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Abstract

The differential Reynolds Stress transport
model for turbulent flow is applied to the
problem of recirculating flow in a rectangular

cavity, driven by a moving wall. The model
of Naot, Shavit and Wolfshtein is used to
close the Reynolds stress equations. A
dissipation equation 1is solved to provide

a Tlength scale, although an algebraic length
scale model is also considered.

The predictions for the RS-€ model and
the two equation k-€ model are compared with
the experimental results of Normandin for
a cavity of aspect ratio 3. There is a wall-
jet like flow of high turbulent energy down-

stream of the moving wall, with strong
diffusion of Reynolds stress from the jet
towards the wall. The wall layer is thin,

so is not resolved adequately by the uniform
grid scheme. Conventional wall functions
are found to be inadequate in this case, so
we propose empirical "cavity jet boundary
conditions”, based on wall-jet and cavity
jet data.

The predictions of the mean velocity
field are fair, for both k-& and RS-€ models.
The turbulent energy and shear stress are
low in the cavity jet region, but the
distribution in the Reynolds stress model
is closer to reality. The stabilising effect
of flow curvature is captured by the RS model.

1. Introduction

flow 1in an
is a model for many
interest; ventilation or
flow in a double glazing

Turbulent, recirculating
enclosed cavity or box
flows of practical
heating of a room,

unit, wind driven flow in a reservoir,
scavenging flow din an internal combustion
engine, for example. Flow 1in a rectangular
cavity, driven by a moving wall, exhibits

many of the features of these applications,
and is a wuseful test case for turbulence
models.

The two equation k-€, turbulent kinetic
energy-dissipation model, has been  used

extensively for prediction of turbulent flows.

The Differential
model 1is neglected by comparison
k-~ model, even though it dis a
representation of the physics. Rodi

Leschziner (2) have reviewed

Reynolds Stress transport
with the
better
(1) and
the
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turbulence models, including applications.
This paper compares these models for a turbulent
re-circulating flow 1in a rectangular cavity,
driven by a moving wall, assuming the mean
velocity field to be two dimensional.

Normandin (3) has obtained LDA measurements
of the turbulent flow in a wall driven cavity
of aspect ratio A = 3. (A is the ratio of
"depth" to moving wall "Tength".) The flow
consists of a main rotating cell or vortex,
roughly centred in the cavity, with small cells
in the lower corners, remote from the moving
wall. Grand found the flow to be very
sensitive to boundary conditions for aspect
ratios greater than 3. We concentrate on the

aspect ratio 3 cavity, vrelying on the
experiment of Normandin for verification.

The Reynolds Stress model, with wall
proximity corrections, has been successfully

applied to flows 1in channels, ducts (straight
and curved), wall jets and swirling flows,
as described by Leschziner (2). In these cases

the turbulence structure is evolving relatively

slowly in the flow direction. Conversely,
the separating and reattaching shear layer
on a backward facing step is far from

equilibrium, and is not well predicted by second
order closure models, as shown by Amano and
Goel (4). Similarly, regions of the driven
cavity flow appear to be far from equilibrium,
especially near the moving wall and 1in the
wall-jet 1like flow downstream of the moving
wall, Normandin drew an analogy between the
“"cavity jet" and the two-dimensional wall jet

on a flat plate, and showed that the mean
velocity profiles are similar.” However, on
comparing the turbulence properties, using

data given in the review of Launder and Rodi
(5), we find that the turbulent stresses in
the cavity jet are 3 to 5 times larger than
in the wall jet. The "wall functions" for
the layer between the wall and the local
velocity maximum are strongly affected by
diffusion of stress from the jet region. Thus
one of the main simplifying features of the
numerical model 1is compromised. The solution
would appear to lie with a fine grid resolution
of the wall layer. We propose an alternative
empirical solution: a cavity jet model,
incorporating data from wall jet experiments,
modified to give closer agreement with the
Timited cavity jet data.

2. Differential Reynolds Stress Model

Reynolds
contain

Transport equations for the
stresses (second  order correlations)



unknown terms which have been modelled by
Naot, Shavit and Wolfshtein (6,7), and Launder,
Reece and Rodi (8), amongst others. These
models are similar, but that of Naot et al

is used in this work. In addition to the
equations for conservation of mass, momentum
and the Reynolds stresses, a length scale
or dissipation equation 1is required. In
certain problems, such as duct flow, it is
possible to  specify the Tlength scale
algebraically.

The Reynolds stress transport equations
pose particular problems, since they are stiff,

due to the dominance of the algebraic
production, - redistribution and dissipation
terms, over the differential convection and
diffusion terms. Numerical instability is

also a problem due to the coupling between
the equations. Reitman et al (9) computed

developing flow in a rectangular duct, by
exploiting the nearly parabolic nature of
duct flow, 1in which the influence of the
downstream boundary condition is weak. The
present study 1is in support of work on
turbulent natural convection, Behnia et al
(10), and is based on the code of Reitman
et al, modified for two-~dimensional flow 1in

a rectangular region.

2.1 Governing Equations

The Reynolds  averaged  Navier-Stokes
equations for incompressible flow are

EECT =Q

X

oU, oU, S 0P %V,  dunu;
e mTT=—p + v -

ot oxp, ox; OX Xy OX
where U,, P, uu; are the mean velocity,

mean pressure and the Reynolds stress tensor,
respectively.

The transport equations for the Reynolds
stresses are:
duu, ouuy

51 +Umaxm-=VU+Pu+TU+H‘U~LU

The terms on the right are as follows.

Viscous transport, which is usually negligible
compared to the turbulent transport;

’u,u,
V‘jav—__‘_J._
0X mdX p
Production of Reynolds stress by the mean
flow gradients;
U aUu
P.=-u um.__.j__ ___.__i.
” Hmax., W "X m

Turbulent transport;
oU U U

Ty= ax
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Total pressure interactions;

- op ap
I1,, =~ ! u,———+y,——
u= "k ( ‘ox, ’axi)
Dissipation of Reynolds stresses by viscous
action;
ou,; ouy
L,= it bt A
d X mOX

2.2 Modelling

The terms representing turbulent transport,
pressure interaction and dissipation must be
modelled to close the equations, and we follow
Naot et al (7), with slight modifications to
emphasise the similarity to other models.

For high Reynolds number flows, most of
the dissipation occurs in small, Jocally
isotropic eddys, thus

2
Lii =3 GUG.
Any non-isotropic dissipation 1is included in
the "return to isotropy" term below. The

dissipation of turbulent energy may be obtained
from a transport equation, or in some cases,
e.g. duct flows, may be obtained from an
algebraic turbulence length scale I as follows;

e=C,k%%/1

where the turbulent kinetic energy is

k=%Uﬂh.
The turbulent diffusion 1is represented
by a gradient diffusion model
o u;u
T,=——|Ir—-
Ix 20X
where the diffusivity s specified by the
Prandt1-Kolmogorov eddy viscosity

kz_C kM2
F=V,=C”~E-— u .

The pressure interaction is modelled in
two parts, representing: (1) the '"return to
isotropy" of anisotropic turbulence and (2)

interaction due to distortion of
For the first

the forced
turbulence by the mean strain.
Rotta proposed

€ 2
I, = —Az(u‘u,-—gkéu) .
Naot et al augmented this by a term of the
same form as the ¥ term in the next equation,
so we assume it to be included below.

interaction term is

The forced or

modelled by

"rapid"

[Lh2="“(Pu"%Puou)+B(Du’%Daﬁu)*ngEu



where

U U
Dy=-uu,——- —=
Y ™dx, Uitm S,
U, aoU
EU=1 __l+_.___j. .
2\dx; dx,
The Reynolds stress model is completed

by a transport equation for the dissipation,
following the standard k-€ model in Rodi (1).

a_‘f.,. de _ 0 Vi 0o€ .,.E(C P-C )
ot iaxi k le 2¢€

ox\ o.9x,

where the production of turbulent energy is

oU,
ax,’

P=-u,u;

Alternatively, the Jlength scale may be
specified algebraically, in which case we assume
the same form as used by Naot et al (7) for
the rectangular duct. For a cavity with sides
a, b, and with n the normal distance from the
nearest wall:

lhax = 0.135min(a,b)
l=n n<l ..
=1 . n2l ...

The effect of a wall on the turbulence
is to reduce the fluctuations normal to the
wall and enhance the other direct stresses.
Following Naot et al, we model this effect
only on the "return to isotropy" term, by
expressing /A as a function of the length scale
and near wall distance;

A=A,-(A,-4,)U/n

where subscripts 1 and 2 indicate values away

from wall effect and close to the wall,
respectively, In applying this formula we
have assumed the algebraic length scale above,

even if the dissipation transport is evaluated.

2.3 Boundary Conditions

In the present study no attempt is made
to compute the inner part of the turbulent
boundary layer, since this would involve a
much finer grid than is reasonable with the
available code. Consequently we use the concept
of wall functions, to model the constant stress
(logarithmic) part of the turbulent boundary
layer, and place the near wall grid point in
this flow region. This procedure works well
for duct and channel flows, since relatively

thick, near equilibrium wall layers are
established. However for the driven cavity
flow, the wall Tlayers are very thin, and so
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a fine grid would be required to encompass
all the flow features, especially in the wall
jet like region downstream of the moving wall.
Notwithstanding this observation, conventional
wall functions have been used, with modified
boundary conditions for the cavity jet region.

The mean velocity profile near the wall
is assumed to be a power law, modified by a
mean shear term from the interior of the flow.
This modification reflects the diffusion of
shear stress towards the walls, thus reducing
the mean velocity gradient. The modified power
law specifies the near-wall tangential velocity
in terms of two interior values. Numerically,
the effect 1is to reduce the wiggles which
appear on the velocity profiles. Central
differencing is wused throughout, with a
staggered grid for the velocities, and this
scheme is prone to wiggles of wavelength twice
the grid interval. The normal velocity
boundary condition 1is determined to conserve
mass 1in the layer between the wall and the
first (offset) velocity grid point.

The transport equations for the one
dimensional equilibrium wall layer give
solutions for the Reynolds stresses, with u
in the flow direction and v normal to the wall:

u?/k=2(1+(2-2a-B)/A)
v /k=3(1-(1-a-2B)/A)
w2/k=2(1-(l-a+pB)/A)

t/k=-v**/k=-A

where

A=—;‘\/§(2a+4ﬁ—-2aﬁ—a’—82—1+A(1-—a+B-y))

The friction velocity v* is determined from
the equilibrium wall layer, assuming a 1/7th
power law to the first grid point.

%=8.5(Rex,v*)”7

Alternatively, the friction velocity may be
determined iteratively from the logarithmic
law of the wall. The flow prediction was found
to be virtually the same for both methods.

The values of the parameters depend on the

solutions of various equilibrium flows, and
on empirical data. For the equilibrium wall
Tayer (1)
2
c,=4
Cp= A%y



where we take the von Karman constant to be

x=0.4

It is usual to assume a compromise value

A=0.3

whereas Naot et al suggest 0.2,
is low:-even for the wall Tayer.
of parameters is shown in Table 1.

a value which
The full set

Table 1. Parameters for RS—€ model

/\1 /\2
1.6 0.6
o B Y
0.7558 —0.0465 -0.0619 .
. '
CD Cu Cu X
0.47 0.22 0.09 0.40
C1e CZs Oe
1.44 1.92 1.30
A=|uv I/k  UZ/k vi/k W2/k
0.30 1.26 0.29 0.45

u parallel to wall
v normal to wall

3. Numerical Method

It is convenient to use a non-dimensional
system based on the moving wall length and
velocity, and the density; henceforth all terms
are non-dimensional. The momentum equations,
continuity and the Reynolds stress transport
equations are expressed in terms of the velocity
components in the x and y directions, and the
pressure, respectively

u,v,p

and the Reynolds stresses grouped as follows,

w?)

The parabolic transport equations are
solved by a finite difference procedure, using
second order accurate central ‘differencing.

.Uniform grid spacing is used in each direction
over the rectargular computational - domain.
With a staggered grid for the velocities, mass
and momentum are conserved. The momentum
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equations are solved for one time step, and
the mass source error in each cell is evaluated. .
Following Briley (12), a potential velocity
field sufficient to anihilate this mass  source
is added to give a corrected velocity field.
The pressure field is found as the solution
of a Poisson equation. The transport equations
for the turbulent stresses and.the dissipation
(if required) are then progressed one time step.

The transport equations have the form:

TR Y (IR IAN

ot ax  dy Re\ax? ay?
The source term includes pressure gradient and
Reynolds stress terms. The finite difference
equivalent of the space operators may be written

Lf=(A,+A))f.

The Alternating Direction

Samarskii and Andreev (13)
the solution forward in time.
order accurate time difference

i1 __ pi ) )
Ll 4 a ) o g s

the ADI splitting gives

Implicit method of
is used to march
From the second

o) =

—%AtAx)w* = (Ax+Ay)f‘+3‘
—%At/iy)w** = (¥

o= dtw

(1
(1

The Reynolds stress equations are stiff and
strongly coupled due to algebraic ‘terms. To
alleviate this probem Reitman et al (9) used
a three level splitting of the ADI scheme for
the - developing duct flow. However, the
conventional two Tlevel splitting with source
term (as above) was also found to be satisfactory
for the driven cavity prediction.

For one time step, the numerical method
involves application of the ADI procedure for
each transport equation and solution of Poisson
equations ~for the correction potential and
pressure., If ADI .is used ‘to solve the Poisson
equations iteratively, ~then this dominates the
computational effort, taking about 907 of the
time. We have used a direct method due to
Christiansen and Hockney (14), based on the
FFT and cyclic' reduction. . Each ‘Poisson solution
then' takes about the same time as an "ADI step.

The procedure s also more robust, so larger
time steps may be taken. while avoiding
instability.  This code :is at least: ten times

more ‘efficient than the -original version.

Incorporation of  the "transport equation
for ‘the dissipation causes stability problems.’
The time step required for the RS- ‘method is
10% of that for the RS.a.l. method. Also, the
time ‘'step for the ‘turbulent stress and



half that for the
producing. a false

is
thus

dissipation equations
momentum equations,
transient solution.

4. Turbu]ent Flow in a Rectangular Cavity

The experimental data of Normandin (3)
for a cavity of aspect ratio 3, at a Reynolds
number of 200,000, ' is the most complete set
available for the driven cavity. The system
of axes .is defined in Fig. 1, with the origin
at the bottom of the cavity, and moving. wall
at the top parallel to the y-axis.  Distances
and velocities are normalised on the moving
wall length b, and velocity. Vw, respectively,
Normandin. used axes with origin at the
downstream end of the moving .wall, and we
indicate this system by an over-bar.

The moving wall creates a region of high
shear stress which drives a jet like flow of
high .turbylent kinetic energy along the wall
downstream of.  the moving wall. . The cavity
jet drives the main vortex as. it runs down
the wall, turns at the bottom of the cavity
and. returns up to the moving wall, to be partly

entrained by  the moving wall shear Jayer.
The main vortex structure .is .shown in Fig.
2, by  the stream function, normalised with

respect to the moving wall length and velocity.
The subsiduary vortices in the lower corners
could not be resolved accurately due to three
dimensional flow. Profiles of the velocity
and Reynolds stresses at several stations on
lines parallel to the moving wall are used
for detailed comparison.
Initial computations with conventional
wall functions and the Reynolds stress -
algebraic Tength scale model (RS.a.1.) showed
a three cell flow structure with the main vortex
in the top one-third of the cavity, -and Tower
cells of alternate rotation. It appeared that
the wall layer was 'not energetic enough to
remain attached to the downstream wall. After
many numerical experiments, several strategies
emerged which produced qualitatively correct
flow structures, although not usually including
the minor Tower corner vortices.. The strong
diffusion from the vortex towards. the walls
was simulated by increasing. the diffusion
parameter Cu' by a factor of 3 or 4,

Alternatively, a in Cu'
the downstream wall was more effective, Fig.

tocal 1increase near

4, thus emphasising the importance of this
region. An increase in the "return to isotropy"
parameter A, was also beneficial. It was
somewhat disheartening to observe that the
single equation kinetic energy - algebraic
length model (k.a.1l.) gave a physically
realistic prediction, Fig. 3!  Obviously a
closer study of the experimental. data was
required.

4.1 Cavity jet boundary conditions

~The computation of the driven -cavity: flow
is strongly influenced by : the boundary
conditions on the downstream wall. The near
wall flow structure is influenced by diffusion
from the ‘jet region, and thus the boundary
layer type wall functions  are. of . doubtful
validity, at least for the relatively Targe
grid intervals used. '
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The cavity jet 1is compared: with the wall
Jet “in stagnant surroundings, using a concensus

of data from Launder and Rodi (5). The mean
velocity profile is similar, as shown in Fig.
5(a)..  However- the Reynolds stresses, ke u

(u. parallel to the wall) and Gv, .normalised
by the local maximum velocity, are substantially
larger. for the cavity jet; Figs. 5 (b),(c),(d).
In the lower: -third of the cavity (away. from
the moving wall) the wall jet comparison breaks
down, due to the adverse pressure gradient -and
flow curvature. The Reynolds shear stress is
negative at the wall, but increases to a similar
positive value at the position of the maximum
velocity, and then increases further before
decaying in the outer jet region. . This is caused
by strong diffusion due to the much:Targer length
scale in the jet region than in the near wall
region. The standard wall functions do not
model these - effects and: no attempt . has . been
made to derive wall-jet functions. However
empirical - functions  are. used .-to simulate
turbulent stress boundary conditions -which. are
a . compromise between wall jet and cavity jet
data.

The “near. wall behaviour of the cavity jet
is modelled by the following. approximations:
for. the point where the velocity s half of
the maximum;

§1,2=0.05+0.l§’

turbulent kinetic energy;

k/U%=0.05+0.047/¥,,3

and’ shear stress;

av/U%=-0.004+0.04¥/Y,,,

These formulae  are applied to determine . the
boundary conditions for 807 of the downstream
wall, assuming that the maximum velocity is
approximated by the value at the near wall grid
point. Conventional wall functions are applied.
for the remainder of the cavity. :

4.2 Results and Discussion

The -above boundary : conditions - have been
applied to the k-& and RS~e models using: the
parameters in Table 1. The results -for stream
function are shown in Figs. 6, 7. Profiles
along Tines parallel to the moving wall of
mean velocity,: turbulent kinetic energy, and
Reynolds "stress. ‘are -shown -in Figs. 9 and 10.
for stations x =2.2 and x =.1.6 respectively.

The maximum value -of the stream function
is 0.025 at x.=.1.6, y = 0.6, from the
experiment  of .. Normandin. The . k-¢ - model
overestimates . the  strength. by -about 5% .and
places the vortex centre well above mid-cavity
at (2.0, 0.55) approximately. The RS-¢ model.
slightly underestimates the strength,  with
centre at (1.6, 0.55). This good agreement
may - be . fortuitous, - since . the -results are
sensitive - to.:: changes. in certain parameters
as discussed below. :



It s clear that the wall jet boundary
conditions  have improved the = prediction,

confirming that the finite difference grid is
too coarse, especially near the moving wall
and downstream wall. The code could not be
easily changed to accommodate a non-uniform
grid, so this was not tested. Fig. 10 shows
results obtained by Huang (16) (see also
Leschziner (2)), with a RS- model, using
third-order accurate quadratic ‘upwind
differencing (QUICK) for the mean velocity
convection terms and a non-uniform grid. The
mean velocity profiles are similar, but Huang
overestimates the magnitude of the cavity
Jjet.

The turbulent kinetic energy,
10(b), s underestimated in the cavity jet
region, even with the revised boundary
conditions. The results of Huang show large
gradients of k near the wall, in a region
unresolved by our computation, Similar
observations apply to the Reynolds shear stress
iv. Our predicted ratio of v/k is close to
0.3 over most of the cavity, whereas the
experimental value is significantly lower except

Figs. 9(b),

in the jet region. The RS-€ model predicts
the reduction din turbulent energy and shear
stress in mid-cavity, due to the stabilising
effect of flow curvature, as discussed by
Leschziner (2).
The length scale extracted from the
turbulent energy and dissipation
l=Cok*%*/¢
is shown 1in Fig. 8 for the RS-£ model. The

length scale increases with distance from the
wall to more than twice the prescribed algebraic

length scale. The lower 1length scale in the
jet region apparently contradicts the
explanation given above for the diffusion of

Reynolds stress towards the wall. However there
is a local maximum in the experimental value
of the integral length scale 1in the jet region,

and this is reflected by our empirical cavity
jet boundary conditions. This is another
feature which must be resolved by a finer
computational grid. It 1is possible to alter
the algebraic Tlength scale to simulate this
behaviour, but it detracts from the wutility

of the RS.a.l1. model.

The anisotropy of the turbulence has been
evaluated by comparing the ratios

u?/k, vk, wi/k.
The predicted values are approximately 1.0,
0.5, 0.5 over most of the cavity, where the
velocity vector 1is approximately parallel to

the side walls. However the experimental results
of Normandin show the turbulence to be more
isotropic (except in the Tlower one-third of
the cavity), 1implying a stronger "return to
isotropy" effect than accommodated by the model.
This lends support to the suggestion of Gibson
and Younis (14) for a simplified model with
parameters;

A=3.0, a.=0.§3, B=y=0,
Results obtained with this model show an increase

in- k, in accord with experiment, but more work
is required.
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Normandin obtained much larger values of
turbulent energy in the lower half of the cavity
than predicted. This may be due to the effect
of flow separation and amplification of turbulence
in the curved shear layers. Amano and Goel (4)
have developed a third-order closure model and
found it superior to second-order closures in
predicting the high turbulence Tlevels 1in the
reattaching shear layer from a backward facing
step. Similar features of the driven cavity
flow are not captured by the second-order closure
model, so the third-order model should be tried.

It should be noted that the turbulent
diffusion model (triple correlation term) used
in the present model, and also by Shir (15),
differs from that of Launder et al (8). The
method used to model the effect of wall proximity
on the "return to isotropy' term also differs.
The magnitude of the wall correction has a
significant effect on the mean velocities and
also interacts with the boundary conditions.
These points are under investigation.

The present method is strongly influenced
by the boundary conditions, and is sensitive
to the distance from the wall to the near-wall

grid point, at which boundary conditions are
applied. For the results presented the
(normalised) wall-to-grid distances are, for
bottom wall, moving wall and side walls
respectively;

X0 = 0.095 Xgp = 0.025

Yo1 = 0.025 Yop = 0.025 .

The corresponding grid spacings for  the
65 x 33 grid are

h, = 0.045 h = 0.02969.

x Y

The corresponding value of the wall variable

y+ (= y u¥/v) is approximately 240 on the moving
wall, and in the range 20-70 for the other walls,
except near the corners. Reducing the wall-to-
grid distances by 20% gave about 57 reduction
in the mean velocity, and this 1is an undesirable
feature of the numerical method. We conclude
that a grid spacing sufficiently fine to resolve
the near-wall structure of the flow is required.
It appears that a low Reynolds number turbulence
model, such as proposed by Adams and Rodi (17),
may then be necessary to define the near-wall
flow.

5. Conclusions

The predictions of the mean velocity field
and turbulent stresses in the driven cavity are
fair, for the second-order closure Reynolds
stress - dissipation, RS-g model, although
revised values of some parameters are required.
The Reynolds stresses in the wall-jet like flow
downstream of the moving wall are much higher
than 1in an equilibrium boundary layer, due to
strong diffusion from the jet towards the wall.
The correct cavity jet boundary conditions are
approximated by an empirical model. This method



depends on assumptions of the extent and growth
of the wall jet region, so may not be
applicable to other geometries. The real
solution is to resolve all significant flow
structure in the wall Jlayer, by wusing a
sufficiently fine grid.

The k-& turbulence model with the revised
cavity jet boundary conditions dis inferior
to the RS-€¢ model for both mean flow and
turbulence properties.

The algebraic length scale model
revised to account for the effects
cavity jet flow. This detracts from the utility
of the RS.a.l. model, but the substantially
increased stability and rate of convergence
may be a factor in some applications.

must be
of the

Following Gibson and VYounis (14) more
weight may be given to the "return to isotropy"
term, with a compensating reduction in the
"rapid" term, in the pressure-strain
correlation model, Computations have been
done with this model, but there is unsufficient
evidence to prefer it to the "standard" model.

The important cavity jet flow is not well
predicted by the present Reynolds stress model.
Amano and Goel (4) have developed a third-order
closure model and found it superior to second-
order closures for the reattaching shear layer.

We have not yet compared these models, but
the possibility of improvement remains.
Finally, much more program development

and testing is required for an RS-e¢ model than
for a k-¢ model, .and the latter gives roughly
correct predictions of many complex flows.
However for swirling flows the Reynolds stress
model is superior,
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(a) Mean velocity, U
(b) Turbulent kinetic energy, k
(c) Reynolds stress, Uv



