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Abstract

The three dimensional flowfield about reafistic launch vehicle config-
urations is simulated using the Reynolds-A veraged Navier-Stokes equa-
tions. Turbulent mizing is accounted for by means of the two-layer
Baldwin and Lomaz algebraic eddy viscosily model. The Beam and
Warming implicit approzimate factorization algorithm i used for the
solution of the finite difference equations. Applications include the
atudy of the flowfield about Aemisphere-cylinder configuration both
in the subsonic and supersonic Slight regimes, and about two hammer-
head payload configurations af transonie epeeds. Steady stale results
compare well with quailable ezperimental dota or with theoretical re.
sulle calculsted By other schemes. A method is also described which
permils incorporating this flow solver into a complele slgorithm to per-
Jorm time-domain aeroelastic stability analyses. The vehicle is modeled
88 a free-frec beam and modal superposition techniques are used for the
siructural-dynamie formulstion. Aeroclastic analyses were performed
Jor the hammerhead configurations. The resulls showed good gualita-
tive ay;'eement with flight observations in the cases which these were
avaslable,

Nomenclature
Goo freestream speed of sound
AB ¢ Inviscid part of the flux Jacoblan matrices
Cy specific heat at constant pressure
Cp pressure coefficient, ;ﬁ; (;{; -1
€ total energy per unit of volume
EF @ flux vectors
I identity matrix
J Jacobian of the transformation
12 reference length
/8 dimensionless body length
{z,1) dimensionless running normal force
Le, Ly, L; left-hand side finite difference operators
m{z) mass per unit of body length
b} dimensionless generalized mass of the i-th mode
Mo freestream Mach number, 4=
Mg, My, M, viscous part of the flux Jacobian matrices

number of modes used in the analysis
P pressure
freestream pressure

0

P (t) generalized aerodynamic force

Pr Prandtl number

Pr¢ turbulent Prandtl number

i (t) i-th generalized modal coordinate

0s; cartesian components of the heat flux vector
vector of conserved quantities

Re Reynolds number

Re, Ry, R, r;lght-hand side finite difference operators
time

At computational time step

T temperature

¥, v 0 cartesian components of fluld velocity

v,v,.w contravariant velocity components

Uoo magnitude of the freestream veloclty vector

z, 9 2 cartesian coordinates

a angle of attack

Bz: By, B2 terms defined in Equation 11

“Assistant Research Engineer, Design Division
Copyright © 1988 by ICAS and AIAA. Al rights reserved.

v ratio of specific heats
iy Kronecker delta
§(z,t) total deflection of the centerline
B¢, by, 5 central difference operators
€y Ogy O¢ midpoint central difference operators

Ay, Ay, A, A forward difference operators

¢ Vg, V¢ backward difference operators
tg artificial dissipation coefficient for explicit side
€r artificial dissipation coefficient for implicit side
Si modal damping coefficient for the i-th mode
[ coefficient of thermal conductivity
K¢ laminar coefficient of thermal conductivity
K¢ eddy coefficient of thermal conductivity
§ viscosity coefficient; effective viscosity coefficient
Boo freestream viscosity coefficient
I molecular (laminar) viscosity coefficient
Bt eddy (turbulent) viscosity coeficient
& ¢ body-conforming coordinates
p density
Poo freestream density
T fime in the body-conforming system
Ly components of the viscous stress tensor
i (z) i-th normal mode of vibration
w; natural frequency of the i-th mode
(]} dimensionless frequency of the i-th mode

Introduction

Computational fluid dynamics {CFD) methods have shown a re-
markable development over the recent years. Such progress has per-
mitted the simulation of aerodynamic flowfields about realistic flight
vehicle configurations. The present work uses this CFD technology to
study the transonic flow, both steady and unsteady, about some launch
vehicle configurations with particular interest in the so-called hammer-
head payloads, Hemisphere-cylinder configurations are also considered
at subsonic and low supersonic speeds in order to help ascertain the
capabilities of the method.

The flow solver algorithm can be coupled to & structural-dynamic
representation of the vehicle in order to perform aeroelastic stability
analyses. In this case, the two sets of equations are integrated simulta-
neously in time, after an initial perturbation, in order to determine the
aeroelastic stability of the given configuration. The present approach
has the advantage that the aerodynamic nonlinearities present in the
transonic regime can be captured by the method provided that the ap-
propriate flow equations are used. This is in contrast with the classical
methods for aeroelastic analysis in the transonic regime which usually
have to rely on experimental data for the aerodynamic forces.

The present work will concentrate its efforts, however, in the aero-
dynamic simulation. The aeroelastic applications are mainly intended
at demonstrating a very practical use of the methodology developed.
Attention will be focused on the difficulties encountered in the computa-
tion of such complex flowflelds. A detailed description of the numerical
algorithm will be given with the objective of helping the understand-
Ing of the computstional requirements of the method, both in terms of
storage as well as processing time,

The theoretical formulation will be presented next, followed by a de-
tailed discussion of the numerical implementation of the method. The
first examples will concern a hemisphere-cylinder configuration. The
flow about this configuration at different values of Mach number will be
studied and the resulting steady solutions discussed. Afterwards, two
hammerhead payload configurations will be considered. Both steady
state and aeroelastic results will be presented and discussed. Finally, -
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considerations about the current status of the method and the perspec-
tives for future developments will be made.

heoretical ulation

Aerodynamic Problem

The correct simulation of the flowfields we are concerned with in the
present work dictates that a Navier-Stokes formulation should be used.
Current computational capabilities, however, prevent the full solution
of these equations. Therefore, the method presented here undertakes
to solve the Reynolds-Averaged Navier-Stokes equations ! L2l These
equations can be written in strong conservation-law form [3! for general
three dimensional, body-conforming, curvilinear coordinates as

o¢ OF K OF oG

8T+-5?+.8_ﬂ.+—0?—o (1)

The curvilinear coordinate system is defined such that £ is the longi-

tudinal direction, 5 is the normal direction, and ¢ is the circumferential
direction. The transformation of variables is given by
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The vector of conserved quantities, @, is defined as
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where the Jacobian of the transformation can be expressed as
J = (ze¥n s + Zadc2e + Zelenn — Zelon — TaVex ~ Zeze)” (4)

The flux vectors E, F and @ can be written as
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The equations have been nondimensionalized following the work of Pul-
liam and Steger 4], The density p is referred to the freestream density
Poo, the cartesian velocity components are made dimensionless with
respect to the freestream speed of sound a, and the total energy per
unit of volume e is referenced to poo03, . The Reynolds number is
defined in its usual way as

Re= byl ®)

The pressure is calculated by the equation of state for perfect gases
and, therefore, can be obtained as

p=(1-1) e——p(u’+v’+w2)] ©)

The contravariant velocity components are defined as

U = G+&utéyr+éw
V = mdnautnednuw (10)
W = g+autgotgw
The fs, By and f; terms are given by
By = Taatl TV Tp—g,
By = Tayu+ Tyt W gy (11)
Br = TeaB+Tpv+ruw=gq
The components of the viscous stress tensor can be written
Te, = (g% + g—';f) 244 (g:: ) &is (12)
where we are considering an isotropic fluid and that the second coeffi-
cient of viscosity ) is given by: A = —£p. In the interest of brevity, we

have used the index notation in Equation 12, and we are also assuming
the Einstein convention with the repeated-index implying summation.
Still using the same notation, we can write the components of the heat-
flux vector as oT

9, = =gy, (13)

Finally, the metric relations can be expressed as

£ = J (Un2 — Yo 2y) § = J (05 —295)
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The Boussinesq concept of effective viscosity1®) is used to model the
Reynolds stress terms and turbulent heat flux terms that appear in the
time-averaging of the equations. By this approach, the turbulent mix-
ing processes are accounted for by eddy viscosily and eddy conductivity
coefficients. The viscosity coefficient that appears in the definition of
the viscous stress terms is formed as

B petp (15)
Similarly, the coefficient of thermal conductivity can be obtained as

m—n¢+m=gﬁ-‘-+g}§r£“- (16)

The two-layer Baldwin and Lomax 161 algebraic eddy viscosity model
is used in the present work to determine g;. The model is implemented
» 1 < Ncrossover (17)

such that
? er
Bt)outer + " > Ncrossover

The inner region uses a Prandtl-Van Driest formulation, and the expres-
sion for the outer region is similar to a Clauser formulation. As through-
out this work, n is the distance normal to the wall and ncrossover is
the smallest value of n at which the inner and outer formulations give
equal values.

Acroelastic Problem

The aeroelastic formulation is obtained by coupling the previously
described flow solver equations with appropriate structural-dynamic
equations for the vehicle. The latter are developed considering that
the vehicle can be modelled as a free-free beam in flexural vibration.
This equivalent beam is allowed to have variable properties, but we
assume that the motion Is restricted to the pitch plane. Moreover, a
modal superposition technique is used, and we assume that a set of
normal modes of free vibration is known for the vehicle.

Hence, the total deflection at any station along the body can be
obtained as

o(z,t)=ﬁ;m ()44 (2) (18)

To be consistent with the aerodynamic formulation, & (z,t) and ¢ (t)
have been nondimensionalized with respect to the reference length 4
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used for the aerodynamic equations. The equation of motion for each
of the i-th coordinates (i = 1,..., N} can be written as

i [Gi(t) + 26Widi(t) + Whai (8)] = Pil2) (19)

Here again the quantities have already been made dimensionless, and
the dots indicate derivatives with respect to nondimensional time. The
dimensionless natural frequencies are defined by

bow;

Wi 3= — (20)
8co
The dimensionless generalized masses are calculated from
&
m= [ A ) (21)
0 Poo
Finally, the generalized acrodynamic forces can be obtained from
2
Pi(t) = L Uz, )éi(z)dz (22)

The reader should note that P.'(tz' is being called generalized aerody-
namic force just to keep some resemblance in nomenclature with classi-
cal aeroelastic analysis by means of modal superposition. The character
of Pi(t) is, however, quite different. Although associated with the i-
th mode, Py(t) actually has contributions from all the modes through
the running normal force. The latter is obtained from the pressure
distribution calculated in the numerical solution of the Navier-Stokes
equations. Therefore, the actual contribution of the present work is as-
sociated with the use of the aerodynamic forcing term in such fashion.
This permits capturing the aerodynamic nonlinearities present in the
transonic regime, while still keeping a fairly simple structural-dynamic
formulation.

.The procedure for solving the complete aeroelastic problem con-
sists in the simultaneous time integration of the two sets of equations,
1. e. , Equation 1 describing the flow behavior and Equation 19 for the
structural-dynamic representation of the vehicle. The solution of the
aerodynamic equations gives the forcing terms for the aeroelastic anal-
ysis. Solution of the structural-dynamic equations provides the new
deformed shape of the body and the boundary conditions for the aero-
dynamic equations in the next time step. Time-domain analyses are
performed which allow the study of the aeroelastic stability at each
particular flight condition. Following the response of the vehicle to an
initial perturbation, we can determine whether the configuration is sta-
ble or unstable. Since the problem is nonlinear, the response should be
monitored over several cycles of the lowest mode considered before a
conclusion could be reached regarding the stability of the vehicle.

Implementation of the Method

The equations previously described were implemented using finite
difference methods. The flow solver implementation received more at-
tention because, in this case, it constitutes the more complex problem.
There is a huge amount of data that has to be stored and processed.
Therefore, a fair amount of optimization in the database structure and
in the sequence of operations in the code is almost essential to allow for
reasonable somputational times. The code should also be structured in
such a way that it permits large amounts of vectorization in order to
take full advantage of the current generation of supercomputers now in
use, These requirements become even more stringent when unsteady
applications are involved.

We will initially consider the implementation of the aerodynamic
equations. The spatial derivatives are approximated using three-point,
second order central differencing, and the equations are advanced in
time by means of the implicit Euler method. The Beam and Warm-
ing 0 implicit approximate factorization scheme is used for the solu-
tion of the finite difference equations. The algorithm is second order
accurate in space, but only first order accurate in time 181 because the
implicit Euler method was used. Due to the particular database struc-
ture implemented in the present code, it is advantageous to write the
factored finite difference equations as

LyLLeAQ" = Ry + Ry + Ry (23)

The above operators are defined as

Le = (1 + AtdA® — e AT VeAed - AtMmRe"IEJ“A?"'J)
L, = (I + Aty B ~ ¢t ALV, A, J = AtMooRe- 15,01 M J)
L = (I + A 0™ - g ALV, AT - AthRe“F,'J"}\?:J)
Re = -AE" - gt~} (VeAe) IT (24)
Ry = -At5,F" —egAtJ7} (V,4,)2 I

R, = -AT -egAtJ- (V,A,)2 0T

Here, artificial dissipation terms have been introduced In the operators
in order to maintain the stability of the numerical solution process. The
Jacobian matrices are described in detail in References [9] and [10].

The structural-dynamic equations are differenced using second or-
der accurate formulas [11) to approximate the time derivatives. The
finite difference equation that permits advancing in time each of the
generalized modal coordinates can be written

[2- (8% 0] que = (1 - Atew) iar + (A1) o
{1+ Atgm)

It must be emphasized that a set of scalar equations is obtained for the
solution of the structural-dynamic problem because of the assumption
that normal modes are known. If the modes were coupled, a matrix
equation would be obtained. Nevertheless, since the number of modes
that would typically be used in an aeroelastic analysis is extremely
small when compared to the size of the matrices involved in the solution
of the aerodynamic problem, It Is clear that the solution for the g; a4y
is not the limiting step in the process.

The coupling of the two sets of equations ie obtained by integrating
them simultaneously in time and ensuring that the updated data gen-
erated by one set is used in the next solution of the other. At a given
time step, the solution of the aerodynamic equations gives the pressure
distribution on the body. Suitable circumferential integration of this
pressure distribution yields the running normal force and, therefore,
the generalized aerodynamic forces by means of Equation 22. These
are used as forcing terms for the structural-dynamic equations in the
current time step. On the other hand, solution of the latter provides
the new deformed position of the body and the boundary conditions
for the solution of the aerodynamic problem in the next time step. It
must also be emphasized that to perform an aeroelastic analysis we are
assuming that a steady state aerodynamic solution for the rigid vehicle
was already obtained at the current flight condition. This will be used
as initial condition for the aeroelastic problem.

The database is structured in a pencil format [12] with the objective
of reducing the amount of data that has to be kept in core at a given
timne. Therefore, the majority of the data is kept in mass storage disk
files. Only the specific portion {or pencil) being operated at the partic-
ular time is brought into the core, Extensive use of asynchronous 1/O is
made which improves the efficiency of the read/write operations. The
tode was optimized for a CDC Cyber 205 and it is highly vectorized.
The sequence of operations In a typical time step for unsteady solution
is described below in a schematic fashion.

1. Initialization:
e Read: grid
o Compute: metrics and Jacobian
o Write: all metrics and Jacobian

Giatl = (25)

2. x-direction:
o Read: §°, 7 and £-metrics
¢ Compute: R
e Write: R

3. g-direction:

¢ Read: @, J, ¢-metrice and current residue
¢ Compute: R,

o Write: (Rg + R)
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4, y-direction:

o Read: @*, J, n-metrics and current residue
e Compute: R,, L, and solve it
o Write: L' (Re + Ry + R;)

5. z-direction:

o Read: ", J, ¢-metrics and current residue
o Compute: L, and solve it
o Write: L7'L;! (Re + Ry + R;)

6. x-direction:
o Read: @°, J, £-metrics and current residue
e Compute: L¢, AQ" and J**!
o Write; Q‘“

7. Structural-dynamics:

o Read: T** and J (on the body only)
o Compute: Py and g 41

8. New grid:
o Read: old grid

e Compute: new grid, new metrics and Jacobian
e Write: metrics and Jacobian

9. n+n+1,and go back to step (2).

If a steady state aerodynamic case is being considered, the same
algorithm can be used except that steps (7) and (8) are omitted. Fur-
thermore, the calculation of R can be done directly at the end of step
(6) which saves a large number of read operations. In unsteady calcula-
tions, the grid velocities are obtained from first order accurate formulas
which use the known grid positions at the previous and current itera-
tions. The new Jacobian is saved in the disk files at the end of step (8),
however the conserved quantities are not rescaled at this point in order
to take into consideration the changes in the Jacobian. We let these
variations be corrected by the next time step of the aerodynamic equa-
tions, The termination of the process Is usually obtained by specitying
the desired number of iterations.

Hemisphere-Cylinder Cases

Due to the simplicity of the geometry, while still keeping the general
launch vehicle shape, a hemisphere-cylinder configuration was chosen
to test the code before going into the analysis of more complex prob-
lems. Such configuration is also attractive from the standpoint that
experimental, or other computational results are available in the lit-
erature. The cases studied for this configuration include steady state
calculations for freesiream Mach numbers of 0.5 and 1.5, both cases
at zero angle of attack. For the hemisphere-cylinder computations the
turbulence model was turned off, such that these are laminar results,

The body conforming computational mesh was generated using al-
gebraic methods, and the same mesh was used for all hemisphere-
cylinder cases analyzed. Grid lines run in the longitudinal, normal and
circumferential directions, and 50, 40 and 20 grid points were used,
respectively, in each of these directions. This is a fairly coarse grid
system, and if was used because it would allow for a faster turnaround
time in these preliminary computations.

A general three dimensional view of body and grid can be seen in
Figure 1. Mesh points in the normal direction are clustered near the
body in order to capture viscous effects, and a 25% exponentlal grid
stretching is used in this direction. Over the hemispherical part of
the body, grid lines in the longitudinal direction are placed at equal
angular increments, and over the cylindrical part of it, these lines are
equally spaced. The 50 points used in the longitudinal direction are
distributed such that 15 of them are over the hemispherical part of the
body, and the other 35 points are located in the cylindrical section.
Grid lines in the circumferential direction are generated by rotating
one longitudinal plane at equally spaced angles around the bedy. Note
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Figure 1: General three dimensional view of the hemisphere-cylinder
grid.

that two circumferential planes are overlapped in order to facilitate
the enforcement of the boundary conditions when operating in this
direction.

As an initial test for the code, we started with a subsonic freestream
case. It is clear that low subsonic cases should converge faster to a
steady state, however one should be careful not to approach the incom-
pressible limit. Essentially the problem is that we are using a compress-
ible Navier-Stokes formulation, and the system of equations becomes
numerically ill-behaved when the incompressible limit is approached.
A case at M, = 0.5 seemed to be a good compromise and it was con-
sidered for these initial computations. Later, one low supersonic case
was run to verify the capabilities of the code for supersonic problems.

The first case run for the hemisphere-cylinder configuration was at
a Mach number of 0.5, for gero angle of attack, and a Reynolds num-
ber of 1.5 million based on the cylindrical section diameter. Pressure
coefficient contours for the converged steady state solution along two
opposing longitudinal planes can be seen in Figure 2. Mach contours
are also shown in the same figure.

Since experimental results could not be found for this case in the
literature, the present computations were compared to results obtained
from another finite difference code, namely the F3D code [13.14], The
F3D computations were performed on a Cray 2 supercomputer, but
the grid system was essentially the same used for the Cyber compu-
tations in order to make the two calculations comparable. Plots of
the pressure coefficient distributions on the body for the two compu-
tations are presented in Figure 3 . As can be seen from this figure,
the two computations show good agreement. The results from the F3D
code show a faster expansion over the hemispherical part of the body,
and also predict a slightly higher magnitude for the negative peak Cp
around the hemisphere-cylinder intersection. Both computations show
this negative peak on the pressure coefficient occuring ahead of the
hemisphere-cylinder intersection. The F3D results also seem to return
faster to the freestream pressure value over the cylindrical section of
the body. Also shown in Figure 3 is the value of the pressure coefficient
at the nose stagnation point as predicted by isentropic relations 19,
These relations predict Cp = 1.06 at the stagnation point, and both
calculations agree well with that value,

Computational results for a freestream Mach number M, = 1.5
case can be seen in Figure 4. In this case the Reynolds number was
1,386 million, based on the reference diameter, and again zero angle of
attack was considered. This value of Reynolds number was chosen to
match the experimental results presented by Hsieh 6.17), A plot of
the bow shock location, calculated based on pressure gradient results, is
shown in Figure 5. It should be pointed out that in Figure 5(5) we actu-
ally have a complete shock surface. It was plotted only as lines in order
to let the body be also seen behind the shock. The shock standoff dis-
tance can be calculated as —0.57 , nondimensionalized with respect to
the radius of the cylindrical section. This result compares well with the
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Figure 2: Flow solution for hemisphere-cylinder at My, = 0.5 and
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Figure 3: Pressure coefficient distribution on the body for hemi-
sphere-cylinder at My, = 0.5, a = 0°, and Re = 1.5 x 108,

value of —0.60 for the shock standoff distance for a hemisphere-cylinder
obtained from shadowgraphs, presented in Reference {16]. However,'it
is clear from Figure 4 that the computations are not capturing such a
crisp, well-defined shock as Figure 5 may suggest. The most obvious
reason for that is the coarseness of the grid.

Although the steady state cases shown above for the hemisphere-
cylinder configuration cannot be considered extremely difficult prob-
lems for many existing computational fluid dynamics codes, these re-
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Figure 4: Pressure coefficient contours for hemisphere-cylinder at
Mo = 1.5, a = 0°, and Re = 1.386 x 108,
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Figure 5: Shock location based on pressure gradient for hemi-
sphere-cylinder at M, = 1.5 and a = (°,

sults provided confidence in the present code. It must be mentioned
that both steady state and unsteady calculations were performed using
the same configuration at My, = 0.6 flight Mach number. These results
are described in References [10] and [11}. The unsteady applications
involved rigid body pitching of the vehicle, and the determination of
the resulting unsteady airloads.

1574



Hammerhead Payload Cases

The first hammerhead configuration studied is shown in Figure 6.
This figure also gives a three dimensional view of the computational
grid used for this application. The mesh was generated by algebraic
methods, and it has 105 x 66 x 38 points in the longitudinal, normal
and circumferential directions, respectively. The grid is periodic in the
circumferential direction. A 16% exponential grid stretching is used in
the normal direction in order to cluster grid points near the body for
capturing the viscous effects. One parameter hyperbolic tangent grid
stretching is used in the longitudinal direction to concentrate points
around the upstream centerline, and the hemisphere-forebody cylin-
der and the flare-afterbody cylinder intersections. A 8.5% exponential
stretching is also used in the afterbody cylinder section with the objec-
tive of increasing the grid spacing towards the downstream boundary.

The steady state flow solution was calculated over this geometry
for a freestream Mach number M, = 0.85, an angle of attack a = €°,
and the Reynolds number Re = 1.26 % 10° (based on the “neck” diam-
eter). The turbulence model was turned on, or in other words, these
are turbulent computational results. Pressure coefficient contours and
Mach number contours for leeside and windside are shown in Figure 7,
where we are looking at a side view of the body. The expected flowfield
features are reproduced by the computation. For instance, the expan-
sion regions around the hemisphere-forebody cylinder intersection and
around the flare-afterbody cylinder intersection are clearly shown in
the figures. A mild expansion around the forebody cylinder-boattail
intersection can be seen, and the compression region on the face of the
flare, mainly on the windside, is also very well defined.

1t should be clear that the amount of data generated in these three
dimensional computational solutions is very large. The study of scalar
flow variable contours may prove inadequate to understand what is re-
ally happening. To this end, particle traces are very useful. In partic-
ular, particle traces restricted to the first computational n-plane away
from the body amount to computer generated oil-flow lines and are
almost indispensable to understand the topology of the flow. It should
be pointed out that the latter can also be interpreted as plots of the
skin-friction lines on the body, We shall not go into any detailed dis-
cussion of these flow topologies, except to point out lines of separation
and/for reattachment as those will help us understand the solutions
that are being obtained. The reader interested on detailed discussions
of topological flow structures is referred, for example, to the works of
Dallmann 1819} Kaynak, Holst and Cantwell 1201, and Deiwert 1211 ,

Figure 8 shows these computer generated oil-flow lines for this con-
figuration at the converged steady state solution. One can clearly
identify a separation region on the cylindrical forebody right after the
hemisphere-cylinder intersection, and a node of separation can be seen
on the lee generator just behind this intersection. There is another
separation line on the boattail, which indicates that even the windside
experiences some flow separation in that region. The line of reattach-
ment aft of the boattail is also clearly defined in the figures. All those
cases can be considered mild separations, in the sense that the regions
of reversed flow are rather limited.

This steady state aerodynamic solution was used as the starting flow
solution for the aeroelastic cases analyzed for this configuration. Since
this solution was calculated for a rigid vehicle, the airloads are not the
correct actual loads at a deformed equilibrium position for the elastic
vehicle. This provides a way of introducing the initial perturbation to
start the oscillation, which will be adopted in the present work for all
cases where the freestream angle of attack is different from zero.

The procedure followed was to keep the flight Mach number and the
angle of attack constants, and vary the dynamic pressure. The values
of structural damping coefficient used were ¢ = 0.0010, ¢2 = 0.0018
and ¢s = 0.0036, for the first, second and third modes, respectively. A
typical vehicle response for an intermediate value of dynamic pressure
for this case can be seen in Reference [11]. Several other runs, for differ-
ent values of dynamic pressure, were performed for this configuration
with the objective of determining its aeroelastic stability boundary at
this flight condition. This configuration turned out to be always stable
for flight at Moo = 0.85 and a = 6°.

Despite the fact that the present method uses time domain analyses,
the results are best summarized in a root locus plot, which is shown
in Figure 9. In this plot the arrows indicate the direction of increasing

dynamic pressure, which was the parameter varied in the analysis. The’
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Figure 6: Three dimension

view of general hammerhead payload con-
figuration grid system.
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Figure 7: Flow solution about 2 hammerhead geometry at My, = 0.85,
a = 6° and Re = 1.26 x 10 (side view).

abscissa is the real part of the aeroelastic root, which is a measure of the
rate of the decay of the oscillation in each mode, formed by the product



(6) Top view.

Figure 8 Computer generated oil-flow lines for general hammerhead
payload at M, = 0.85and a = 6°.
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Figure 9: Aeroelatic root loci for general hammerhead configuration
at M = 0.85 and o = 6°, The parameter varied is flight dynamic
pressure.

of the damping coefficient at that particular dynamic pressure times
the natural frequency of that mode. The ordinate is the imaginary
part of the aeroelastic root, which is the frequency of the response of
that mode at the dynamic pressure considered. Although one should
note that the scales on the two axes are very different, it can be seen
from the plot that the frequencies remained approximately unchanged
throughout the whole range of dynamic pressures considered.

All the cases analyzed for this hammerhead shape were aeroelas-
tically stable, although all the modes showed an initial tendency of
going towards the unstable side for very small values of dynamic pres-
sure. This tendency was quickly reversed as the dynamic pressure was
increased further, such that it is hard to detect any of this behavior
from the root locus plot for the first and second modes. For the third
mode, however, the reversal of damping at low freestream dynamic
pressure is clearly visible from Figure 9 . After this initial trend was
passed, what we will call a pure damping behavior, for the lack of a bet-
ter description, was observed. It is characterized by a simple increase
of the damping in each mode as the flight dynamic pressure is raised.
The frequencies remain approximately unchanged. This is not a typical
aeroelastic behavior for conventional flight vehicle configurations with
wings and tails. However, there are cases of one degree-of-freedom flut-
ter. In other words, the fact that the frequencies remain approximately
constant might just mean that this is one of such cases. It should also
be noted that the natural frequencies considered for this analysis are
quite high, which means that we are probably assigning stiffness values
that are higher than they should be and explains why no flutter is ob-
served. Moreover, since this configuration does not correspond to any
existing vehicle, it is very difficult to try to correlate these results with
some expected behavior.

The other hammerhead configuration considered reproduced the ge-
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Figure 10: General three dimensional view of Atlas-Able IV computa-
tional mesh.

ometry of an Atlas-Able IV payload. The computational mesh about
this vehicle was also generated by algebraic methods, and a three di-
mensional view of it can be seen in Figure 10. This grid also has
105 x 66 x 38 points in the longitudinal, normal and circumferential
directions, respectively. As in the previous applications, the circumfer-
ential direction has a periodic type mesh going 360° around the body.
Appropriate grid stretching techniques were again used in order to opti-
mize the distribution of the available computational mesh points. This
configuration was studied at two different angles of attack, and both
cases at My, = 0.85. All computations used the turbulent flow op-
tion, and the Reynolds number based on the diameter of the afterbody
cylindrical section was Re = 1.2637 x 10%,

For the configuration at an angle of attack a = 6°, an investigation
of the sensitivity of the turbulence model with respect to the tun-
ing of its computational parameters was performed. This investigation
was motivated because some rather dramatic flow separation conditions
were being observed in the computations. If we consider that the tur-
bulence model used in the present calculations was originally derived
for attached or mildly separated boundary layers, there is some reason
for concern.

In the present implementation of the model, an important com-
putational parameter is how far we search into the flowfleld for the
maximum velocity in the boundary layer profile. This distance is spec-
ified in terms of number of grid points in the normal direction from
the wall. It was observed that some small variations in this parameter
would cause large differences in the flow topology obtained.

Figure 11 shows oil-flow lines for the solution when this search was
performed up {o the 20th grid point. In this case there is a well-
defined focus on the side of the body, as we can see from Figure 11{a).
We can also identify a saddle point of separation on the lee generator
just ahead of the ellipsoid-cylinder intersection (see Figure 11(b)). The
release of particles around the focal point produces the particle traces
plot shown in Figure 12. This figure shows how the particles are caught
in the reversed flow region and are convected upstream, before reaching
the forward flowing stream region. Details of the vortex “taking off”
from the body surface can be seen in Figure 13, for the same particle
trace plot shown in the previous figure, It is clear that the region of
separated flow in the present case is very large. The complete boattail
and most of the forebody cylindrical section are immersed in a reversed
flow region.

If the search is performed up to the 25th grid point, a very different
flow topology is obtained. The oil-flow lines in this case are shown in
Figure 14. In this case there are two lines of separation over the side
of the body. There is no focus anymore, and the critical point on the
lee generator is not a saddle point but it is a node of separation. There
is still an extensive region of separated flow but it is certainly smaller
than in the previous case. Unrestricted particle traces for this solution
can be seen in Figures 16 and 16. The former shows a side view of the
body and the latter presents an expanded view of the flow separation
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(8) Top view.
Figure ll:.Oil-ﬂow lines for Atlas-Able IV at My = 0.85 and a = 6°
(computation with search up to 20th grid point).

(8) Top view.
Figure 14; Oil-flow lines for Atlas-Able IV configuration at My, = 0.85
and a = 6° (computation with search up to 25th grid point).

Figure 13: Particle traces showix;g vortex leaving the body surface on
the side of the vehicle.

around the leeside region.

If we keep increasing this distance of search, the trend continues in
the sense that less separation is observed. For instance, Figure 17 shows
a side view of the oil-flow lines obtained when the search is performed
up to the 35th grid point. The flow on the forebody cylindrical section
is fully attached in this case, and the separation region is limited to
the “upper” portion of the boattail section. In terms of flow separation
structure, the swirling of the flow around the focal point on the boattail
is evident from the figure. It is also clear from this figure that the flow
on the windside never separates, which is in contrast with the results
previously shown for this configuration. Finally, when the search is
performed up to the 45th grid point, the flow is fully attached as we
can see in Figure 18,

The calculation with the search up to the 25th grid point seemed to
produce the most realistic results in terms of flow topology, and it was
adopted as the correct solution in this case. It must be said, however,
that despite the dramatic differences in the fiow topology, the calculated

Figure 15: Particle traces showing flow separation on the Atlas-Able
IV configuration at angle of attack (side view).

Figure 17: Side view of oil-flow lines for Atlas-Able IV configuration
(computation with search up to 35th grid point).

Figure 18: Side view of oil-flow lines for Atlas-Able IV payload (com-
putation with search up to 45th grid point).

pressures on the body did not present such large discrepancies among
the various cases. To complement the visualization of the flowfleld for
this solution, Figure 19 presents a side view of the body where Mach
number and density contours in the lee and wind planes are shown,
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Figure 19: Flow solution about an Atlas-Able IV -configuration at
Moo = 0.85 and a = 6° (side view).

This solution was used as an initial aerodynamic solution for the
aeroelastic analysis of the present configuration. As in the previous
case, this analysis was performed by varying the dynamic pressure while
keeping the freestream Mach number and the angle of attack constants.
A typical response obtained in this case is shown in Figure 20. An
expanded view of the response in the second and third modes is shown
in Figure 21. For this particular case, despite the very high flight
dynamic pressure, the configuration is still aeroelastically stable. Three
elastic modes were used in the analysis and we can see from the above
figures that the oscillation in all three modes is being damped.

The results for the aeroelastic stability study of this configuration
at My, = 0.85 and o = 6° are summarized in Figure 22, which shows
a plot of the modal damping coefficient as a function of the flight dy-
namic pressure. It was assumed that all modes had some amount of
structural damping in this case. The damping in the first and third
modes increases with the rise of the dynamic pressure. The second
mode presented the most interesting behavior since there is a dynamic
pressure range in which the damping decreases with the increase of the
dynamic pressure.

This configuration was also studied at zero angle of attack and at
the same flight Mach number My = 0.85. Only one aeroelastic run
could be performed in this case due to the high computational cost of
these aeroelastic solutions. The result indicated that the configuration
was aeroelastically unstable at the dynamic pressure of 400 psf . More
specifically, the second and third modes were showing a growing ampli-
tude of oscillation. However, more cases at different values of dynamic
pressure would have to be run in order to determine the actual flut-
ter boundary. The results at a = 0° are discussed in more detail in
Reference [10).

The results above reproduced the flight observations at least qual-
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itatively since, according to results presented by Woods and Erics.
son [221, the second mode was the one expected to go unstable, Un-
fortunately there was not enough experimental data on the structure
properties in order to allow for a more quantitative comparison of these
aeroelastic results. Nevertheless, the agreement obtained can already
warrant some credibility to the method, although further validation is
certainly necessary.

Concluding Remarks

The formulation of the present method was described and consid-
erations for its implementation were discussed. The results illustrate
the application of the method for both steady and unsteady problems,
The comparisons with the available steady state data provided a partial



validation of the method. It is well-recognized that unsteady data are
difficult to find in the literature. This is very unfortunate because it
would be very interesting to quantitatively compare our aeroelastic cal-
culations. Nevertheless, as we saw in the previous section, the results
are showing good qualitative agreement with the flight observations.

The results describing the uncertanties with respect to the correct
flow topology and, therefore, with regard to the correct set of parame-
ters for the turbulence model suggest that the present flow solver code
may not be production-ready yet. Some difficulties with the present
artificial dissipation algorithm, evidenced by results present in Refer-
ence [10], also confirm this suspicion. One should realize that the com-
putation of such complex flowfields is not a trivial matter, and that the
available numerical methods are just beginning to cope with such com-
plexity. The advancement of our understanding of the phenomenon
of turbulence and, In consequence, the improvement of its computa-
tional models should aliow for more robust fiowfield simulations for the
kind of configurations and flight conditions we are interested in here.
The continuous development of CFD methods is gradually allewing for
consistent flow solutions without the need for ad hoc fixes.

A constant concern with these three dimensional simulations should
be their computational cost. In the present case, the convergence to a
steady state solution would typically take from 3500 to 4000 iterations
considering that one started from scratch, i. e. , assuming freestream
everywhere. This does not constitute too much CPU time in the
hemisphere-cylinder cases since the grid was small. For the hammer-
head payload configurations, however, a more realistic grid was used
and each steady state iteration would take approximately 10 CPU sec-
onds in a CDC Cyber 205, Therefore, something of the order of 10 CPU
hours were being necessary to achieve convergence in this case. On the
other hand, it is important to point out that once a converged solution
has been obtained for a certain flight condition, it could be used as the
initial feld solution for the computations at a different flight condition.
This can result in considerable cost savings.

For the grid size used in the hammerhead cases, each aeroelastic
iteration takes approximately 12 CPU seconds. A response solution
as shown in Figure 20 takes approximately 9 CPU hours in the Cyber
205. One should note that only three cycles of the lowest mode were
calculated in that case. The important conclusion is that the high com-
putational costs are still preventing a more detailed parametric study
of the flutter boundaries for these complex configurations. The author
believes that such high costs can be perfectly justified in a research
effort, but they will certainly have to be brought down before the in-
dustry could accept the method as a valid analysis tool. It must be
said, however, that the enormous development in hardware capabilities
we are currently witnessing will make the computational requirements
of the present method seem very modest in just a few years, even if no
improvement is made to the current algorithms.
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