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FLUTTER CALCULATION OF FLUTTER MODELS

FOR JAS 39 GRIPEN

Valter J. E. Stark
Saab-Scania AB, Linkdping, Sweden

1 ABSTRACT

Calculated results for small and thin wing models,
some of which have a launcher and misgsile at the
tip, and for a large and likewise thin composite
model with flap have been compared with test
results for zero incidence. The small models were
tested in a small tunnel at high-subsonic speeds
and the large model in a large tunnel at transonic
and low-supersonic speeds. Since the results from
the calculations, which were mainly based on the
linearized theory, are in good agreement with those
from the carefully performed tests, it is concluded
that this theory is satisfactory for flutter
calculations of thin wings at zero incidence.

2 INTRODUCTION

In the development of a new aircraft, it is
necessary to prove that the requirement of safety
against flutter is satisfied, which implies
extensive and complicated investigations. To a
large part, these investigations can be performed
by means of computers and computer programs.

Flutter tests in wind tunnels are needed, but alone
they are not sufficient. A check by using a model
of the final design is hardly possible since data
are not available early enough to allow design,
building, and testing of an accurately similar
model. As such a model is also very expensive, it
is attractive to use computer programs.

The programs must of course be checked very
carefully and wind tunnel tests are required for
this, but accurate simulation of the full scale
design is then not necessary. A model for checking
the programs and the underlying theory can
accordingly be built in an inexpensive way.

It has often been said that flutter model tests are
necessary because. the unsteady aerodynamic forces
are unreliable, but statements of this kind cannot
be accepted. It has been found, namely, that
errors due to other sources are equally likely.
This investigation in which the accuracy of mass,
stiffness, and mode data has been carefully
checked, shows that flutter of thin wings at zero
incidence can be predicted satisfactorily by the
use of aerodynamic forces calculated by the
linearized theory.

Flutter calculations for the JAS 39 Gripen were
performed by the so called AEREL gystem in which
aerodynamic routines based on the linearized theory
were used. For checking this program system,
several models with different complexity were built
and tested. Some of the results from the
calculations and tests will be shown and compared
in this paper.
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Recently, a finite-difference program based on the
full potential equation was developed at SAAB (Ref.
1). A few results based on aerodynamic forces from
this program shall be shown too.

3 WIND TUNNELS

The flutter tests to be considered were partly
performed by Volvo Flygmotor AB in Sweden, called
VFA in the sequel, and partly by ONERA in France.
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Fig. 1 Model in test section of the VFA tunnel

The tunnel employed by VFA is a comparatively small
tunnel, but it offers long test runs which is
required for flutter tests. It has a test section
size of 0.5mx0.5m, slotted ceiling and floor, and
permits transonic and supersonic tests at a maximum
Reynolds number of 6x10**6 per dm.

The ONERA tests were performed in the well known
S2MA - tunnel at Modane.

4 MODELS

The models tested are all semi-span models which

were mounted at the tunnel wall.

Six models were tested by VFA in the VFA tunnel.
These models, which are small, consist mainly and
simply of an aluminum plate, which is 1.48 mm thick
and was clamped at the root. Some of the models,
which are described and denoted as shown in Fig.
2, have a launcher and a migssile model at the tip.
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MODELS TESTED IN THE VFA TUNNEL
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Fig. 2 Flutter models tested

The two models without launcher and missile have a
gspan of 0.1456 m, a tip chord of 0.0284 m, and a
leading edge sweep angle of 45 degrees. The first
one tested, which is called V00, has a wedge shaped
section at the leading edge while the other one has
such a section both at the leading edge and the
trailing edge.
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Fig. 3 Model VLR

The model configurations VLR, VLRF, VLRB, and VLT,
include models of a launcher attached to the wing
tip and a missile attached to the launcher. In
case of VLR, the missile was attached at a nominal
position, while in case of VLRF and VLRB it had a
15 mm more forward and 15 mm more backward position
respectively. Fig. 3 shows VLR (with the missile
fins modified as described later).

Like VLR, the model VLT includes a launcher and a
missile located at the nominal position, but this
missile model has no fins.

A theoretical study of the aerodynamic effects of
the missile fins has been made. The three models
VLRUFF, VLRUFB, and VLRUF, which were considered
for this purpose, have no forward fins, no rear
fins, and no fins at all respectively.

The model tested in the ONERA S2MA tunnel is a
comparatively large model made from composit
material (Kevlar). It was designed to be similar
to the corresponding full scale surface, which
implied that a comparatively large model and thus a
large tunnel had to be used.

%5 GROUND VIBRATION TEST TECHNIQUE

In the ground vibration tests (GVT) performed by
VFA, the model was mounted at the tunnel wall in
the same way as during the flutter tests.

For the small models except V00, VFA used a
loudspeaker for excitation and a Laser Dopler
Vibrometer. for measurement of the natural modes,
but for V00 as well as FEO, the impulse hammer
technique (Ref. 2) was employed.

In the GVT performed by ONERA for the model FEO,
this was attached to a heavy structure outside the
tunnel and excited by an electro-magnetic shaker.
The shaker was fed by a sinus signal and, at
resonance, the response was measured by means of a
portable accelerometer.

6 GVT RESULTS FOR THE SMALL MODELS
6.1 Natural Frequencies

Since only natural modes shall be used the mass,
damping, and stiffness matrices are diagonal
matrices, With m(n), f£(n)=cw(n)/ (27, and ¢ (n)
denoting the generalized mass, the natural frequen-
cy, and the damping coefficient respectively for
the n:th mode, the diagonal elements of the
matrices are m(n), 2 a(n) w (n)m(n), and
m{n) w (n) **2 respectively.

We want to look upon the comparisons as a check on
the aerodynamic forces and have to check,
therefore, that the results from the GVT for m(n),
f(n), and the natural modes are sufficently
accurate for this purpose.
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The natural frequencies for simple models like V00
and V0OV can be checked by calculating corre-
sponding normalized frequencies b**2f{n)/t (b is
the span and t the thickness) and comparing these
to normalized frequencies for other models. The
normalized frequency for thin models with the same
planform is independent, namely, of the span and
the thickness. The results obtained for the first
three natural frequencies for the models mentioned
plus some further models are given in Table 1.

Table 1 Natural and normalized frequencies for
cropped delta models with aspect ratio 3.35,
taper ratio 0.1616, semi-gpan b, tip chord c,
and thickness t (b, ¢, and t in mm).

Model b ¢ t £ (n) b**2f (n) /t
n=l 2 3 1 2 3

Source

73.8 14.2 0.70 151 550 785 1.18 4.28 6.11 GVT

" " 1.02 223 8291160 1.19 4.37 6.20 "

147.6 28.4 0.98 52 182 269 1.16 4.05 5.98 "

" " 1.47 80 287 419 1.19 4.25 6.21 "
veo 151.6 *  1.48 77 277 404 1.20 4.32 6.32 "
vogvy " vo® 77 278 399 1.20 4.34 6.25 "
vro " " 1.5 77 294 408 1.17 4.50 6.25 ASKA
VTS " " 2.0 102 391 542 1.17 4.50 6.24 "
vré " " 3.0 153 583 809 1.17 4.45 6.18 "

The first four rows contain earlier results for
models of the same kind as V00, and the values in
the last three rows are results from a
finite-element calculation by the ASKA program
using the model shown in Fig 4.
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0.1516 m

T
]

77

Fig.

4 Finite-element model for ASKA calculation

Since frequencies can be measured with high
accuracy, it is not believed that the wvalues
obtained for f(n) are inaccurate. The small
deviations of the normalized frequencies are rather
thought to be due to sources such as slightly
different model shape, thickness, or fastening. It
is seen from the table that the finite-element
calculation by ASKA gave closely agreeing results,
which is encouraging.

for the models with launcher and
missile are given in Table 2 where the values in
the first three rows are results from
finite-element calculations. Since the mass of the
launcher and missile is kept constant, the
normalized frequencies cannot be expected to be
independent of the thickness in this case.

Frequencies

Table 2 - Natural and normalized frequencies for
models with launcher and missile

Model b ¢ t f(n) b**2f (n) /t Source
n=1 2 3 1 2 3

VT2 151.6 28.4 1.5 30 86 240 0.46 1.32 3.69 ASKA

VT3 " " 2,0 45 131 325 0.52 1.50 3.74 "

VT4 " * 3.0 74 214 572 0.57 1.64 3.61 *

VLR " " 1.48 30 80 238 0.47 1.24 3.71 GVT

VLRF % nom 30 78 238 "

VLRB " " " 30 80 241 "

VLT " " " 30 81 240 "

In spite of the large size of the elements at the
root of the model (See Fig. 4), where the stresses
are large and rapidly varying, the ASKA results for
VT2 agree very well with those measured for VLR.

6.2 Generalized Masses

The AEREL system contains a quadrature routine
which can be used for calculation of mass matrices
for the simple models considered. The routine
evaluates the matrix elements, which are integrals,
by replacing the integrand by its value at the
center of small trapezoidal elements. The elements
employed in calculations for VOOV are shown in Fig.
5.
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Fig. 5 Grid used for calculation of mass matrix

The calculated values of the generalized masses
m{n) are given in Table 3 and compared with those
measured by VFA, The upper row for each model
contains the measured values and the lower row the
calculated ones.
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Table 3 Generalized masses (in kg)

Model m{n)
n=1 2 3 4 5
Vo0 0.0111 0.0183 0.0145 0.0265 0.0216
0.0073 0.0126 0.0087 0.0075 0.0121
voov .0087 0.0115 0.0073 0.0098 0.0282

L e}

.0092 0.0117 0.0079 0.0087 0.0302

VLR 0.061 0.220
0.061 0.208

.023 0.033 0.021
.023 0.027 0.020

OO

VLRF 0.061 0.130 0.022
0.060 0.141 0.020

VLRB 0.060 0.180 0.023
0.061 0.177 0.025

VLT 0.060 0.200 0.023
0.063 0.198 0.022
It is seen that the differences between the

measured and the calculated results are significant
in case of the mcdel V00 and that these differences
are small in case of the other models.

In case of VOOV, the calculated complete mass
matrix reads as follows: '

0.0092 -0.0003 0.0001 0.0002 0.0001
-0.0003 0.0117 -0.0002 -0.0004 0.0002
0.0001 -0.0002 0.0079 0.0003 -0.0005
0.0002 -0.0004 0,0003 0.0087 0.0010
0.0001 0.0002 -0,0005 0.0010 0.0302

As the off-diagonal elements are comparatively
small, and since the calculation of the mass matrix
for the simple models considered should not pose
any problem, it is believed that the calculated
generalized masses are accurate and, accordingly,
that the deviations in the case of V00 are due to
experimental errors.

The close agreement for the model VOOV and the
models with launcher and missile is probably due to
the new experimental technique that was employed
for them. The generalized masses, except those for
V00, were determined by measuring the change, Af,
of the natural frequency due to the addition of a
small mass, Am, to the model and estimating the
limit of the ratio Amf(n)/ Af for Am approaching
zero. This ratio is plotted in Fig. 6 for the
first mode of the model VLR.
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Fig. 6 Determination of generalized mass

6.3 Natural Modes

The AEREL system contains a routine that f£fits
analytic deflecton modes to measured deflection
data by the method of least squares. The analytic
modes are combinations of products of chordwise and
spanwise factors having vanishing second and third
order derivatives at the leading and trailing edge
and at the wing tip respectively.The first
chordwise factor is a constant, the second one is a
linear function, and those of higher order resemble
the natural modes of a free beam. For the spanwise
factor different functions are available. Those
chosen for the models tested, which were clamped at
the root chord, satisfy this condition.

For wings with control-surfaces, discontinuous
functions with the value =zero at points off the
control-surface can be  included. On the

control~surface these functions are formed by
products of the same kind as those mentioned above,
but two of the spanwise factors are a constant
function and a function with linear variation.

The number of chordwise factors, NC, was chosen
equal to 3, which allows chordwige bending of the
lowest order, while the number of spanwise factors,
NS, was chosen equal to 4. The first two analytic
modes for V0O for these values of NC and NS are
compared to the measured values in Fig. 7 and 8

while Fig. 9 and 10 show corresponding results for
voov, The analytic functions are represented by
the solid curves and the measured values by
circles.



Fig. 7 First mode of V0O.

Fig. 8 Second mode of V(0.

In contrast to the analytic modes for VOOV, the
modes for V00 exhibit on the outboard part of the
model a significant amount of chordwise bending.
As such a bending can hardly occur at the wing tip
for low-order natural modes and as the modes
calculated by ASKA agree very well with the
analytic modes obtained for VOOV (which 1is only
slightly different from V00), it is believed that
the analytic modes obtained for V00 are incorrect.
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Fig. 9 First mode of VOOV.

Fig. 10 Second mode of VQOV.

But the analytic modes depend on the measured
values and, as the analytic modes were determined
in the same way and for the same value of NC for
both V00 and V00V, it is concluded that the
measured values for V00 are incorrect.



7 GVT RESULTS FOR MODEL FEO
7.1 Natural Frequencies

VFA and ONERA obtained the following values for the
natural frequencies from their ground vibration

tests:
VFA: 50.5, 86.2, 108.0, 187.3, and 204.7 Hz.
ONERA: 51.3, 85.6, 109.4, 183.3, and 195.7 Hz.

7.2 Generalized Masses

Reduced to modes normalized in the same way, the
results for the generalized masses from the two
tests are given in Table 4. They are seen to
differ significantly in particular for the third
mode .

Table 4 Generalized masses for FEO

Source Mode No
1 2 3 4 5
+, VFA 0.254 1.328 0.613 0.074 1.270
ONERA 0.238 1.262 1.451 0.062 0.127
7.3 Natural Modes
The first and the second natural modes are first

order bending and torsion modes, the fourth and the
fith may be said to be second order bending and
torsion modes, while the third mode is primarily a
rigid flap rotation mode.

The results for the first and the fith mode ' are
shown in Fig. 11 and 12 respectively. A certain
disagreement of the shapes
measurements is noticed.

defined by the two

Fig. 11 Comparison of results for the first mode
for FEO

e ONERA GVT

o VFA - =k o 4-{- l

e

pd

Fig. 12 Comparison of results for the fith mode
for FEO

8 AERODYNAMIC CALCULATIONS

The  AEREL system contains subprograms for

calculation of aerodynamic transfer functions on
the basis of the linearized theory. Two of these
are the ADE (Advanced Doublet Element) program
(Ref. 3) and the CHB (Characteristic Box) program
(Ref. 4), which are programs for subsonic and
supersonic speeds respectively.

The ADE program is applicable to a nonplanar
configuration of trapezoidal wing panels, but this
capability was not utilized. The missile model,
which has 4 forward fins and 4 rear fins in planes
inclined 45 degrees to the wing plane, was treated
in a simplified way. The four inboard fins were
disregarded since they are inefficient due to the
closeness to the launcher and the two pairs of the
outboard fins were each considered equivalent to a
single fin in the wing plane. This is obtained by
rotation of the missile 45 degrees.

Wind tunnel tests or c¢alculations for supersonic
Mach numbers for the models with launcher and
migssile have not been completed.

For the models V00, VOOV, and FEO, the aerodynamic
transfer functions were calculated both by the
programs ADE and CHB, i, e. on the basis of the
ordinary linearized theory, and by the so called FP
program, which is a finite difference program
developed recently at SAAB (Ref. 1). As this
program is based on the full potential equation,
thickness effects are taken into account.

9 FLUTTER TEST TECHNIQUE

In the flutter tests at VFA, the model was excited
solely by the turbulence of the flow and the model
response was measured by means of strain gauge
sensors at the wing root. An xy-plotter was used
for displaying the RMS value of the signal, which
was recorded on tape. Frequency and damping values
were extracted by means of an HP5423A analyzer, and
the flutter-critical density of the flow was
determined by extrapolation of a curve through
damping values for densities near the critical
value.
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In the wind tunnel tests at ONERA, response data
were recorded and analyzed in a similar way, but
eigenvalues were determined for three Jlow-order
modes in addition to that for the critical mode.
Excitation of the model was achieved by means of
the ONERA hydraulic actuator, which was also used
in a control loop for flutter suppression in
critical cases.

10 FLUTTER CALCULATIONS

The flutter routine of the ARREL system which was
used here yields results for the true damping of
the natural modes, because it solves the nonlinear
eigenvalue problem that results upon Laplace
transformation of the equations for general motion
(Ref. 5). Newton~Raphson iteration and simple
analytic functions approximating the aerodynamic
transfer functions are used in this routine (Ref.
6 and 7)

The flutter critical flow variables were determined
both at VFA and ONERA by keeping the Mach number at
a constant given value and gradually increasing the
stagnation pressure while observing the damping.

11 FUTTER RESULTS FOR THE SMALL MODELS
11.1 Model V00

Attemts to calculate the flutter critical
free-stream density for the model V00 using the
initially obtained GVT data (by the impulse hammer
technique) were not successful, The disagreement
of the results have been found to be due to the
previously disclosed errors in the measured
generalized masses and the natural modes. Since it
is interesting to show the effects of these errors,
the flutter densities obtained on the basis of the
erroneous data are illustrated in Fig. 13.
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Fig. 13 Effect of inaccurate GVT results on the

flutter density of the model V0O

Generalized masses for V00 calculated by the AEREL
routine for NC equal to 2 (chordwise bending not
allowed) and 3 do not differ much from each other
and not much from those measured by the Laser
Dopler Vibrometer for the model VOOV (which is
essentially the same as V00).

The difference between the flutter densities for
NC=3 ‘and NC=2 is therefore due to the difference
between the aerodynamic transfer functions, which
in turn is due to the chordwise bending and thus to
the errors in the measured deflection values. As
seen by comparing each of the two curves for NC = 2
to the corresponding one for NC = 3 in- figure 13,
these errors have a much greater effect in the
supersonic range than in the subsonic range.

By comparing the dotted curve to the solid one and
the dash-dotted curve to the dashed one, it is also
seen that the effect of the inaccuracies of the
generalized masses is considerable in both speed
ranges. Use of the experimentally determined
generalized masses yields unconservative flutter
densgities.

11.2 Model VOOV

Flutter results for the model V00V are shown in
Fig. 14 and 15. The shape of the curves for the
damping coefficient in the former figure indicate
that the flutter instability is of the catastrophic
type.
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Figure 14 Damping of the critical mode of VOOV
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Figure 15 Flutter density for VOOV
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As seen from Fig. 13 and 15, the experimental
results for the flutter demnsity for V0OV are nearly
the same as those for V00. Hence, the effect of
the difference in shape of the model section at the
trailing edge does not seem to be significant.

Flutter results calculated on the basis of the
linearized aerodynamic theory via the ADE and CHB
programs are shown by the solid curves in Fig. 15.
They agree very satisfactorily with those from the
VFA tests, which have been completed only for
subsonic speeds.

The FP program, which takes the effect of the wing
thickness into account, should produce the same
result for zero thickness as a program based on the
linearized theory. It was decided to check this by
applying the FP program to the model VOOV which has
a maximum relative thickness of about 1 percent at
the root and about 5 percent at the tip. The slope
of the model section has discontinuities, however,
and due to these, acceptable results could not be
obtained from the FP program for Mach numbers above
0.9 for the true section. Calculations by the FP
program for the higher Mach numbers were therefore
performed for the thickness reduced to a value less
than one percent at all stations.

The expectation that the full potential theory and
the linearized theory yield the same result for
vanishing thickness is seen to be supported by the
results obtained.

11.3 Model VLR

Theoretical results for the eigenvalues and the
damping coefficient for the flutter critical mode
of the model VLR, the model with launcher and
missile, are illustrated in Fig. 16.
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Fig. 16 Damping of the critical mode of VLR

Eigenvectors associated with the critical mode for
the Mach numbers considered are alsc shown in the
figure and it is seen from them that the flutter
mode 1is essentially a combination of the first
bending and the first torsion mode.

As the slope of the damping curves is very steep,
the catastrophic nature of the flutter instability
seems more pronounced for VLR than for V00 or VOOV,

The three smaller diagrams

show

included in Fig. 16

that the eigenvalues for Mach numbers less

than about 0.9 and those for greater Mach numbers

move

in different ways in the complex frequency

plane.

11.4

Theoretical and experimental results
flutter

Models VLRF And VLRB

for the

density are shown in Fig. 17 for VLR,

VLRF, and VLRB.
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Fig. 17 Flutter density for missile at different
positions

As seen, the agreement between the measured and
calculated flutter densities is very good and the
calculated effect of moving the missile agrees with
the experimental prediction too. A more forward
location yields a higher flutter density.

11.5 Models VLRUFF, VLRUFB, VLRUF

The effect on the flutter density of discarding the
aerodynamic forces on the missile fins partly or
completely was studied theoretically. The forward
fins were removed in one case, the rear fins in a
second, and all fins in a third case, which implies
neglecting the aerodynamic forces since the fins
have very small masses compared to the mass of the
missile body.

The results are compared in Fig. 18 to the
experimental and theoretical results for VLR, i.
e. for the model with all fins retained. Removal
of the forward fins is seen to increase the flutter
density while removal of the rear fins reduces it.
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P I T s
Fig. 18 Flutter density for different fin

arrangements
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11.6 Model VLT
The calculated results for the different fin
arrangements have been checked experimentally only
in one case, namely, in the case of a missile with
no fins. As shown by Fig. 19, close agreement was
again obtained.
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Fig. 19 Flutter density for model VLT

12 FLUTTER RESULTS FOR THE MODEL FEO

Flutter calculations have been performed on the
basis of modes, frequencies, and generalized masses
from both the VFA GVT and the ONERA GVT. Five
modes were determined in the tests and all five
modes were used in the approximation to the elastic
deflection of the model.

Aerodynamic transfer functions were calculated by
the ADE and CHB programs for 10 reduced frequencies
and 8 Mach numbers, and functions of the Jones type
and of the kind proposed in Ref. 7 were fitted to
the calculated values for subsonic and supersonic
flow respectively.

The same procedure and flutter routine were used in
calculations based on aerodynamic transfer func-
tions from the FP program.

12.1 Results Based On Linearized Theory

The stagnation temperature, which did not vary much
during the tests, was taken equal to 305 degrees K
in the calculations. Like the tests, these were
performed for each Mach number by increasing the
stagnation pressure in small steps. The results
obtained for the damping coefficient for the first
four modes for a stagnation pressure of 1.5 bar are
plotted in Fig. 20-23,
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The solid and the dashed curves in the figures
represent results calculated on the basis of data
from the GVI:s by ONERA and VFA respectively, while
the circles represent ' damping values measured by
ONERA in the flutter tests.

Results from tests for two different configurations
have been included in the figures where they are

represented by open and filled circles. The two
sets of results were included because it yields
increased confidence in the measured values, The

difference between the configurations, which is due
to removal of a small part of the flap with small
mass, should have only a small effect on the
results. It increased the natural frequency of the
third mode by 8 percent,

The frequency part of the eigenvalues obtained are
given by the frequency ratios shown in Fig. 24-27;
the reference frequency, wy, is equal to the
natural frequency (in still air) for the first

mode.,
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Fig. 25 Frequency of the second mode of FEO
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Fig. 26 Frequency of the third mode of FEO
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Fig. 27 Frequency of the fourth mode of FEO

The instability that barely tends to appear, as
seen from Fig. 22, for this model for the
stagnation pressure mentioned is a mild type of
flutter, whereas the flutter of the small models
was of the catastrophic type. Therefore, we have
to consider the damping coefficients instead of the
flutter critical density in the comparisons and

anticipate due to this greater deviations. It is
more difficult, namely, to predict these
coefficients, both experimentally and
theoretically, than the critical density for

catastrophic flutter.

Neither of the two theoretical predictions, which
are shown in Fig. 20-23, is in perfect agreement
with the experimental results, but, with regard to
the difficulty of determining the damping

coefficients, the theoretical and the experimental
results are surprisingly close to each other. It
is seen that the accuracy of the GVT results is
important for the comparison and that data from the
ONERA test yield somewhat better agreement.

In a limited supersonic range, the theoretical
predictions are conservativ and predict a weak
instability. This is at least partly due to the
well known fact that the imaginary part of the
aerodynamic flap moment due to flap rotation, as
predicted by both the linearized theory and the
full potential theory, is negative in a reduced
frequency range for low-supersonic Mach numbers.

12.2 Results Based On FP Theory

Results for the damping coefficients from a flutter
calculation based on aerodynamic forces from the
full potential program (Ref. 1) and GVT data from
the VFA test are shown in Fig. 28-30. They are
compared there to results from a corresponding
calculation based on the linearized theory and the
game GVT data. The kind of the analytic expression
employed for representing the natural modes was
likewise the same, but different from the kind used
for the results in Fig. 20~27 (less accurate for
high order modes).
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This comparison shows that the FP theory yields

essentially the same results
theory for the model FEO,

as the linearized

which, 1like the small

models, is thin and was tested at zero incidence.

13 CONCLUSIONS

A number of small and thin semispan wing models,
which in some cases have a launcher and a missile
at the tip, and a much larger model, which is
likewise thin and has a trailing edge flap, have
been subjected to ground vibration tests and
flutter tests at =zero incidence in a small and a
large wind tunnel respectively. Based on data from
the ground vibration tests, flutter calculations
using mainly linearized aerodynamic theory have
been performed and the results have been compared
to those from the experiments.

The agreement between the theoretical —and the
experimental results for the flutter critical flow
dengity for the small models (including those with
misgile - at the tip) 1is close, and that for the

damping coefficients for the large model is not
quite as close but satisfactory for flutter
prevention.

It is thus concluded that the linearized
aerodynamic theory is satisfactory for flutter
prevention of thin wings at zero incidence.

As expected for thin wings at zero incidence,

calculations for two of the models on the basis of
aerodynamic forces from the full potential theory
were not found to produce results significantly
different from those based on the linearized
theory.

In order to evaluate the validity of unsteady
aerodynamic theories and computer programs, it is
necessary to prove that the experimental results
employed in each case for comparison are accurate,
which has been done here as far as possible.
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