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ABSTRACT

A very important property of a set of modal
parameters describing the dynamic behaviour of a
structure is that the mode shapes form an orthogonal set.
This assumption is basic to many analytical methods
used to further process modal data for example,
structural coupling, flutter analysis, etc. The test for
orthogonality of a set of data is simply performed. If the
data quality is poor the test engineer may decide to
re-acquire some or all of the test data. However there
comes a time when the limitations of the test equipment
and analysis methods defy further improvement of the
data by experimental means, especially where there are
closely spaced vibration modes.

This paper discusses three different methods
whereby orthogonality may be imposed on a set of
measured data by analytical techniques. Three methods
of orthogonalisation have been investigated and are
compared. Any of the three methods result in an
orthogonal mode set, the purpose of the paper is to
ascertain whether the calculated modes are an
improvement on the measured mode set, and are in fact
representative of the structure itself.

Both theoretical and practical test cases are used to
demonstrate the effect of orthogonalisation under various
conditions.

It is concluded that the availability of an accurate
mass matrix of the structure is essential to obtain good
results. Bearing this in mind, the modified McGrew
method is found to be the most effective of the three
techniques of orthogonalisation. The method provides a
useful tool for modal data improvement.

INTRODUCTION

Perspective of the Paper

This paper is concerned with the improvement of
ground vibration test (GVT) data which has been
obtained via normal mode testing techniques. In the
field of aeroelasticity, ground vibration testing is an
important preliminary step in the clearance of aircraft for
flight. The combination of structural and aerodynamic
data is a requirement for flutter analysis. The structural
data is often acquired using normal mode testing
techniques, and as with any measurement technique,
there are inaccuracies inherent in the results. The data
may be subject to several stages of theoretical analysis
prior to flutter predictions and flight tests. With so
much dependent on the results of the GVT it is essential
that the degree of accuracy is as high as possible.
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Ground Vibration Testing
1t is not proposed o discuss methods in detail as

these are adequately covered elsewheret?. However, it
is necessary to discuss briefly the nature of the results
obtained and the limitations of the equipment which may
affect their accuracy.

The aim of the GVT is to determine the lower
modes of vibration of the structure, in terms of frequency
of vibration, generalised mass, damping coefficient and
the mode shape for each of the first 10 to 20 modes. This
data set forms a structural representation of the aircraft
in terms of its lower modes of vibration.

The data is collected from the structure via a
matrix of accelerometers, and from the energy input to
the structure via a number of electromagnetic exciters.
Problems in data accuracy arise from the inherent
systematic errors of the system, and the inability of the
operator to isolate closely spaced modes of vibration. If
two modes are closely spaced in frequency it can be
almost impossible to separate them, and each measured
mode will contain elements of the other mode.

Orthogonality
In qualitative terms, orthogonality is a property of

a modal set that each mode is independent of all other
modes in the set, ¢f two orthogonal vectors, at 90 degrees
to one another which are each independent of the other,
having no component in the direction of the other. In
this study, three methods of imposing orthogonality on a
set of data were investigated. It is relatively easy to
impose orthogonality on a set of data, but it is necessary
that the solution is in fact more representative of the
structure than the original measured data. To ascertain
whether this was the case a comprehensive set of
analytical tests was conducted. Some practical results
are subjected to orthogonalisation and the results are
discussed.

LITERATURE SURVEY

Surprisingly few papers on this subject are
available. Gravitz(2)  proposes a method of
orthogonalisation which makes use of the property of an
orthogonal mode set that the structural influence
coefficient matrix is symmetric. The method involves
the construction of this matrix from the GVT data, and
averaging the off-diagonal terms of the matrix to make it
symmetric. The Eigen value problem is then solved to
produce a revised set of modes and frequencies. The
appeal of the method is its simplicity. It claims to
average out imperfect measurement techniques,
instrumentation errors and the effects of structural
non-linearities.



Targoff(3) avoids the necessity of performing an
eigen solution which can be costly in terms of computing
time for large matrices. He proposes a corruption matrix
which gives a measure of the inaccuracy of the measured
modes. Using this matrix and the mass matrix of the
structure a revised mode shape matrix may be
calculated. = The method assumes that errors are
primarily due to symmetric elements in the off-diagonal
terms of the orthogonality matrix (these should be zero)
and shows that the effect of asymmetric errors is small.

McGrew(4 proposes a method whereby a Gramm-
Schmidt orthogonalisation procedure is used, modified to
include mass weighting. The method put forward by
McGrew is based on the assumption that the lowest
measured mode is the most accurate, and that higher
frequency modes become progressively less accurate, each
being a combination of a true mode and a component of
all preceding modes. In aircraft ground vibration testing
this assumption is certainly not valid, since many factors
are contributory to the accuracy of a mode, especially the
presence of another mode at a very close frequency.

Baruch and Bar Itzhack(5) propose a method
whereby an orthogonal mode set is calculated which is as
close as possible to the original measured mode set. The
method is basically to minimise a Euclidean norm of the
errors, subject to the orthogonality requirement. The
work goes on to show how a corrected stiffness matrix
may be constructed from the mode shape data, and this
is used to calculate new mode shapes and frequencies.

The work of Targoff is cited as being an optimal
method for correcting modes in the same sense as that
proposed in (5).

A further paper (6) by Baruch puts forward the
idea of orthogonalising modes using a matrix of
proportionality. This takes into account the credibility
of the original modes as judged by the engineer.

CHOICE. OF METHODS

Aims of the Method

The aim of this paper is not to find a new solution
to an old problem, but rather to arrive at a tried and
tested method which will solve the problem for a
particular application. The emphasis is on simplicity for
a number of reasons.

Requirements of the Method

The chosen method should be ideally suited for
interactive use in a test environment. For example, once
a number of modes have been isolated for a particular
configuration under test, the engineer should perform an
orthogonality check as a test of the accuracy of the
measured data. If large errors are evident the
orthogonalisation method may be used to estimate a
better mode shape. The engineer can then repeat the
test with the revised shape in mind. Once a "reasonable"
mode set is achieved then the orthogonalisation
procedure can be used to refine the data to produce a
realistic orthogonal mode set. Thus for interactive use in
a test situation a neat concise program is required which
will not occupy large quantities of valuable storage space,
and which will run quickly and efficiently. There are
always measurement errors inherent in any measurement
technique. While it is hoped that an orthogonalisation
procedure will reduce these errors, absolute accuracy will
never be achieved. The complexity of the method should
be balanced against the anticipated percentage
improvement.
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The methods of Targoff and Gravitz were chosen
for further investigation due to their simplicity.
McGrew’s method was also investigated, but the
assumption that the lowest frequency was the most
accurate has been discarded. Instead an initial
orthogonality check is used to investigate the order of
integrity of the modes. The Gram-Schmidt orthogonal-
isation with mass weighting then proceeds on the basis of
this decision.

DEFINITION OF ORTHOGONALITY

In order to define clearly what is meant by the term
orthogonality as applied to experimental modal data, it
is necessary to consider the parameters of the structure
as they are measured in test or derived by other means.

Mass Matrix. Must relate to the measurement
points on the structure. It is essential that this matrix is
accurate.

Frequency. The natural frequency of each mode of
vibration, measured in Hz.

Generalised Mass. A quantity related to the energy
input required to excite the mode, and forms a matrix for
the complete mode set.

Damping Coefficient. May be defined in a number
of ways, not relevant to this particular study.

Mode Shape. The individual displacements of each
accelerometer. Usually these displacement are
normalised such that the maximum displacement is 1
and all other displacements are factored accordingly.

For the subsequent analysis the following terms are
defined:

¢(m*n) the matrix of mode shapes.
T

¢ (n*m) the transpose of ¢.

M the matrix of generalised masses.
g(m*m)

M (a*n) the mass matrix.

where m is the number of modes

and  nis the number of accelerometers.

For an orthogonal mode set, then,

T -
4 Mp = M

where Mg is a diagonal matrix containing the
calculated values of generalised mass for the mode set. If

¢ does not describe an orthogonal mode set Mg will have
off-diagonal terms.

If ¢ is normalised such that each element of mode i

is divided by the square root of Mg; then the following
equation defines an orthogonal mode set:

1[)TM1[) =1

where 9 is the mass-normalised mode shape matrix.
This will be used for the definition of orthogonality.



OUTLINE OF TARGQOFF'S METHOD

Full details of Targoff's method may be found in
the reference, (3), however it is televant to give a brief
outline at this stage. Assumptions are that the frequency
is accurately measured and that the mass matrix is
accurate.

For a suitably normalised mode set,
¥IMyp = 1
If the measured mode shape is called 5 where
T, .
¥ My =1
a corruption matrix C may be introduced such that

L/ ¥C

m

OR defines the results of the orthogonality check on
the measure modes, where

$IMy

m 'm

OR =

cTyTmyc

cTc

or, since € is symmetric,

OR = CTc = 2

For small measurement or separation errors, C will
be close to I, the identity matrix.

ie. C=zlI+a
where o is small.
Hence,
OR = C? = (I+a)? =1+ 8§
where S is easily calculated following the

orthogonality check.
It follows that

S = 20+ 0

a= §S{I+4a)t

To solve this equation a simple iteration scheme is
used where

$S etc.

Having calculated o, and hence C the revised mode
shapes may be obtained:

1/ ¥C

m

14

$_C!
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Only the mode shapes are altered by this method,
the other modal parameters do not enter into the
equations.

OUTLINE OF McGREW'S METHOD

Once again the assumption that an accurate mass
matrix of the structure is available is made and that the
frequency is measured accurately. ‘The third assumption
made by McGrew is that the modal amplitude and
phasing errors increase with increasing frequency, i.e. the
lowest measured ‘mode is the most accurate, and
subsequent modes contain components of all lower
modes. For the present application this assumption is
not considered valid. For example, two low frequency
modes may be less than 1 Hz apart, bothk of very high
energy. To isolate these two modes might prove a very
difficult task for the engineer. However, a higher mode
of vibration, well separated from other modes of
vibration, would result in a much more accurate
representation of a normal mode of the structure. It is
proposed to modify McGrew’s method by introducing a
matrix of confidence whereby the engineer decides on the
order of reliability of the measured modes.

The final assumption is related to the third one and
proposes that the structural damping effects are small,
but tend to cause high modes to excite lower modes. It
is considered that to establish an order of confidence in
the modes will provide such improved accuracy as to
swamp the effects of damping in exciting lower modes.

Let us assume that the mode shapes and other
modal matrices have been ordered from the most reliable
mode to the least. This ordered measured modal matrix
is called ¢on. If each measured mode is considered
separately taking the most accurate first, then the ith
mode may be expressed as a function of the i-1 more

accurate modes:
. . 1
{h‘} + {hR[h [...n' }{L‘}

)

by represents the rigid body modes which may be
included in the solution. L is the modal coupling matrix,
each term of which describes the degree of coupling
between a pair of modes.

For an orthogonal mode set the off-diagonal terms
in the orthogonality matrix should be equal to zero.
Hence for the ith mode

0= {th}] . .hi"l}T[M] {Li}

where [M] is the mass matrix for the structure.

Substituting for h; gives

pat o
{16 gty ()

The RHS contains the expression for the generalised
mass matrix, up to the i~1th mode.



The equation becomes:

Y] - 7] 00 )

Substitution gives:

= o bt ]
{rgln'l-- .hi'l}T[w} {ni}
() = o)

where [MCi] is the modal correction matrix for the
ith mode. Each successive "correct" mode may then be
calculated, starting with the most accurate measured
mode.

or

OUTLINE OF GRAVITZ’S METHOD

Once again the assumption is made that an
accurate mass matrix of the structure is available. The
method incorporates an eigen solution, such that new
frequencies and mode shapes are calculated.

The method is described in reference (3), and is
based on the fact that the structural flexibility influence
coefficient matrix is symmetric for an orthogonal mode
set. This fact may be easily derived.

For an orthogonal mode set:
T
¢ " M¢ = Mg

where Mg is diagonal.

The generalised stiffness influence coefficient matrix
may be expressed:

K = Muw?
[4 g

»? is the diagonal matrix of model frequencies,
which implies K is diagonal.

Cs is now defined as the structural flexibility
influence coefficient matrix, which is the inverse of the
structural stiffness coefficient matrix.

The structural stiffness matrix may be written in
terms of the generalised stiffness matrix

K, = ¢TKS¢
K, = ¢T—1Kg 4
since ¢ is orthogonal.
K;l - ¢, - ¢T(¢T)-1K;1(¢) 1
c, = ¢K;1¢T
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If K is diagonal, its inverse is diagonal, so Cjg is
symmetric for ¢ orthogonal.

The matrix Cs is calculated using the above
equations but with the non-orthogonal measured modes.
The matrix is then averaged to impose symmetry upon
it.

T
Csa = %(CS*CS)

where C__ is the averaged structural flexibility matrix.

It only remains to find the set of modal parameters
which correspond to the new structural flexibility matrix.
This is achieved through the following standard eigen
value equation:

1
(C M-=I)¢ =0

One would expect frequency changes resulting from
this process to be relatively small.

TESTING THE VALIDITY OF THE METHODS

The above methods have been applied by the
various authors to experimental data sets. However, by
nature of experimental data an accurate assessment of
the methods cannot be made since the data is only
approximate. It is necessary to start with a "perfect"
data set, i.e. an orthogonal set, which is then corrupted
in a manner representative of the errors introduced by
experiment. The orthogonalisation procedures should
then be able to return the corrupted data to its
uncorrupted state.

An ideal base set is a finite element model which
necessarily produces orthogonal mode sets. The details
of the model are unimportant, and a small model of a
truss, with 36 degrees of freedom was chosen, and the
first ten vibration modes were taken into consideration.
Mode shapes were mass-normalised to give a value of 1
on the leading diagonal of the orthogonality matrix, i.e.

¢TM¢ = I

The procedure of the test will be to corrupt the
data in a number of ways and to apply the three methods
of orthogonalisation to the corrupted data. The resulting
"orthogonalised" modes will then be compared with the
original data to see if the corrupted data is in fact
improved by each method.

MEASURE OF IMPROVEMENT

In order to compare a complete matrix of data with
another similar matrix it is desirable to use one or more
simple parameters which will summarise the overall data
quality. In fact there are two properties of the
orthogonality matrix which are of value in assessing the
results. The first is the overall orthogonality o% the
results, and the second is the correspondence of the
"corrected" results to the "correct" or original mode
shapes.

Comparison of Matrices.
As a means of comparison between two matrices A
and B a standard method is the Euclidean norm.



lla-s]
E -
llal

).).(aij " by)?
E=z -4

b a?‘.
ij M

. where aj; are the elements of the reference matrix
A, ie. the correct orthogonality matrix, and by; are the
elements of the corrected orthogonality matrix B

For the correct matrix A,

aij=0 for i # j

and = i=3
aij 1 for 1= ]

Hence the equation reduces to

B(1-b..) + I b2,
: ii g i
c =i it

n

where n is the order of the matrix.

) For the purpose of comparison between A and B, B
is normalised with respect to the generalised masses
associated with A, so that the diagonal terms of B are not
equal to 1, but the deviation from 1 reflects the error in
the generalised masses associated with B.

Mass Error Criterion

To quantify the error in generalised mass (and
hence indirectly in mode shape) only diagonal terms need
be considered.

Y
3(1-by)

C =
m n

where Cy is defined as the mass error criterion.

Orthogonality Error Criterion
To assess the error in terms of the orthogonality of

the corrected mode set the off-diagonal terms are
considered.

3 b2,

g 1
c -l
o n

where C, is defined as the orthogonality error criterion.

It is noted that the overall comparison between the
matrices A and B in terms of the Euclidean norm may be
expressed:

C=C +C
m o

Assessment of Improvement

For the perfect data set Cn and C, should be equal
to zero. For a corrupted data set, Cy and C, will have
some positive value which should be reduced after the
application of the orthogonalisation procedure.

CORRUPTION OF DATA

Random Corruption
A typical set of measured data contains a certain

degree of random error in the measured values.
Typically up to 10% error may exist in the mode shape
displacement. Frequency is normally considered to be
measured accurately and was not corrupted in the test
for random corruption.

The perfect data set was corrupted in its mode
shape values by applying standard Fortran number
generation. Errors of up to 5% and of up to 10% were
applied to the mode shape data, which was then
re-normalised to a maximum deflection of 1. This is
though to represent fairly the typical measurement errors
experienced in a test situation. Obviously this causes
calculated generalised mass to be in error.

Coupling of Modes
A Erequent occurrence in modal isolation is that two

modes are closely spaced in frequency and cannot be
separated adequately. This was simulated in test by
adding a small factor of one mode to another and
re-normalising. This method was used to couple only
two modes and again to couple several modes.

If a mode is inadequately isolated then the
frequency of the mode will also be affected.

Consider an impure mode ¢x composed of a
proportion of ¢, and a proportion of ¢,.

é = a1¢1 + a2¢2

X

Since ¢; and ¢, are pure and hence orthogonal modes
then -

T T
41K, = $ Mg, = 0

w2
1

T
and 4K,
where w is the matrix of frequencies associated with ¢.

From standard vibration theory it can be said that:

2 ¢TK¢
6 M4

2.7 2T
2 @4, Ké; + a,4,K4,

w =
2T 2T
@ $ Mg, + 0y9,M4,
. T
and if 4, M4, = 1
2 T
then wy = $,Kéy

Hence we obtain

22 22
2%t %%
B 02 + a2

17 %



Thus the modified frequency resulting from the
coupling of two modes may be calculated, so that a
realistic corruption of the data may be performed.

Corruption of Mass Matrix
One of the basic assumptions of all the methods

investigated in this study is that an accurate mass
matrix of the structure is available. On a complex
structure such as an aircraft, the mass matrix will be in
error to some degree. The effect of random errors in the
mass matrix was investigated to see how the end results
were affected.

TESTING OF THE THREE METHODS

A series of tests was applied to all three methods
according to the corruptions described above.

The results are summarised in Table 1.

Test 1 indicated that the "perfect” data was in fact
very close to being orthogonal, and differences being
probably due to numerical errors. In the cases where
random errors were applied in nearly all cases a small
improvement was noted (the exception is Targoff’s
method on the 10% corruption where a very slight
increase in Cy, is noted).

Two modes were coupled in the next case, and the
orthogonality matrix for this case is shown in Table 2.
Modes 1 and 2 are 28% coupled. Dramatic
improvements were achieved by orthogonalisation,
particularly in the case of the McGrew method where the
modes were ordered in terms of integrity. The two
modes were successfully decoupled, with values of zero
for both C¢ and Cp,.

The coupling of several modes is shown in Table 3.
The results of the orthogonalisation demonstrate the
importance of ordering the modes in the McGrew
method. If the modes are not ordered the orthogonal-
isation produces worse results than the original
corruption. However, when the modes are ordered
significant improvements are achieved.

In the cases where random errors were introduced
as well as coupling of modes, only the McGrew method
with ordered modes showed any improvement over the
corrupted data. The other methods generally corrupted
the data still further.

The last case was the corruption of the mass
matrix. The modal data was perfect, but the mass
matrix was corrupted with random errors up to about
10%, so that it no longer corresponded to the structural
modes. Each of the orthogonalisation methods succeeded
in corrupting the data wusing this matrix.  This
emphasises the need for an accurate mass representation
of the structure.

Practical Test Case

The test rig used to demonstrate the
orthogonalisation of real modal data is shown in Figure
1. A total of ten natural modes of vibration were excited
using normal mode techniques. It was difficult to
produce an accurate mass matrix of the structure since
electromagnetic exciters were used to excite the modes
which were not placed in the same positions for each
mode. The mass of the exciter moving parts totalled
about 100 g which has a significant effect on the results
of the orthogonality check. A best estimate was used
which would adequately compensate for this additional
mass except where more than one bar was moving
significantly in the mode.
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The results of the orthogonality check are shown in
Table 4, and some degree of coupling (more than 10% is
evident between modes 4 and 5, and to a lesser extent
between modes 8 and 9). Referring to Figures 2 and 3
these are the measured modes for mode 4 and mode 5.
Mode 4 could be described as S3 horizontal bending, with
S1 out of phase, and mode 5 is S1 horizontal bending
with S3 in phase. Figures 4 and 5 show how these modes
were modified by orthogonalisation. Mode 4 was altered
very little but the modified mode 5 shows a much greater
degree of movement on S3, in phase with S1. The
frequencies of modes 4 and 5 differ by less than 1 Hz, and
it is thought that the strong mode 4 movement of S3 at
14,7 Hz inhibited the in-phase movement of S3 at
15,31 Hz. Once the influence of mode 4 had been
removed S3 was able to move freely in its natural mode.

The apparent coupling between modes 8 and 9
which are much more widely spaced in frequency can be
attributed to inaccuracy in the representative mass
matrix due to the effect of the exciter moving parts.

CONCLUSIONS

Three methods of orthogonalisation have been
implemented and thoroughly tested. They have been
applied to theoretical and measured data sets and the
following conclusions have been drawn:

1. In the case where random errors are present in
a set of modal data, each method of orthogonalisation
generally improves the data in terms of mode shape
accuracy.

2. Where two modes: are coupled, each method
produces a dramatic improvement in mode shape data.

3. Where several modes are coupled in a manner
which is typical of a measured data set both Targoff and
Gravitz improve the data. McGrew does not improve
the data unless the modes are ordered with respect to
confidence in the mode. Then it produces the best
results of all the methods.

4. When random error is imposed on data where
several modes have been coupled only the McGrew
method with ordered modes achieves a significant
improvement on the data.

5. If the mass matrix is inaccurate
orthogonalisation will probably corrupt the data still
further,

6. In the case of test results where data quality is
reasonable but isolation is difficult due to close spacing of
modes, orthogonalisation is a useful and practical tool.
An accurate matrix of the structure is however essential.
The McGrew method with ordered modes is
recommended.

REFERENCES

1. Vermeulen, A.J. : Introduction to Aircraft
Flutter Analysis, CSIR, Pretoria, NIAST 78/23, Aug.
1978.

2. Gravitz, S.I. : An Analytical Procedure for
Orthogonalisation of Experimentally Measured Modes,
Journal of Aerospace Sciences, Vol. 25, Nov. 1958, pp.
721-722.



3. Targoff, W.P. : Orthogonality Check and
Correction of Measured Modes, A1AA, Vol. 14, Febr.
1976, pp. 164-167.

4. McGrew, J. : Orthogonalisation of Measured
Modes and Calculation of Influence Coefficients, ATAA,
Vol. 7, No. 4, Apr. 1969, pp. 774~776.

5. Baruch, M. and Bar Itzhack, 1.Y. : Optimal
Weighted Orthogonalisation of Measured Modes, AIAA,
Vol. 16, Apr. 1978, pp. 346-351.

6. Baruch, M. Proportional  Optimal
Orthogonalisation of Measured Modes, AIAA, Vol. 18,
July 1980, pp. 859-861.

Table 1 : Results of orthogonalisation in terms of mass error and orthogonality error criteria for each of the methods considered.

CORRUPTED TARGOFF GRAVITZ McGREW McGREW
TEST DATA UNORDERED ORDERED
Co Cn Co Cn Co Cn Co Cn Co Cn
Uncorrupted data .0002 -} .0000 | .0000 | .0000 | .0000 | .0000 | .0000 | .0000
5% random corruption .0249 0614 .0010 0523 .0000 .0529 | .0000 .0534
10% random corruption 0343 | .0971 .0031 | .0981 .0000 0888 | .0000 | .0943
Two modes coupled 1313 .0139 .0014 .0017 .0000 .0016 .0000 0000
Several modes coupled 0119 § .6223 ) .0063 | .0185 | .0000 | .0209 | .0000 | .0355 | .0000 | .0161
5% random and two modes coupled 0118 | .0522 | .0083 { .0547 | .0000 | .0550 | .0000 | .0619 | .0000 | .0468
10% random and two modes coupled 1187 | .1022 | .0129 | .1021 | .0000 | .1017 { .0000 | .1106 | .0000 | .0928
10% corruption in the mass matrix 0303 0175 .0004 0274 .0000 .0284 .0000 .0404
Table 2 : Orthogonality check for two modes coupled.
MODE 1 2 3 4 5 6 7 8 9 10
FREQ 8.95 10.18 33.21 35.32 39.57 44.87 68.96 70.84 98.88 116.10
1.000

.287 1.000

.000 .000 1.000

.000 .000 .000 1.000

000 000 .000 .000 1.000

.000 .000 .000 .000 .000 1.000

.000 .000 .000 .000 .000 .000 1.000

.000 .000 .000 .000 .000 .000 .000 1.000

.000 .000 .000 .000 000 .000 .000 .000 1.000

.000 .000 .000 .000 .000 .000 .000 .000 .000 1.000
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Table 3 : Orthogonality check for several modes coupled.

MODE 1 2 3 4 5 6 7 8 9 10
FREQ 8.89 10.65 33.22 35.37 39.57 45.17 68.96 70.87 98.88 116.10
1.000
195 1.000
.000 .099 1.000
.000 .000 .050 1.000
.000 .000 .000 .099 1.000
.000 .000 .000 .000 .000 1.000
.000 .000 .000 .000 .000 .099 1.000
.000 .000 .000 .000 .000 .000 .000 1.000
.000 .000 .000 .000 .000 .000 .000 .030 1.000
.000 .000 . .000 .000 .000 .000 .000 .000 .000 1.000
Table 4 : Orthogonality check for measured data.
MODE 1 2 3 4 5 6 7 8 9 10
FREQ 7.22 9.66 12.55 14.70 15.31 26.57 28.69 35.58 66.18 72.10
1.000
.016 1.000
.166 .010 1.000
.008 .030 .005 1.000
-.019 -.022 -.018 -.173 1.000
.002 .036 .002 -.004 -.019 1.000
.007 015 .000 .061 -.010 -.011 1.000
110 -.032 .029 .013 -.006 .010 -.003 1.000
072 .070 -.016 -.010 -.087 -.021 .014 113 1.000
.007 .041 -.008 017 -.002 -.003 .026 .034 -.073 1.000
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