.4) was derived for a general variable F representing

the velocity, total enthalpy turbulent energy and turbu-
lent length scale. This equation is first discretized in the

x direction: 1
= o= (F"H - F7) (4.3.1)

This equation has now to be recast in the form
Fzz + P(Z)Fz + Q(Z)F = R(z) (43.2)
It is not difficult to rearrange the equation and get

19C 1

— 2 T he?
P=5%: " ¢c%
22 1
2z . 2z
R=-3zc® —©c%

It should be noted that the conservation equation is not
written in the conservative form any more. Furthermore,
before the solution is performed, the derivative of the co-
efficient (C) in the diffusion term should be approximated.
Evidently, this approximation should be of the fourth or-
der, to preserve the order of the solver. The approximation
of the first derivative of the diffusion term is done by an
implicit compact algorithm. The method is based on the
following hermit approximation due to Ciment et. al. (14);

1 Uip1—U;—-

g[(U2) ;4 +4(U), + (U2); ] = 5= (434)

In principle the boundary conditions for the above system
should be specified to the same order as the system. This
was not the case on the exterior boundary where second
order scheme was found sufficient. However, the applica-
tion of a second order boundary condition on the interior
boundary caused the loss of the fourth order accuracy over
the entire range. A fourth order multi-point approxima-
tion of this boundary condition caused strong oscillations
and loss of stability. Consequently, the boundary condition
for the first derivative on the interior boundary, had to be
defined analytically. Differentiation of the diffusion term
(C - 3.2.5) with respect to z, while neglecting the density
derivatives yields:

2
ac _ pr [1‘ du  u Ou: I‘u] (4.3.5)

9z 2\1’% ;5; oz 8z 22

The chain rule and the transformations definitions were
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used to calculate the terms of (4.3.5). For the case of wall
functions, the universal law of the wall was used:

du _ u,
dy &y (4.3.6)
Bt = pusKy

L’hospital law and the laminar incompressible momentum
. equation were used for the case where the solution domain

reached the wall.
5. Results and Discussion

5.1 Convergence Tests

Fig 5.1.1 shows Richardson extrapolation of the nor-
malized displacement thickness (Res.) at the beginning of
the transition from laminar to turbulent flow (the abscissa
is the second power of grid cell size h = —},—) for the second
order convergence of Arad et al. (8), Second order conver-
gence is clearly seen for fine mesh of 100-150 points but not
for coarser grids of 80 points and less, where the numerical
error exceeds 10 percent. Fourth order convergence shown
in figure 5.1.2 is conserved in coarse grids of 20-30 points
with an error of 4 percent. Even in the coarser mesh of 14-
16 points the deviation from fourth order convergence is
rather small, with an error of the order of 10 percent. The
numerical error was estimated using Richardson extrapo-
lation. The friction coefficient behaves in a very similar
way. Pade et al. (8), with their fourth order solution of
the Lees—Dorodnytzin transformed equations, and mix-
ing length theory found that a 20 point mesh is required
to obtain good accuracy. This shows a very high numerical
efficiency of the present numerical scheme.

5.2 Comparison With Second Order Solutions

The high efficiency of the present scheme was tested .

by comparison of the present fourth and Arad et. al.’s ®
second order results for a flat plate boundary layer. The
quantities shown are the stream-wise distributions of the
friction coefficient Cj, the displacement thickness §*, and
the momentum thickness ©. The results of the fourth order
solver, obtained on rather coarse grids ( 20 and 16 points
in the lateral direction), where indistinguishable from the
second-order-solver results, that were calculated on a mesh
nearly ten times finer (150 points in the lateral direction).

Another characteristic of the flow are the profiles of
the main variables across the boundary layer. The com-
parisons are made for the profiles of the main velocity com-
ponent, the turbulence energy (e = ) and the product
of the turbulence length scale and the turbulence energy
(e*]). The results obtained are given in figures 5.2.1—
5.2.3. 150 point grid was used for the second order case,
and a 20 point grid in the fourth order case. The profiles
for the two meshes are in a good agreement.

5.3 Efficiency Measurements

It has been shown that the fourth order solution yields
accurate results on much coarser grids than the second or-
der solution. This is shown again in figure 5.3.1, showing
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the errors of the second and fourth order schemes. The
"exact” solution (of a typical parameter, like the transi-
tion location) is obtained using Richardson extrapolation
to zero mesh size. The approximation error, defined as

€= f ho — i hn

can be plotted against the mesh size For coarse grids the
fourth order solver is about five times more accurate. For
the finer grids, its accuracy is two orders of magnitude
better than that of the second order solver.

The computational efficiency depends not only on the
accuracy but also on the numerical load. Indeed the ad-
ditional complexity of the fourth order solution tends to
increase the computer time required. The necessity to
compute explicitly the first derivative of the diffusion co-
efficient (see ch. 4.3) aggravated the situation even more.
Hence, it is required to check the efficiency of the higher
order solution. The CPU time required for the various
solvers, per step, is plotted in figure 5.3.2 versus the num-
ber of grid points. It reveals that one fourth order step
requires, approximately, twice the typical time necessary
for a second order step. On the other hand the memory
requirement is reduced by an order of magnitude, while
the CPU time is only doubled. The total efficiency of the
new solver is well displayed in figure 5.3.3 showing the er-
ror versus the CPU time. The 20 points grid seems to be
the most cost—effective mesh for the fourth order solver.

5.4 Comparison of Solution With Wall Functions and
Solution up to The Wall

Results up to the wall, designated by SW are com-
pared with results obtained with wall functions designated
here by WF. Once again the flat plat boundary layer was
used as a test case. The development of the friction coef-
ficient and integral thicknesses (displacement and momen-
tum thicknesses) with x were in very good agreement for
the two cases, and actually hardly distinguishable. The
profiles are shown in figures 5.4.1-3. While the velocity
profiles obtained with the two formulations are quite simi-
lar, small misfit appears in the turbulence energy profiles,
in the inner surface. This disagreement seems to be caused
by the empirical relation which was used as boundary con-
dition for the turbulence energy (3.1.7). The solution up
to the wall was performed here using 60 points mesh, while
14 point grid was used in the WF case. The resolution ap-
pears to be the same, This major saving in computational

effort due to a combined use of wall functions and suitable
coordinate stretching was discussed in ref (1), In that

work, 6 points grid with appropriate stretching, gave the
same accuracy as 60 points, regularly spaced mesh (The
1D boundary layer was the test case, and numerical solu-
tions were compared with the analytical solution). It was
also found that within a stability margin, the sensitivity
to the stretching parameter is weak.

5.5 Test of The Influence of Boundary Layer
Thickness Calculation

The method for approximating the boundary layer
thickness was described in section 3.3. This approach is



supposed to be insensitive to grid-fineness, unlike the con-
ventional Patankar and Spalding (°) method. The val-
ues calculated by the latter method (designated as method
1) using a fine and a coarse grid, are compared in figure
(5.5.1) with the result of the new method (method 2), using
a coarse grid. As expected, while the mesh fineness had
major effect on the first method, it had nearly no influence
on the new method.

5.6 Validation of Results

To conclude the present representation, some compar-
ison with experimental measurements is required. Test file
0612 of the 1982 Stanford conference (1) was used for that
purpose (Flat plate boundary layer, %‘f =2.2-108, Uy =
23m ). The conference standard comparisons are given
in figures 5.6.1-3. Excellent agreement was achieved in
the friction coefficient and velocity profile (in x=4.987m).
The agreement of the H factor is not so good, but is in

the same margin of accuracy as the other methods in that
conference.

6. Conclusions

. Wall functions can reduce the number of mesh points
and the computational load very significantly. How-
ever, the formulae available for wall functions are not
always sufficiently accurate.

. Calculation of the boundary layer thickness using
an integral technique improves the properties of the
boundary layer thickness adaptive mesh.

. The fourth order scheme is more accurate than the
second order scheme, and its price performance is bet-
ter.

- An optimal generalized two equation turbulence
model can be devised, with an optimal scale equation.

. A numerical scheme for a turbulent boundary layer

differs in some important aspects from that of a lam-

inar boundary layer.
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Figure 5.3.1: Computational error of the two solvers
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