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Abstract (1), Abbot and Kline (2), Durst et al.
(3), Restivo and Whitelaw (4) and Smyth
This work presents +the results of (5) for geometries having expansion ratios
numerical simulations of an unsteady of 2 and 3. What is remarkable with those
turbulent flow in a two-dimensional studies 1is the important and permanent
channel that incorporates a sudden unsymmetry in one or the other
expansion in the form of two recirculation zone for fluids having
backward-facing steps. The Random Vortex Reynolds numbers above a few tens. With
Method, a direct simulation method, is all the imaginable experimental
used in this study. This grid-free, precautions taken, these authors could not
Lagrangian method solves +the unaverage put into evidence any geometric defaults
Navier-Stokes equations and the continuity in the experimental apparatus that could
equation, with +the appropriate boundary explain this behaviour of the flow. Once
conditions, using a formulation in that the flow was attached on one wall,
vorticity variables. An extensive set of thus making a longer recirculation zone on
numerical results is presented and the other wall, the flow stays attached to
compared with experimental results that wall until a perturbation would make
published in the literature. The it flip to the other wall, The same
unsymmetric behaviour of +the flow, as phenomena is observed in fluidiecs and
observed experimentally, is simulated applied, for example, in industrial

accurately using the Random Vortex Method.

I. Introduction

This paper presents the results of
numerical simulations of an unsteady
turbulent flow in a two-dimensional
channel that incorporates a sudden
expansion in the form of two
backward-facing steps, Figure 1. The
choice of this fondamental geometry is
based on the availability in the
literature, of extensive experimental
results concerning velocity profiles and
pressure fields. Moreover, the practical
interests of this geometry is evident, in
particular, such computational simulations
are necessary to understand the flow
instabilities and the principal
frequencies governing physical
applications. Those basic studies are

essential in the understanding of physical
phenomenas such as induced vibrations,
heat and mass transfers and unsteady
combustion waves generated by the flow
instabilities.

The flow
extensively
laminar

in this geometry has been
studied experimentally in the
and turbulent regimes by Mehta
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logical circuits ("or" cells).

The objectives of modern numerical
analysis are the prediction of turbulent
statistics and the topology of all the
vortical structures present in the flow
field. Classical methods, Durst et al.
(3), Acrivos et al.(6), deal with the
average Navier-Stokes equations. The
solution is performed on a grid and the.

resolution is obtained by closure modeling

or by an integral approach. The main
drawbacks of these methods are the
non-universality of the modeling
constants, the numerical diffusion
introduced by the Eulerian grid and the
inability to solve unsteady and

multi-scale flows such as for the geometry
described above. Naturally, the
recirculation zones obtained by classical
methods are symmetric.

In  order to overcome these
difficulties, direct simulation methods
have been developed. The Random Vortex
Method RVM, Chorin (7), used for this
study falls in  that category. This
grid-free, Lagrangian method solves the

unaverage Navier-Stokes equations and the
continuity equation, with the appropriate
boundary conditions, using a formulation
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Figure 1. The geometry investigated.

in vorticity variables. The satisfaction

of the no-slip condition on solid walls
allows for the generation of an
appropriate amount of circulation in the
form of discrete vortex elements. The
advancement of the computation is

performed by moving this vorticity field
according to the vorticity +transport
equation which is . solved in two: fractional
steps: -convection . 'and diffusion. The
velocity field. is recovered - from the
vorticity field by integrating the
continuity equation and the  vorticity
definition. Finally, the instantaneous
pressure fields are obtained by solving a
Poisson equation that relates the pressure
to - the .velocity field. Applications of
the RVM have been presented by Ghoniem and

Sethian (8), -Ghoniem and Gagnon (9) and
Giovannini and Karagiannis (10): In the
first case, qualitative results with no
comparison to. . experimental ' results are

presented  for a single-step recirculating
flow for - laminar and turbulent regimes.
In the second case, a careful numerical
study -is performed on a  single-step
recirculating flow in the laminar regime.
The comparison of the numerical and
experimental results are in  very good
agreement. In the third case, the study
of +the fluid flow inside a combustion
engine  is presented. An extension of the
method 1is made to solve for compressible
flows. :

The objective of this work is to show
the accuracy ‘and the convergence of the
Random Vortex Method to solve the ' fluid
flow equations in the turbulent = regime.
To reach this objective, different
numerical results in the form of velocity
profiles, pressure profiles, vorticity
fields, streamlines and turbulent
statistics are presented and compared to
experimental data when available.

In section II, the formulation and a
brief description of the numerical scheme
are presented. In section III, results
are presented for an unsteady turbulent
flow in a two-dimensional = channel that
incorporates a sudden expansion in the
form  of  two backward-facing steps. The
different instantaneous fields and the
corresponding average fields are presented

and compared to experimental results. A
brief discussion and the possible
extensions’ of this ~work  presented in

section IV conclude this paper.

where
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II. Numerical Scheme

flows are governed by
Eq. 1, and the
Eqs. 2 In a

Incompressible
the continuity equation,
Navier-Stokes .equations,
normalized form,

V.

0 (1)

and

du

at

1

+u-Vu=-Vp+gVu (2)

u (u,v) is the wvelocity wvector, p
pressure and t is time. The Reynolds
is defined aspUH/pu, where p is
the density, P is the viscosity, U is a
reference velocity and H is a length
reference. The geometry investigated is a
two-dimensional c¢hannel that incorporates
a large sudden expansion of ratio 2 in the

is
number R

form of two backward-facing steps, Figure
1. The boundary conditions are the
no-slip and the no-normal velocities on
solid walls and an imposed inlet velocity
profile. Therefore,

u=(0,0) on’ walls

u=(U,,0) at the inlet section

The: outlet boundary condition is explained
in section II1.2

All +the physics of the fluid flow 1is
contained within the above formulation.
Because of the impossibility to obtain an
analytical solution to the problem, a
numerical scheme is devised.  The ' scheme
used in this study is the Random Vortex
Method  (7)  as presented - in ' the next
section.

I11.1 Random Vortex Method

In order to overcome the non-linearity
of the Navier-Stokes equations, the RVM
uses a hybrid algorithm to solve for the
velocity field and the pressure field.
The velocity field is obtained using a
formulation in vorticity variables
(u,v, ®) instead of using a formulation in
primitive variables (u,v,p). . The pressure
field is obtained by solving a c¢lassical
Poisson equation that relates the pressure

to the space derivative of the velocity,
as presented in section II.3

The - algorithm to * solve for the
velocity field starts by defining the

vorticity variable ® ,

@ =Vxu (3)
In two dimensions, the vorticity ® is a
scalar @ ,
&=1(0.0 0:0: av._au
m"( 3 ,(l))— ' ' ax"ay

By taking the curl of the Navier-Stokes
equations and  using the fact ' that the
divergence of the velocity vector is zero,



Eq. . 1, we obtain the vort1c1ty transport
equatiorn,

on 1

o L 4

5 tuVe=pgVo (4)
In this method, we use ‘Ea. 4 to

transport the vorticity field over a time

step At . We then use Eq. 3 .and Eq. 1 to
obtain the corresponding velocity field.
Eq. 4 is solved in two fractional steps,
convection and diffusion, Eq.5 and Eq. 6,
respectively; o
X wVe =0 (5)

—+u-Vo =

ot

10} 1, '6'
o = RV'm (6)
The convection step, Eq. 5, of the

vorticity transport equation is solved by
performing Lagrangian displacements of a
set of discrete vortex elements that
discretize the vorticity field, w{x,y).
The solution of Eq. 5 is developed using
the definition of a streamfunction V¥ and
by using Green’s function. The solution
is given by the Biot-Savart Law,

uxy) = [ k(x-x,y-y)e (x,y)dA (7)
1 - X

ith k(xy) = — o ==
wi (x,y) on

k is the integral kernel of the Poisson
equation with = +y The vorticity
field in our domain of computation is
dicretized among small elements to form
particles of vorticity, or vortex blobs,

which carry an invariant and finite amount
of 8A, circulation. Each element that

discretizes the vorticity field over an
area has an amount of circulation that
satisfies the definition of the
circulation
= [odA
3A,
I = o(x,y) dA; (8)

To eliminate the singularity caused by a
point vortex, the vorticity carried by
each element is distributed according to a
core function with a finite radius § ,
Chorin and Bernard (11), Kuwahara and
Takami (12).  The core function f(r) which
can take several forms (8,13,14,15,16)
plays a  similar role as interpolating
polynomials in finite-difference schemes
and base functions in finite-element
formulation. The resulting approximation
of the vorticity d%ﬁtribution is

Xy = Zri fs (x, ¥)

i=1

(8)

The velocity produced by
distribution of discrete vortex blobs with
finite -~ and invariant cores is obtained by
substituting Eq. 9 into Eq. 8;
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(10)

us(xy)—zrk (-xy-y)
2n

I-1 .
, - X) ,L
)
s o

k() = 2x jr f(r) dr
0

k (xy) = (1)

where
and (12)

this
“by

The  choice ~ of the core function in
study 18 -the same ‘as the one chosen
Ghoniem and Gagnon (9),
1; B
n=g5— ~for r<t
() 2n ,

f(n =

r (13)

for r>1

cornvection
a simple

the
of

In Lagrangian form,
equation takes the form
differential equation,

dx : :

Reativca

is the trajectory  of ‘a
X (xy,0) = X
representing

takes the

X (xy.t)
that starts at

Eq. 14 ,
vortex blobs,

where
particle
In a discrete form,
the motion of
following form
dx. d i
Zrk,(x, % T

1.2,..n (15)

: The vortex “elements that discretize
the "vorticity field are created and
up-dated to satisfy the no-slip condition

on solid walls. This is done with the
vortex sheet algorithm, Chorin (17) and
Ghoniem 'and Gagnon (9). &

The  second step of the vorticity
transport equation; diffusion, Eq. 6,: i85
solved by implementing random walk
movements to the vortex blobs acecording to
Gaussian @ statistics. Effectively, the
solution: of the one-dimensional form :of
Eq. 6, given by the Green function

(16)

Gr(yt) = '\/;i_t. exp (R y )

is 1identical to the probability density
function of a Gaussian random variable
with a zero mean and a standard deviation
0 2
POt = A1 exp( N ) (17)
\f py 7
if o =VoyR In two dimensions, the
Green function of Egq. 6 is given by:
Gr (xy,) =R (R (2+y?) (18)
Y= m P (@
which is equivalent to
Gr(x.y.t) = Gr{x}t) Gr (y.t) (19)



Accordingly, the corresponding probability
density function is given by

P (mmyt) = Py (n,t) Py (ny ) (20)

the solution of the
step of the vorticity transport equation
is performed by imposing stochastic
displacements of +the vortex elements in
two perpendicular directions. Each
displacement 1is generated randomly from
two sets of independant Gaussian random
numbers, with each set having a zero_mean
and a standard deviation 4 ='J2AVR-
Performing random walks at each time step
and adding the displacements to obtain the
total displacement at time t is possible
because of the linearity of the diffusion

Therefore, diffusion

equation.

The Random Walk Algorithm is
compatible with discrete vortex schemes
because of its Lagrangian grid-free form.

The total transport of vortex elements
over a time step is obtained by adding the
two fractional steps of the vorticity
transport equation, convection and
diffusion:

X (Yt + A = o (Gyt) + U (gyt) At+ () (21)

where U is
the vortex
potential
potential

In this equation U = u54-up s
the total velocity field due to
elements (Ugz , Eq.10) and the
flow (up ) that satisfies the
boundary condition.

The potential flow is solved using
conformal mapping and using the image
system of the vortex elements. This
allows for a grid-free solution and for
relatively high accuracy along the
boundaries and at points of separation.
For the geometry considered in this study,
Figure 1, the transformation function is
derived using the Schwarz-Christoffel
theoren, which gives the following
transformation:

d¢

ac C2_22
dz e

FO = =

=TCC (22)

The inverse transformation, z = z({)
obtained by integrating Eq. 22,

4 2 + t
zZ = on On n Zrt?ﬁ

22_&2
I

is

1
i

1

+ { Ly
2

-t

(23)

t =

I1.2 Algorithm .
: The algorithm
schematically in the form of a block
diagram on Figure 2. The actual
computation starts with a potential flow

is presented
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within the domain. Vorticity is generated
along solid walls to cancel the slip
velocity. That vorticity is then
convected and diffused, thus creating a
new vorticity field and a corresponding
rotational velocity field, Eq. 10. A new

total velocity field is computed and new

vortex elements are generated along solid
walls. The new vorticity field 1is then
convected, Eq. 15, and diffused, thus

updating this new vorticity field, Eq. 21.
The loop starts again by computing a new
total velocity field and by updating the
vorticity field. The flow develops and a
solution 1is performed until the averaging
of physical quantities, such as velocity
profiles, become independant of the amount
of time steps necessary to make the
average.
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Figure 2. Block diagram of the Random

Vortex Method.

The to
be analysed.

being generated
number of vortex
excessively large.

condition makes

exit boundary condition needs
Since vortex elements are

at every time step, the

blobs can become

The exit boundary
that the number of
elements reaches a maximum and becomes
relatively stable. What is done is that
the blobs that reach a position longer
than the computational domain are deleted,
there effect on the dynamics of the flow
being negligibly small. The length of the
computational domain is chosen to be long
enough so that the effect of the exit
boundary condition does not modify the
dynamics of the flow in the regions of
interest, namely the recirculation zones,
the reattachment and the redevelopment of
the flow inside the channel.



A comprehensive analysis of the effect
of the length of the channel and the other
numerical parameters can be found in
Ghoniem and Gagnon (9).

I1.3 Pressure

The Random Vortex Method solves
fluid equations using the vorticity
variables, u, and ® . The solution
obtained gives the velocity field as a
function of position and time. No
information about the pressure field is
obtained. However, +the pressure can be
recovered by solving a Poisson equation
that relates the pressure field to the
velocity field, as presented below.

Fluid flows are governed by the
continuity and the Navier-Stokes
equations, Egs. 1 and 2. By taking the
divergence of Eq. 2 and by using Eq.1, we
get the following Poisson equation

the

v

v u \"
Vip =2 dWoay _ oy ay (24)
ox ody dy X
where V2 is the Laplacian operator.
The solution of this equation is
obtained using a finite- difference
scheme on a grid inside the channel (18),.

The boundary conditions on solid walls and
the outlet section are of +the Neumann
type. These boundary conditions are
obtained from the full Navier-Stokes
equations, i.e. the time~ dependant
equations. A Dirichlet condition is
imposed at the inlet section. We then
compute the velocity field at every time
step on the grid, from which the
instantaneous pressure field is
calculated. Average pressure fields are
then deduced.

The next section presents the
solutions obtained using the Random Vortex
Method. Comparisons are made with
experimental results to show the accuracy
and the convergence of the method.

III. Solution

The geometry investigated is a channel
incorporates a sudden expansion in
form of two backward-facing steps,
Figure 1. The type of flow studied is in
the unsteady turbulent regime. The flow
starts as a uniform flow at
Xmin= -1.0H, H being the height of the
channel downstream of the step. The flow
develops in the inlet section forming two
boundary layers. At the step, the flow
separates from the horizontal walls, thus
forming two shear layers and two
recirculation zones at both corners.
Further downstream, the two shear layers
diffuse and the flow redevelops after the
recirculation =zones. Even though the
geometry 1is relatively simple, the flow
within 1is very complicated because of the
dynamics of +the flow structures. The
interactions between the shear layers and

that
the
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the recirculation zones formed of large
eddies make the flow to have an unsteady
behaviour characterized by the formation,
the pairing and the diffusion of those
large eddies.

Experimental results for this type of
flow show that the recirculation zones are
unsymmetric in size and length, (1, 2, 3,
4, 5). The unsymmetry is found on one or
the other zone and is permanent until a
perturbation would modify the flow and
make it flip +to the other wall. The
experimental results chosen to compare our
numerical computations are those by Mehta
(1). The experiment was performed with a
turbulent flow with a Reynolds number of
105 based on a uniform axial velocity in
the inlet channel and on the hydraulic
radius of the inlet channel . The
experimental results correspond a
two~dimensional flow, hence our
two-dimensional model, if correct, should
predict the behaviour of this flow. The
following numerical results along with
comparisons with the corresponding
experimental results show the accuracy of
the Random Vortex Method to predict the
behaviour of complicated, unsteady
recirculating flow in the turbulent
regime.

to

The solution is initiated with a
potential flow inside the channel .
Vorticity in the form of vortex sheets are
then generated along solid walls to
annihilate the slip . velocity. These
vortex sheets are then diffused and
convected outside of the sheet layer to
become vortex blobs. At every subsequent
+ime steps, a number of vortex sheets is
generated along solid walls and another
number is transferred into vortex blobs.
The +transformation of blobs to sheet is
also possible, but less frequent. The
number of vortex blobs N as a function of
+the number of time step with At= 0.05 is
shown on Figure 3. After 200 time steps,

4000
7 A /\ R /\\\. e v"/’/”
3009 S (v
N s /
1609 /
8 Ty L i T T T T 11
5] 108 208 3ne 498 520
At
Figure 3. Number of vortex blob N as a

function of the number of time step t.



the flow : reaches a stationary -state. shows = the cross-stream velocity profiles
Averaging of physical quantities is then (no experimental comparisons). The
possible starting from this  time step. instantaneous velocity profiles are more
The . numerical parameters were chosen to rugged than average velocity profiles and
have an optimum solution and to eliminate the cross-stream velocities are smaller
the numerical diffusion, as presented by than - the streamwise velocities. The
Ghoniem and Gagnon (9). corresponding vorticity field for this
flow 'is presented on Figure 5. Each
We first present instantaneous fields vortex ~blob is indicated by . a small point
to show. the unsteady nature of the flow. and. the line attached depicts its
Figure . 4 presents instantaneous  velocity instantaneous velocity vector. We can
profiles at different sections represented see, from this figure, the different eddy
by the- dashed lines. The dotted 1lines structures that form the recirculation
represent the experimental average zZones. The recirculation zone on the top
velocities of Mehta and the solid lines part of the channel is formed of two large
represent .our numerical velocities. The eddies and the bottom recirculation =zone
first channel shows the streamwise is formed of one smaller eddy. Figure 6
velocity profiles and the second channel shows the corresponding - instantaneocus
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Figure 4. Instantaneous velocity profiles. The first
channel shows the streamwise velocity profiles  and the
second channel shows the cross-stream velocity profiles.

The dotted and the solid lines are the experimental and the

numerical velocities, respectively.

Figure 5.
of Figure 4.

Corresponding vorticity

“field for

Figure 6. Corresponding
of Figures 4 and &,

streamline
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plot for -the flow .



streamline plot for the flow presented on

Figures 4 and §. We can clearly see the
different structures forming the two
recirculation zones. The unsteady and
unsymmetric nature of the flow is clearly

indicated on the last three figures.

Of more the
the
experimental
Average velocity

important aspect for
assessment of our numerical model is
comparison of corresponding
and numerical results.
profiles for different sections are
presented on Figure 7. The first channel
compares the average streamwise velocity
profiles. The dotted lines are the
experimental results and the sclid lines
are the numerical results at  the same
sections, indicated by the dashed lines.
We can appreciate +the global accuracy
between the experimental and numerical
results. Interesting features can be
pointed out by looking closer at those
results. The experimental and numerical
profiles at the step are practically the
same. We can also see that the numerical

model predicts an unsymmetric flow field
as obtained experimentally. The size and
the 1length of the two recirculation zones
are different from each other. Further
downstream, the flow redevelops and tends
toward a fully developed flow at about
4 5 channel heigths downstream of the
step. The ‘"second channel presents the
average cross-stream velocity profiles.
We can see that on the average, the
cross-stream velocities are very small in
comparison to the streamwise velocities.
The corresponding average streamline plot
is presented on Figure 8. We can see the
different 1length and size of the two
recirculation zones.

Turbulent kinetic energy u’2, v’z
and shear stress u’v’ obtained
numerically, are presented on Figure 9 and

compared to experimental data. On the
three channels, the dashed, dotted and
solid lines represent the reference
section, the experimental and the
numerical results, respectively. The

—

Figure 7. . Average
.shows .the streamwise
channel = shows . the
dotted and solid lines
numerical velocities,

velocity profiles.
velocity profiles
cross-stream velocity . profiles.
are
respectively,

The - first

and: . the

channel
second
The
experimental and the
at different sections

the

represented by the -dashed lines.

Figure 8. Corresponding
presented on Figure 7.

streamline
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plot

for the flow
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Figure 9. Turbulent statistics. The three channels are for
the u’2, v’2 and the u’v’ components, respectively.
Dotted 1lines and solid lines are for the experimental and
numerical results.

first channel shows the u’2 component; boundary condition for the pPressure
the second channel, the v’2 component equation, Egq. 24 . The comparison of
and the third channel, the u’v’ component. numerical and experimental results show
We note +that, globally, the level of that the initial and final pressure in the
values of u’2 and v’2 (15%), and u’v’ channel are in good comparison, thus
(5%) are correct, but the results obtained indicating the accuracy in solving the
from a sample of 200 time steps are not adverse pressure gradient. However, in
stationnary and are still evolving. the region of strong velocity dynamics,

the numerical pressure solution does not
The pressure field can be recovered compare with the experimental pressure.
from the velocity field, as presented in This is most probably due to the pointwise

section II.3 . The average pressure field instantaneous error in  the velocities
over 200 time steps is presented on Figure because of the use of a core function +to
10. Once again, the dashed, dotted and distribute the vorticity over an area.
solid lines represent the reference Since the pressure 1is based on those
section, the experimental and the instantaneous velocities, error is
numerical pressure coefficient introduced on the pressure. Studies are
respectively. The average pressure field being performed to assess the errors

is obtained by computing the pressure introduced by the core functions on the
field at every time step and then solution of the Navier-Stokes equations.
averaging the pressure field over a number

of time steps. The solution using this Figure 11 shows the average pressure
method 1is exact compared to the method of at every point in the channel. This is
computing the pressure field from the shown in the form of a three-dimensional
average velocity field. The last method curve where the heigth of the curve
is incorrect because of the non-linearity indicates a relative value of the pressure
in the source term of the Poisson coefficient. Instantaneous pressure
equation, and the presence of the unsteady curves are more rugged and are dependant
term coming from the Navier-Stokes on the large eddy structures inside the

equations, which give the downstream channel, (18).
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10.
for

Figure
profiles

Comparison of the average pressure
the flow corresponding to Figure

coefficient
7. Dotted

lines and solid lines are for the experimental and numerical

results.

Figure 11.
presented on Figure 7.

IV. Conclusion

The results presented in this paper
show the accuracy of the Random Vortex
Method to simulate time-dependant flows at
high Reynolds numbers. Comparisons of
numerical and experimental velocity
profiles have shown the ability of the
method to predict the velocities at any
point inside the channel. Because of the
unsteadiness of the simulations, insights
on the dynamics and the structures of a
flow past a sudden expansion are shown.
We have seen limitations of the method to
accurately predict the turbulent
statistics and the instantaneous pressure
fields. However, we have mentionned that
the average pressure field computed from
the average velocity field is inaccurate
and gives a solution largely different
than using instantanecus velocity fields
and then averaging the pressure field.

315

Three-dimensional pressure surface for the flow

Studies are being performed to study
the influence on the accuracy of wusing
core functions to distribute the vorticity
field into vortex blobs. Possible
extensions of this work being developed
include +the simulation of pulsed flow,
particle +tracking, multi-phase flow and
flame-front propagation.
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