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Abstract

In this paper, the qualitative
theory of differential equations is used
to study the £lobal stability of
high performance aircraft.

The relations between the
stability criteria commonly used in
aircraft design, such as Cn dyn. and
LCDP etc., and eigenvalues of the
linearized matrices at the equilibrium
points are discussed . It is believed

that these criteria can be deduced from
the linearized matrices of the aircraft
nonlinear dynamic system at a specific
flight state, therefore, they can only
predict the local stability of an
aircraft at high angles-of-attack. And
then, sensitivity analysis is used to
study the effects of cross-coupling
derivatives and acceleration derivatives
on aircraft response. Those derivatives
occur when angles-of-attack are high.
According to the calculated results, we
find that the lateral moment derivatives
due to pitch, such as Cne, Cng, Clx, Cli
may cause strong effects on stability.
Especially, Cneand Cng cause two typical
unstable motions of the aircraft.

For modern fighter, flight at high
angles-of-attack is an inherent part of
maneuvering. Typical modern fighter
aircraft achieves maximum 1ift at angles
of attack from approximately 25° to 35°.
Aggressive maneuvering can cause pitch
overshoots and angles of attack
transient to 60 and therefore are
subjected to conditions where the flow
becomes highly asymmetric, at which we
will face the problems about aircraft
dynamic unstabilities.

During the past two decades, due to
the development of the wind tunnel
testing, radio-control flight testing,
flight testing and flight simulation

skills, the instabilities at high
anglés-of-attack have been understood
further and some criteria for predicting
departure characteristics and spin
susceptibility, such as, directional
departure parameter Cngdyn., lateral
control departure parameter LCDP and
couple criteria ete. used in
preliminary designs, have been set up.
However, +the aeroforces and moments at
high angles-of-attack are 'severely
nonlinear and the amplitudes of the
motion parameters change rapidly,
therefore, the nonlinear dynamic
equations of the aircraft must be used
to describe the aircraft's motion. In
the past time, most of early research
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work is based on steady state assumption
and linearization on which only limited

and localized information regarding
aircraft behaviors at high angles~of-
attack is available.

At the end of seventies , a few of

flight dynamicists applied qualitative

theory of O.D.E., bifurcation and
catastrophe theories +to analysing the
global stabilities of the complicated
nonlinear dynamic equations of the
aircraft. According to these theories,
we have discovered in this paper the
relations between stability bounds

determined by these theories and those
commonly used criteria. As an example,
the relations between global behaviors
and several typical high angles-of-
attack phenomena of a sample aircraft
are analysed.

Furthermore, in order to analyse
the effects of separate and asymmetrical

flow, by adding some of the crogs-
coupling derivatives or angular
acceleration derivatives and by

comparing the time history with and
without these terms, the sensitivity of
aircraft response to these terms can be
clearly observed.

The Global Stability Analysis
of Aircraft's Flight at
High Angles-of-Attack v
The nonlinear ordinary differential
equations describing the aircraft’s
motions at high angles-of-attack can be
written concisely as follow :

X=F(X,C) (1)
where X is a column of state vector, C
is a column of control vector. The

equilibrium surfaces are governed by

F(X,C)=0 (2)

0.D.E. qualitative
theory, in order to discuss the
stability of eq.(1), first, we should
analyse the stability in the
neighborhood of the gtate variables
determined by eq.(2), which presents
the reference condition of steady flight
and the stability is called local
stability. The column of state vectors
and control vectors X, €, whose values
satisfy eq.(2) , are called equilibrium
points ., Because of the nonlinear
behaviors of the dynamic systems, their
stabilities probably have structural
changes while control vector varies. For
example, the bifurcation points,

According to



catastrophe points and periodic
attractors etc. may be produced from the
equilibrium points. Hence, in nonlinear
systems the stability must be
analysed not only in the neighborhood
of equilibrium points, but also in the
probable spaces of state and control
vectors. The latter is called the global
stability.

We discuss the application of these
theories to analysing the dynamic
behaviors of the aircraft at high
angles~of-attack as follows.

The Aircraft Motion Equations

Suppose the aircraft is a rigid
body and the engine gyroscopic moments
can be neglected .

Dynamlc equations are :
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The variation of the aircraft
velocity at high angles-of-attack can
be neglected, so, the velocity equation
and the terms concerned with thrust are
abandoned. Kinematical equations are

é:qcos¢—rsin¢ (8)

é=p+qtgesin¢+rtg3003¢ (9)

¢=qsin¢secg+rcos¢se09 (10)
Eq.(8) and (9) decouple with dynamic

equations if the gravity terms are not
involved. The calculation experiences
show that the gravity terms don’t affect
the values and the shapes of equilibrium

surfaces seriously except the flat spin
region.

In order to calculate the trails of
aircraft gravity center in spin, the
velocities in earth-fixed axis are
introduced. The formulae are:

X= Vv (Acos¢—Bsin¢) (11)

Y= V (Asiny+Beosy) (12)

Z= V[cose(31nP31n#+
cosfsinixcosd) -
cospcoshsing] {13)

A= cosﬁcos«c039+
sin@g(sinfsing+
cosﬁ31nMCos¢) (14)
B= sin@cos¢-cosﬁsinusin¢ (15)

The Models of the Aerodynamic

Coefficients

The aerodynamic force and moment

coefficients at high angles-of-attack
are complicated functions of several
state variables . Even though they are
given in the form of aerodynamic
derivatives for simplifying the
calculations. They are the two
dimensional functions of and . The
formulae are:
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-
where §=0 means §a=8e=5v=0

The coefficients are generally
given 1in the form of discrete points.
So, the relations between the
high angles-of-attack aerodynamic
coefficients and state variables are
presented in tables , the derivatives
are calculated by using bi-cubic spline
method.

The Relations between Equilibrium Points
and the Criteria for Predicting
Departure Characteristics
and Spin Susceptibility

According to O.D.E. qualitative
theory, the 1local stability in the
neighborhood of equilibrium points are
generally determined by the eigenvalues
of the matrix of the linearized
derivative operator. With the aircraft
motion equations (3} up to (5) ’
neglecting inertia product, aerodynamic
damping moments and cross moments, the

following equations can easily be
deduced:
& =q-(pcosd+rsink) tg (22)
é =psini~rcos (23)
p=L,X+Lp B (24)
q=M,x+¥g B (25)
i»:ﬁ,mﬁpﬂ (26)

In condition of steady rectilinear
flight (p,6=q,=r, =0), the characteristic
equation of the matrix of the linearized
derivative operator is

A(S)=s(s*+as” +B) (27)

In Eq.(27) , coefficients A and B
are equal to the characteristic
equation’s coefficients determining
couple criteria in ref.(6) . So , all
couple criteria can be obtained from
eq.(27) . Furthermore, in coefficient B,
neglecting the terms concerned with L
and N, the directional departure
parameter Cngdyn. can be deduced. In
the same way, removing the couple moment
between longitudinal and lateral, adding
the lateral moment caused by aileron

deflection, the lateral control
departure parameter LCDP can be deduced.

This shows that the criteria  can be
obtained by variedly simplifying the
models at equilibrium points. Because of
no limits of wundisturbed motion in
eq.(3) up to (9) , the analysis of local
stability by the eigenvalues of the
derivative operator matrix is more
comprehensive and perfect than that by
these criteria. However, for the
nonlinear system viewpoint, it is still
not enough. The global stability must be
analysed.

The calculation shows that the
results gained by the criteria coincide
with these by qualitative theory at
certain angles-of-attack. Because of the

simplicity of the criteria, they are
still available to practice.

Examples and Analysis of the Results

As an example, the equilibrium
surfaces and corresponding eigenvalues
of a combat aircraft in subsonic, high
angles-of-attack flight have been
calculated. At same time, the time
histories of some special equilibrium
points are computed. All original data
of the aircraft are taken from ref.(2).
Following illustrations show how to
relate these special points with high
angles-of-attack flight phenomena.

Wing Rock Fig.1(1) up to 1(5)
present the equilibrium surfaces, in
which the sample aircraft flies at V=118
m/s H=10 km, a=bvr=0 , and the co?trol
variable §e changes from 0°to -27° .The
characteristics of roll, pitch and yaw
rates in the figures represent the
results of nonlinear models. The
eigenvalues of the matrix of the
linearized derivative operator at every
equilibrium point are calculated. In the
figures, the symbol S-S in the branch
indicates that the real parts of the
eigenvalues are all negative. The
equilibrium points in the branch are
locally stable. The symbol L-L indicates
that there are a pair of conjugate
complex eigenvalues of the matrix,
whose real parts are positive, and the
points are 1locally unstable with a
divergent oscillation. These symbols
give the stability around equilibrium
points, but they can not indicate
whether the state variables diverge
continuously or converge to a periodic
attractor ultimately and whether they
are stable globally or not. In spite of
this, studying each equilibrium point
carefully can really provide further
information about the aircraft non-
linear dynamic behaviors. Calculation
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FIG.1(1) UP TO 1(5) THE EQUILIBRIUM
SURFACE OF WING ROCK



experiences show that when the symbol at
every equilibrium point changes from S
to L , a periodic attractor will appear
around the point.

In order to compare the results by
criteria with those by the global
analysis, the Cnpdyn. and LCDP are
calculated at every equ111br1um point in
fig.1 . When % changes from 0°to -15°,
Cngdyn.> 0 ; when % changes from 0°to -
115 LCDP > 0 . The trimmed angles-of-
attack corresponding to -11°and -15° of
the deflections of the elevator are
about 22.5° and 30° respectively. The
results by Cnpdyn. are much better
coincidence with those by the global
analysis in the example, but that
probably is not generally correct. To
know if a periodic attractor appears
from S to L, the equilibrium point
corresponding to fe=-20.5° in fig.l1 is
chosen to be an reference state

((x,ﬁ,n,q,r):
(41°,0.4° ,4.5°/8,-1.4°/8.3.83°/3)
The units of angles and angle rates are
degree and degree per second
respectively. The law of the control
surface deflections is

(| g ~50]&0~61 61 ~23
e -205° | -/0:5° 1 -20-5°
We can calculate the time histories of
the aircraft motion as in fig.2(1) up to
2(5). In fig.2(1) upto 2(5) the response
of the aircraft are violent and after
10 seconds the state variables begin to
oscillate with 9 second period. Every
state variable has its own regular
variety, but all of them oscillate
around the equilibrium point. The
oscillation shows there is a vperiodic
attractor exists.
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FIG.2(1) UP TO 2(5) THE TIME
HISTORY OF WING ROCK

Spin Fig.3(1) up to 3(5) plots the

equilibrium surfaces in which §e=0’ §a=15

and §r changes from -34° to 30° . The
angles-of-attack in the branch A~A are
higher than 60° The symbol L-L in the
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branch with the angles-of-attack lower
than 35°has the same meaning as it in
fig.1. if the gravity terms are
neglected, the real parts of the
eigenvalues in the branch with the
angles-of-attack lower than 20° and §r
changing from -15° to 15° are all
negative. The symbol U in branch G-D
indicates that there is an positive real
eigenvalue at every equilibrium point,
the point is locally unstable.

The points D and G are catastrophe
points in fig.3(1) . The increase or
decrease of the control variable around
the catastrophe points cause the jump
phenomenon.

There are L-L branch with 35° angles
-of-attack and L-L branch with 65°one in
the equilibrium surfaces of fig.3(1).
The angles-of-attack corresponding to
them greater than stall angle and the
yaw rates are also big. 8So, around
branch L-L and A~A, the existence of
periodic attractors is probable.
Furthermore, around the branch L-L in
fig.3 , a steep spin occurs probably
and at the branch A-A , a flat spin may
occur,

FIG.3(1) UP TO 3(5) THE EQUILIBRIUM
SURFACE OF SPIN

In order to verify whether the
phenomenon exists or not, the time
histories of two equilibrium points at
the branch A-A and L-L respectively are
displayed. The initial values of state
variables and control surfaces are at
the branch L-L as following :

( X, ﬂ,p: q, r}=

(33.6°, 9.6°, 79°/s, 26.7°/s, 54.1°/3)



(6o » e, S¢)= (15°, 0°, ~26°)

The deflections of the three control
surfaces do not vary throughout the
process. The time histories are shown in
fig.4(1) up to 4(6) .
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FIG.4(1) UP TO 4(6) THE TIME
HISTORY OF THE STEEP SPIN

In the first 8 seconds, the
aircraft maintains an angle higher than
stall angle, large yaw and roll rates.
The projection of the trial of centre
of gravity is a circle of about 21 meter
diameter. These features show that the
equilibrium point is in the steep spin
state. Then as the turbulence
accumulates, the state variables begin
to oscillate rapidly. Finally  the
computation is interrupted by the
divergent angle of attack beyond the
region of the data. The projection
oscillates around the X-axis and is no
longer a circle.

The initial state variables of next
time history are at the branch A-A as
following .

(o B, Py q, r)=(64.1", 3.18°,

53.1°/s, 9.0 /s, 110°/s)
The deflections of three control
surfaces are:

(%, Se,bv)=(15", 0°, -26°)

and they are unchanged during the time
histories. The time histories are shown
in fig.5(1) up to 5(3). Within the whole
35 seconds, all state variables change
slightly and maintain very high angles~
of-attack and yaw rate. That confirms
that the dynamic balance has set up.
Although the point is locally unstable,
it diverges very slowly. The projection
of the +trial of centre of gravity in
fig.5(3) is a circle with 3.2 meter
diameter. Therefore, the aircraft is in
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the flat spin region.
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FIG.5(1) UP TO 5(3) THE TIME
HISTORY OF THE FLAT SPIN

Sensitive Analysis

In this part of the paper, we try
to ascertain whether the inclusion in
the equations of motion of certain
aerodynamic cross-coupling terms might
be important for the stability of . the
aircraft at high-angles-of attack. A
numerical study is undertaken in which
the sensitivity of the motion time
histories to these various terms is
examined using the set of equations (3)
to (13) on a digital computer.

In this case, the aerodynamic data
in eq.(3)-(13) can be expressed in
expressions (16)-(21). Some of the
aerodynamic coefficients and derivatives
which occur in expressions (16)-(21) are
given in the computer program. Those are
data for a typical modern fighter.

The other aerodynamic derivatives,
including Cex, Coxs Cyu s Cg#, Cmﬁ, Cmp,
Cmy » Cpas ©Cn¢g, Cn«y, C,{ are cross-
coupling or angular acceleration
derivatives which exist at high angles -
of-attack.

In some recent studies, these cross
~coupling and angular acceleration
derivatives were estimated or measured
from the wind tunnel testing (ref.(8) to
(15)). We assume the data as follow:

Cou=10-05 Ciy=105 F(2-d7) ¥ 30- 0
C9g = £0-5 Tt~y ) xJ0-0 Cop=-03
Caw =% 0:05 Crir=£05 F (o4-67) X60-0

Cng=105 F (o-01)%x600  (np=0p 6~ (ot-5m) XG0
Cmp= —1.0

Cmp= 0.1 = (o(~ X7) X25:0

cm‘.= 01 —(0(—0‘7))(15-0

28)

In time history studies, we assume
that these derivatives are added to the
aerodynamic terms individually, but may
also be added in combinations. The
difference between time history
responses obtained from with or without
those particular derivatives or
combinations determines the sensitivity



of the aircraft behaviour to the
variation of those particular terms.

The aircraft is trimmed in a
straight, level flight condition ( n=1)

with M =0.7, H = 15,400 m. At the moment
t=0, a deflection angle adr =-8 is
exerted. After that, all of the control
devices are kept unchanged. With all the

equations and data mentioned above, the
aircraft response and time history of
the parameters can be calculated, and a
part of the results are presented in
fig. 6 to fig. 7.
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It can be seen from the curves(with
the symbols "+" ) in fig. 6 and 7, after
deflection angle afr is exerted, an
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oscillation of x occurs. T?e maximum
value of ® is about 21.5 . The

oscillation is damped very fast and the
aircraft almost reaches its new trimmed
condition after 20 seconds later. In
this process, the other parameters
basically keep their original values.
Then the different cross-coupling
angular acceleration derivatives
are inserted into the
loading equations. The results are
presented in the curves ( with the
symbols "." ) in fig.6 and fig.7.

and
mentioned above

Effects of Cax, Cnx, Cni_and Cap

From fig.6 we can see that the
motion sensitivity to Cnx is quite
significant. When C is added it causes
oscillation in % and p . The amplitudes



of & and.ﬁ are not large, but the final
values are different from those when Cnx
=0, and they cause a series of
aerodynamic data. The initial overshoots
of B is about 4

The most important effects of Cmxon
time history are in p, ¢ and r. Rolling
speed becomes as large as 97.8 deg/sec
after 20 seconds, which causes the
aircraft to rotate more than four cycles
about its X axis. Because of the
unstable in roll degree of freedom, the
vertical flight path angle ¥ comes up to
~45° with related altitude loss 1620m.
Meanwhile, Mach number is only increased

in 0.073 because drag is strongly
increased when o and 8 are very high.
Generally speaking, the motion is

similar to a typical spin.
The curve of heading angle shows a

kind of non-linear oscillatory
divergence.
According to the calculated

results, we know that the motion almost
displays a mirror image for positive and
negative values of Cny . This phenomenon
still exists when a derivative changes
its sigh. By comparison, the effects of
derivative Cn& on time history are much
smaller (fig.7). The response of & is
almost no much difference with the
situation Cn& zeroced, and B only has a
slight oscillation. The bank angle ¢
maintains about 60 degree. The flight
path angle I comes up to about 20
degree in 20 seconds. The aircraft
motion is a kind of turn with descent.
The altitude loss is not so large
(808m. in 20 seconds ), but the gain of
Mach number is as high as 0.105 because
of very little drag increasing. Because
of the bank angle, the heading angle %
keeps increasing and reaches -667 That
is quite different from the effects of
quonlf-.

The effects of derivative Cng2 on
time history is somewhat similar to the
effects of Cne, but the motion process
is relatively mild and slow. The time
history figures are omitted. The effects
of the acceleration derivative Cné on
time history are too =mall to be
presented graphically and can also be
completely omitted.

It is understandable that the
effects of combination of Cpx, Cnx, Cp¢
and Cnp on time history are extremely
significant. The aircraft motion
presents a serious divergence when this
combination is considered. The
calculated results and figures are not
presented here.

Effects of Cpx, Cp&, Cpa, Cyj

Since no applicable data for
derivative Cnx is known for the aircraft
used in this paper, we assume Cnx= 0.05,
which are data for another aeroplane
with 70 ° awept angle. The inconsistency
has to be accepted in this case.

In our example, Cix has very strong
effects on aircraft response and causes
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a serious unstable motion. From the
calculated results we know that the
effects on motion are not exactly
symmetrical when Cgox changes its values
from positive to negative. this is owing
to the unsymmetrical behavior of curve
Cg-X when 3=0. Generally speaking, the
aircraft motion is a kind of spin in
this example when Clx is considered.
Again the calculated results are
omitted.

The motion sensitivity to
derivatives Cix and Cpe is quite
significant. An oscillatory divergence
of motion occurs when Cpqy or C¢ is
considered and that causes strong
oscillation in 8, p, q and r . In both
cases, bank angle ¢ becomes very high
and the aircraft turns into dive, which
makes the aircraft lose its altitude and
increase its Mach number very fast.

The motion sensitivity to Cgi is so
small that can be neglected. .

The effects of combination of Cgox ,
Cey, Cgg¢ and Cgp on time history are
also significant. The results are not
presented here.

Effects of Cmp, Cwmy and Cmg

The effects of Cmp, Cmy and Cmion
time history are insignificant and are
too small to be presented graphically.
The results are also omitted.

Conclusion

1. In order to analyse the high
angles-of-attack flight dynamic
behaviors of high manoeuvre performance
aircraft, the nonlinear models should be
used. We must analyse not only the local
stability around an equilibrium point
but also the global stability.

2. According to the O0.D.E.
qualitative theory, the commonly wused
design criteria for predicting departure
characteristics and spin susceptibility
are only the simplified results of local
stability at equilibrium point. Although
they are not perfect, the example shows
that the criteria are still available
in the stall region.

3. The variance of local stability at
equilibrium surface can be used to
identify the important phenomena of high
angle-of-attack flight, such as, wing
rock, departure and spin.

4. Among the cross-coupling
derivatives, the lateral moment
derivatives due to pitching are more
important than the pitching moment
derivatives due to rolling and yawing.
The derivatives which cause the
strongest effects on aircraft behavior
are Cny; Ctv, Cgy . The derivatives Cny,
Cag and Cpgq are also important. So it is
very important to prevent unsymmetrical
vortex separation on wing or fuselage.
The effects of Cmp, Cwmy CMP and Cnp are
generally insignificant.

5. When each derivative or
combination which has strong effects on



time history and cause instability is
taken into account, the aircraft
responses in our example might be
classified into two types.

a. The motion of the aircraft is
similar to spin with large p and r and
high « (sometimes high 8 as well) and a
fast and continual increasing in ¢ . In
this case, the altitude loss may be very
large but the gain of Mach number is
relatively small. The typical examples
of this kind of motions is presented in
fig. 6.

b. The aircraft motion is similar to
turn with fast altitude loss. The angles
xand B are not so high and bank angle
¢ usually keeps a certain value instead
of increasing continuously. In this
case, the altitude 1loss is large, and
the increasing of Mach number may be
large as well. The typical example is
presented in fig.7.

6. In general, for positive and
negative values of lateral derivatives
which are caused by longitudinal
parameters, the motion of aircraft
usually displayed a mirrow image, but
sometimes some difference may exist.

7. The magnitude of the cross-
coupling derivatives may strongly vary
with the aircraft configuration, Mach
number and other factors. So the present
results, although are probably
representative of a modern fighter
flying at high enough angles of attack
to cause asymmetric flow conditions,
should not automatically be generalized.
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