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Abstract:

The effect of Solid boundaries on the forces
and moments on an arbitrary lifting body has been
analysed using a flow model in the inviscid domain.
The flow model consists of the free streamlines
representing the viscous separated shear layer and
stagnant fluid of constant width, the width being
dgtermine by equating the momentum loss of the
fluid in the far wake to the upstream momentum of
the stagnant fluid. This momentum surface model
has yielded results which are comparable to those
of some other models in the sense that blockage
is seen to decrease the drag co-efficient at the
sa.me back pressure. Some other models like the
displace ment surface model suggest increased drag
co-efficient with blockage at the same back pressure,
These results seem to suggest that inviseid modelling
does not necessarily yield proper trends, and it is
suggested that additional constraints, yet to be identi~
fied, like the Kutta Condition in airfoil theory, may
have to be invoked.

LIntrojuction

] Developments in the methods for blockage corre-
ctions in wind tunnels have a long history going
back to about 19291, The earlier developments
are covered in the books by Pankhurst and Holder? ang
Ray and Pope3, and in the monographs by Garner et a1l
Agard CP 3355 ang Mokry et al%. The most important
of the lmitations of the early methods are that
tbe'ﬂow must be attached to the body, and blockage
(which may be quantified as the ratio of maximum,
cross-sectional area of the body perpendicular to
the flow to the cross sectional area of the wind
tunnel test section), must be small, say less than

2%. With the use of low aspect ratio wings with
favourable flow separation, and flight at large angles
of attack, it became necessary, particularly after-

195.0, to develop methods which do not have the
limitations of the old methods. Initially the develop-
ment <'>f‘ such methods followed several parallel courses.
A se mi-e mpirical approach was developed by Maskell” in
1963 for blockage corrections with flow separation and
high blockages.. His method has been extended to seve-
ral environments, 8,9,10,1% angd some of its imitations
have been clarified 12,13,, & is now generally believed

that Maskell's original formulation over-predicts the
correctiont3, :

The second approach to the prediction of blockage
effect, has been through the use of free-streamline
theory, particularly in two-dimensional flows!4,15,16,17

More recently 19,20 there has been a revival of the
singularity methods, some what similar to the original
approach of Lock! but more extended in scope, namely
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to cover the cases of flow separation and large block-
ages also. The availability of powerful computers
has stimulated development of CFD methods, panel
method521, boundary measurement methods and adaptive
wall methods22, Of these, the application of free
streamline theories seem to have been confined almost
to water tunnels to take into account cavitation but its
possibly use in wind.tunnels do not seem to have been
well~explored. Possibly the main limitation of free-
streamline theory at present is that it is not convenient
to use in three-dimensional flow. However, recent
developments in free-streamline theories have seen
the emergence of a number of inviscid flow models23
which yield flow patterns which are reasonably similar
to those in real viscous fluids. With this observation
in mind, we present here the results of two-dimensional
blockage study with flow separation using one of
the recent models and later present results with
different models to highlight the importance of the
choice of proper model.

In the separated flow of a real fluid, one observes
that the separation streamlines meet each other
approximately one chord length away from the body,at
a point called the, "Reattachment Point". The flow
at and around the reattachment point is turbulent
and fluid is swept downstream from the reattachment
point was a wake. The wake thus contains the fluid
which has lost its energy due to the effects of viscos~
ity. In the domain of inviscid fluids, the separation
bubble is modelled by free-streamlines and the far-wake
is modelled by a cavity. The near-wake bubble and
the far-wake cavity may be modelled as continuous
as in the original model of Kirchhoff or its recent
variant as 'Choked flow' of Ail5. Tt is probably more
appropriate to model the near wake bubble and the
far-wake cavity as two distinct entities, as proposed
by Roshko2¥-and further developed by Tulin25, onha 6.
Wu2b angd Satol7. In this approach, there is a near-wake
bubble of constant pressure and a far-wake cavity of
different pressure or pressures. The near and far-wake
has to be postulated to account for pressure discon-
tinuities. Three of the well known models are the
nuities. Three of the well known models are the
parallel wake model¥, Displacement surface modell!7
and momentum surface modell®. In the parallel wake
model, the bubble streamlines of the near wake
are assumed to become parallel to the free stream
smoothly at the singular surface separating the near
and far wakes ani proceed to infinity as parallel
surfaces. The displacement surface model does not
stipulate any such tendency but in fact, the far-wake
boundaries of the cavity need not be paralle to tne
free stream at down-stream infinity. while
the near wake bubble is modelled in the momentum
surface model as in the other models, the far-wake
1% modelled as a cavity with walls parallel to the
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from stream smoothly at the singular surface separating
the near and far wakes and proceed to infinity as
parallel surfaces. The displacement surface model
does not stipulate any such tendency but in fact,
the far-wake boundaries of the cavity need not be
parallel to the free stream except at down-stream
infinity. While the near wake bubble is modelled
in the momentum surface model as in the other models,
the far-wake is modelled as a cavity with walls parallel
to the free stream such that the separation gap of
the walls is a measure of momentum loss in the free
stream due to drag and there is a discontinuity in
slope at the junction of the near-wake bubble boundaries
and the far-wake walls. In the study presented below,
this momentum surface model is employed to study
blockage in lifting two-dimensional separated flow,
and the results are compared with others predictions.

II. Mathematical Formulation

Consider an arbitrary shaped body, placed between
two parallel solid walls of width h, Fig:1. The Stagnat-
ion
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FIG.| FLOW CONFIGURATION IN THE PHYSICAL PLANE

streamline separates on the body surface at D and
F, which are fixed but arbitrary points. The arc-length
between the separation points D and F is assumed
to be S along the attached flow portion. The free
stream velocity g, reaches a value a, along the free-
streamlines and finally q2 far-downstream.

In a real fluid, the separated shear layers DC
and FG form a time averaged steady state constant
pressure near-wake bubble, and meet in the region
of CG representing the reattachment region. From
this turbulent mixing region, a viscous and rotational
far-wake follows and has been observed to grow nearly
parabolically'® . I order to deal with separated
flows within the limits of potential flow theory, the
Wwake is replaced by momentum surfaces at a distance
8 apart. The upper momentum surface is at a dist-
ance U, from the upper tunnel wall and the lower mome-
ntum surface is at a distance Ly from the lower tunnel
wall. We define a parameter g, which may be called as
the wake under pressure coefficient,

(.2 2 2
o = (q(3 - q Y/ q; ()
0 is the negative of the base pressure coefficient,
a term perhaps more commonly used. It is called,

"Cavitation Number" by hydrodynamicists.

Since the flow is assumed to be irrotational,
in-compressible and two-dimensional, one can find
a velocity potential ¢ and a stream function ¢ in such a
way that a complex potential function f(z)=¢+iy, which
is analytic in the flow region can be defined.

The flow region in the physical Z-plane transforms
into a slitted infinite strip in the f-plane (Fig:2).
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FIG.2 FLOW CONFIGURATION IN COMPLEX
POTENTIAL PLANE:f= ¢+iy
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FIG.3 FLOW CONFIGURATION AUXILARY
PLANE

The flow and boundary regions in the f-plane
are further transformed onto the upper half and the
entire real axis of an auxiliary g-plane by the Schwarz-
Christoffel transformation,

f‘:(hq1/n/ (1+b)) ((m~bin(g~-m)/cb-m)) +
(1+b)in(g+1) / (b+1)) e (2)

The flow problem in the physical plane can be
solved in the g-plane (Fig:3) as a mixed-boundary
value problem for the logarithmic hodograph function

Wig) = 6+1 ln(q/qo) «(3)

Since either the real or imaginary part of the
logarithmic hodograph function is known along various
line segments of the real axis in the g-plane, a mixed
boundary value problem can be formed for the function
W(g) as follows:

=0 ~o<t<d ; 1<t<e

T=0 d<t<e H n<t<1

0= 61(t) c<t<b

6 =0, b<t<n (W)
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The mixed boundary value problem can be solved
as a Riemann-Hilbert problem for the half-plane
(Muskhelishvili27), by considering an auxiliary
function in the running variable t of the g-plane.

v(t)=i / (t-d)(t-c)(t-n)(t-1) ...(5)

From Egns. 4 and 5, we can construct the general
solution to the boundary value problem as,

W(g)=(=1/mv(g) [2 101 (8) + JSP 6, (D)]

dt
{V/ (t=g)(t=-d) (t-c)(n-t)(1-t) } + F(g) Lo (6)

where F(g)=1i (A+Bg) Vf(g-c)(g-n)/(g-1)(g-d)} ..(T)

is a singular solution.

The introduction of the singular solution
F(g) requires explanation. Since the far-wake
and the near-wake have been considered as separate
entities with different pressures, one has to
postulate 3 singular surface separating the two.
This singular surface may be conveniently identi-
fied with the real fluid turbulent mixing reattach-
ment region. The type of singularity that should
exist here can be inferred from the requirements of
the particular integral of Riemann-Hilbert problem
which suggests a square root singularity. As Obalb
has remarked, many authors who have considered the
solution of the Riemann-Hilbert problem have
also found the need for square root singularity.

III. UNKNOWN PARAMETERS

The solution (Eqn.7) is observed to contain
nine unknown parameters, A,b,m,d,c,b,n, ¢ and q,.
Since the pressure in the near-wake region céan,
to some extent be altered by artifical means,
the parameter ¢ can be left as a free parameter.
To get the remaining eight unknown parameters
one needs to have eight independent equations
involving these parameters. The required constr-
aints to obtain them are described below.

CONSTRAINTS IMPOSED:

The first two conditions are given by the
bounde dnessof the function W(g) as| g| + ©. This
condition yields,

RAJAM = /(t-d)(t-c)(n-t)(1-t) ... (8)

mh=n(a,/a.) + I2 8,(8) + I] 8, (£) ]

[ (t/RAJAM) dt 1 (9
and
B fz [, (t) + fg 0, (t)1 [(1/RAJAM) dt] ...(10)
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The third condition is given by the known
arc-~length of the wetted portion of the body
to the value computed from the integrals represen-
ting the same arc-length in the auxiliary plane
(See Figs:1 & 3).

s={ -1 a4 at L (1)
b c ag —a

The fourth condition is given by equating
the vertical distance between the momentum surface
at near-wake closing region to the vertical
distance between the terminus points C and G
of the shear layers.

Y| - Y| =8 L (12)
c g
where
Yo =gy 4 sing g (13)
i 3 ...
and
¢ .
tlg =¥lp-Jy df Sin B 4 ()
dt q

and 8§ is given by conservation of mass condition,
8 =hg, ~qy) / qp ...(15)

The fifth condition is given by the vertical
distance consideration from the geometrical
requirement of Fig:1.

U, - u+Y} = 0 ...(18)
¢
where
y|  =s' ar sin g
¢ nog o dt LT
t q
and
Uy zq4h (1+m) 7/ qz/(1+b) .. (18)

The sixth condition is obtained by equating
the value of the logarithmic hodograph function
at far-upstream point in the physical Z-plane
to the estimated value by theory in the auxiliary
g-plane.

W(g=-1) =i 1n (q,/q,) (19

The eighth and last condition is obtained
from the consideration of pressure integral
around the body surface, momentum considerations



and drag force.

The drag coefficient of the body with

flow separation can be obtained as
the pressure integral
- : Point-D
CD = Real part of {-i fPoint—F
2 2 2
(ag ~97) 7/ ay 1} . (21)
The existance of velocity defect in the
. far-wake may be viewed as equivalent to the
superposition of an in-flow of uniform velocity
from downstream infinity towards the body.
The far-wake in a viscous fluid is then modelled
as a cavity of width 6 parallel to +the walls,
right from the cavity closure to downstreanm

infinity (See Tulin25, Oba 18y
defect in the far-wake has
source 1like contribution,
obviously 6q2.

The velocity
been viewed as
whose strength

a
is

The coefficient of drag due to the fictitious
source contribution is

C_ =

= 2 2
s 26 a, / q

| . (22)

The drag coefficient exerted on the semi-
infinite body consisting of the body, near wake-
boundaries and momentum surfaces,can be calcula-
ted by applying momentum theorem to a rectangular
control volume having breadth equal to the width
of the tunnel and length extending to regions
up and downstream of the body in such a way
that the speed is uniform across the tunnel.

The drag coefficient exerted on the semi-
infinite body is given by-Cc and can be worked out
as,

R 2 = 2 2 2 2
C, =2lhqy - (h-B q, +h(q;5 - q7)/2] a;  -..(23)
and obviously,
€y = C, + Cg ... (2b)
The pitching moment coefficient of the

arbitrary body about its upper separation point
is given by

_ Point-F 2 2
Cy = Real part of { fPoint-D (qc-q )
s 2
z dZ / qf ...(25)
Iv: APPLICATION OF THE GENERAL THEORY TO
THE FLOW PAST A FLAT-PLATE AIRFOIL:

The above analyses from Eqn.(6) to Eqn.(25)
Completes the search for the solution for an

arbitrary lifting body. One observes that the
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Solution in Egn.(6) requires a knowledge of
the distribution of the inclination 6 of every
wetted point on the body to the wind tunnel
axis. It is very unlikely that a closed form
evaluation of the integrals in Egn.(6) can be
found for an arbitrary distribution of 6 as a fun-
ction of t, where t is the running variable
along the real axis in the g-plane. However,
to illustrate the type of results that one is
likely to obtain,calculations have been performed
for a flat plate airfoil at incidence, where
the quantities 8., and .9, are constant and the rela-
vant integrals can be eValuated in closed form.

In the case of the flat plate, one can
easily observe that 6, and 0§, reduce to the simple
forms - and (7-a) respectively, where a is the
inclination of the plate to the wind tunnel
axis (Fig:1). We assume that the flow separates
at the leading and trailing edges, and for a
plate of unit length, trailing edge co-ordinates
then become (Cos a, -Sin o). The integrals in
Eqns.(9) and (10) can then be explicitly evaluated
and the results are as follows.

gb(te1 (t) / RAJAM) dt=2afdF(B1, CK) + (c-d)

m(B1, (n-c) / (n-d), CK)] / RAMA ...(286)

fg (t8,(t) / RAJAM) dt=2(na)[F(B%, CK)-(1-n)

m{B2, {n-c)/(1-c), CK)] / RAMA ue2en

éb(e1 (t) / RAJAM) dt=20F(B1, CK)/RAMA ...(28)

and

o (0,(t)/RAJAM) dt=2(n-a)F(B2,CK)/RAMA  ...(29)
The complete solution to the problem, along

the various line segments on the real axis of
g-plane, is given in Appendix-B.

V. RESULTS AND DISCUSSIONS

Numerical calculations were made for two
wind tunnel blockages of 2.5% and 20% with the
wake under pressure coefficient ¢ as a given para-
meter. Because of the implicit nature of the
problem, trial values of various parameters
were fed into the Dec-1090 digital computer
of the Indian Institute of Science, Bangalore
and a library algorithm based on the steepest
gradient method was used to arrive at the conver-
ged values of the parameters which satisfied
the imposed constraints. Final numbers which
typically varied within .00001 in 1.0 could
be obtained. But in the final phase, a C.P.U.
time of about 2.5 secs was required for each
data point. The results are given in Figs:lU
to 12. The available results of other studies,
which can be compared with the present values,
are also shown.

The author is aware of only two other theore~



tical studies on inclined flat plate with finite
near-wake region viz, those by 0ta28 and Cohen et
a129 Ota's28 calculations were made by assuming
that the stagnation streamline lies at the centre of
the channel far-upstream of the plate. This {impli

-es that the flat plate at incidence is not likely
to be located symmetrically with respect to
the mid line of the tunnel.

Cohen et al®? have made the drastic assumption

that the stagnation streamline always meets
the flat plate at its leading edge and the leading
edge of the flat plate is placed on the mid
line of the channel. Because of the obviously
incorrect modelling of the flow by 0ta2® and Cohen

et a129, their results are not quoted here.
Using the parallel wake model, Wu30 has given
results for wunbounded flow past an inclined
flat plate and his results have been plotted
as "Open delta points" in Figs: 4 to 9.
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Another related result is that of Ai who

made computation for what 1is called, "Choked
flow". The term, "Choked flow" is used to denote

the flow model where the separation streamlines
ultimately become parallel to the free stream
with no singular surface between the near-wake
and far-wake region. Such a concept gives a
closure hypothesis and it is not necessary to
choose the wake under pressure coefficient as
a given parameter, for a given blockage and
angle of attack. For zero blockage, the parameter
0 becomes a unique value of zero for all angles
of attack, but, for a non-zero blockage, o is stri
~-ctly not equal '© gzero and is a finite quantity.

So far as experimental results are
concerned, the authors have been able to procure
only two publications involving two-dimensional
flat plates. Hoerner 31 has given values of lift
and drag ceefficients in his book for unbounded
flow in air and these results are given in Figs:

4 and 6.
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The measured values in wind tunnel for angles
of attack q=30° to 90° from Modi and El-Sherbiny8
for a blockage of 20.5% are also given in the
Figs: 4 and 6.
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FIG.6 VARIATION OF LIFT COEFFICIENT WITH BACK PRESSURE
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Cir Coefficient of iift

An experimental investigation by Parkin32 has
not been available to the authors in spite of
serious efforts to procure them. However, Wu?
states in his paper that Parkin's32 experimental
results with blockage are matching with his
unbounded fluid flow results.

A comparison of C_  at the same value of
wake under pressure coefficient at a blockage
of 2.5% and 20% indicates the surprising result
that there is only about 10% difference between
them. At first sight, this result was intriguing
since it 1is well known in solid walled, wind
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tunnels that blockage increases the value of

Cp quite significantly.
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Further consideration however, showed that the
reason for only a small change in C_ due to block-
age was the assumption of constant back pressure
in Dboth blockages. In real fluids, increase
of blockage increases negatively the back pressure
increasing drag, 1if no artificial means are
used to increase the back pressure in the positive
direction. This means that the back pressure
at the higher blockage of 20% will be considerably
more negative than at the value of the blockage
of 2.5% if natural flow separation takes place.
If one assumes the same back pressure at a block-
age of 20% as at a Dblockage of 2.5%, one is
implying that the near-wake pressure increased
in the positive sense at the higher blockage.
The positive pressure in the near-wake will
act like a thrust on the plate and decreases
the drag. It is therefore not surprising that
increased blockage at the same value of ¢ does not
show much change in drag coefficient, since
the increase in negative pressure is neutralised
by the imposition of a positive pressure. Surpri-
singly, in this momentum surface model, the
drag coefficient at the higher blockage of 20%
is observed to be less than the drag coefficient
at a blockage of 2.5%.

The effect of blockage with force coefficient
for different models has been analysed in Fig :10.
The choked flow model of Ai'5 , parallelwake model
of Wu'" and momentum surface model by the authors
show decrease in force coefficients with increase
of Dblcokage. But, the displacement surface
model study by Dheenadhayalan and Rao18 shows incre
-ase in force coefficients with increase of block-

age. Some of the earlier theoretical results like
those of Birkhoff and Zarantonello suggest an
increase of force coefficient with increased

blockage even at the same value of ¢.

Unfortunately, it is not possible at this
stage to pass judgement on the comparison of
calculated results with experiments, since none
of the authors who carried out their experiments
have given the base pressure coefficient for
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the corr oponding force coefficients, except,
apparently, Parkin

However, it is known that the value of
the base pressure coefficient even with blockage
lies within the range of values covered in the
computations and the fact that the experimental
points straddle the theoretical curves may be
taken as a fair indication that the theoretical
results are useful.

To confirm the correct trend of force coeffi-
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otker flow parameters remaining constant. This
question cannot be answered unless one imposes
an additional constraint as 4i?5 has done. Other

cients with blockage in the 1lifting case of

constraints are possible such as those requiring
equality of the distance of reattachment points
mi from the two separation points, parallellism
) ~f the reattachment line to the chord of the
plate etc,18. The problem here seems to be
similar to the need to impose a condition 1like
the Kutta condition in airfoil theory. It must
1.07 be admitted that Ai's modelshows a flow pattern
which is further removed from the real flow
ch patterns (in requiring the wake pressure to
o ANGLE OF ATTACK, be constant throughout the wake region) but
Pa ) 1 1 i 1 its results seem to match the experimental data
3 50 70 __ .90 of Modi and El-Sherbiny or of Horner quite closely.
'y
\
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FiG.10 PREDICTION OF RELATIVE VARIATION OF DRAG COEFFICIENT c""‘"
BY DIFFERENT MODELS My, 0.8681-
4 WU(1969) THEORY
~—0~~ MOMENTUM SURFACE MODEL BY
DHEENADHAYALAN AND RAO
----- A1 {1966), CHOKED FLOW THEORY
~——— PRESENT DISPLACEMENT SURFACE MODEL 0812 -
separated flows, one needs a arge number of experi
-mental data or theoretical investigation taking
the viscous effects also into account. 0. 7561—
B 0.7 | 1 L | P | s 1
0se o 20 40 60 80 100
0.2 —wmwmmn a
0.4 —:— FiG. 12 EFFECT OF BLOCKAGE ON PITHING MOMENT
0.92 0.6 —~—
cbs 0.8 —XxX— Other approaches to evaluate blockage-
CDQ 1.0 0OA— free conditions are possible, which may be termed
semi-expirical. Three such proposals are described
088} .5 —00— in Appendix-A, One can expect that a judicious
20 use of the theoretical results presented here, to-
’ gether with the methods given in the Appendix-B .
will yield satis.actory blockage free results in
separated flows.
0.84
APPENDIX - A
Hsu-Smith Method:
ogola L L Lt . Recently, HsuS> has deduced a relation from
) 20 40 60 80 100 the linearized theory of Smith 3 that
d
F1G. {1 EFFECT OF BLOCKAGE ON DRAG COEFFICIENT o =0 [ cosh (nL/h) - 1 J1/4
oo

v ‘ 74
A final question that will still have to (m L/2/h) [cosh (w L/h)+1]

be answered is how ¢ varies with ©blockage,
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where

2(q§ - qf )/ qf = Cavitation number measured

oh =
in a tunnel of width -h. =-C

Pp

q. = -Speed along the near-wake bubble boundary.

q = Upstream Speed

h = Width of the tunnel

L = Length of the body and nsar-wake system

o, = Cavitation number estimated for the unbounded

stream using the experimentally measured or the-
oretically calculated values in a tunnel of height-h.

Although Smith's Theory was developed for
very low Reynolds numbers, HSu seems to suggest
the use of the above relation for all Reynolds numbers.

Difference Method: In this method, ¢, has to be

known such as by HSu-Smith Methods or as a measured
quantity.

o?
Then, let CD | h = Measured Drag Coefficient of a
h body at an angle of attack a and
EXP AR A
cavitation number ¢ _ in a tunnel
of height - h, in an ‘experiment
and,
! 0
CDh‘ h Cph |'h
THEORY, THEORY

the theoretically calculated values of drag coefficient
at the same cavitation number o _, but in a tunnel of
height h and h = « respectively.

Then calculate,

c~ h
{ “D.| }
h' g

C G
D_| h = xp = Estimated drag co-
Estimation c %, effl.czlen‘t for the
Dhl cavitation number

0, and tunnel height
Cpl h, using the above
o THEORY  defined quantities.

0, 0
Also, calculated ACH = CDm] £ - Cle h
THEORY THEORY
where, Cp e, and Sp I°h are theoretically
THEORY ® THEORY

calculated values of drag coefficient for the tunnel
height h = =, for the cavitation numbers o, and 9,
respectively.

The final, required Drag Coefficient in unbounded
flow at the same angle of attack @, with the estimated
cavitation number Oy is

Ratio Method:

D
EST ©

The ratio method is an alternate to the
difference method and is perhaps more logical. After
first estimating o_ by experience or by using HSu-Smith
method, one can compute

g,
CDOOI ® = CD !O‘”
EST “THEORY Cp %h
I h
CD ('J'h EXP
" THEORY
Terminologies given here are as in the difference
method.

APPENDIX -B

The Symbols used in Equations are explained below:

Rama = ¢n-d) (I-0)

T = ln(q/qc)

T, = In(q/q.)

T, = In (qz/qc)

Alt) = Ve (T-t)/(t-d)
At) = Vlc-t)t-d)/(n-t)/(1-1)
Aft) = Vc-)t-din-t)/(1-1)
AL = /D (- -O/I-bNc-dn-aXn-Dic=t)
A5ty = /t-)n-t)/(1-t)/(t-d)
A6(t) = V{ntT-tXt-c)/(t-d)
A7) = Jt-d)t-c)/(1-t)/(n-t)
A8(t) = Yt-d)E-on-0)/(1-1)
ANt) = Y- (1) (t-o)/(t-d)

#

AL =/(n-cA(1-b)(1-t)(t-d)/(t-n) 1-c)(t-c) L-n)(b~d))

Bl = sin™! dB-Oln-c/6-d)
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I

B2 = Sin" /{I-c)(n-b)/(n-c)/(1-b)
B3 - Sin”! /Eoh-dtdno)
B4 - sin”! Y (n-tX(1-c)/(I-t)/{n=c)
Cilt) = (n-o)(1-t)/(1-c)/(n-t)

C2t) = (1-d)n-t)/(n-d)/(1-t)

C3t) = (L-d)t-c}/(l-c)/(t-d)

Cult) = (t-d)(n-c)/(t-c)/(n-d)

CK = Y {1-d)n-c)/(1-c)/(n-d)
DK - /i-ck?
VK = Y (1-n)(b-d)/(n-d)/(1-b)

WK v (1-b)c-d)/(1-c)/(b-d)

1l

In the interval of t between d and c, the speed
is given by q. and the flow inclination 8 is given by,

8=-(A+B t) AL(t)+(2/n/ Rama)]

[61[(1—n)A2(t) I (Bl, Cl(t), CK] + A3(t)F(B], CK);+

Rama Tan™! (0.5 Au(t) Sin(2 BI)T + 8, A2(t)(n-t)F(B2,CK]+

(I-n) 1 (B2, CI1 (1), CK))]

In the interval of t between C and b, the flow incli-
nation is given by 8 and the speed q is given by,

In(a/q.) = (A+B 1) A5 (t)+ (2 6,/ m)

[A6(t) F (Bl, CK]/ Rama-F (Bl, CK)

[E(B3, CK)-E(CK)-E(CK)F(B3, CK)/ K(CK)}

g_l EXP (-P 1 K(DK) / K (CK)]

Sin (P nF (B3, CK) / K(CK)] Sin(P 7 F(B1,CK)/K(CK)Y/

(P Sinh (P 1 K(DK)/ K(CK))]-0.5 In(Sin{0.5 fF(B1,CK)-

F(B3,CK)YK(CK)Y Sin(0.5 7 (F(Bl, CK) +F(B3,CK)Y

KCKMI+ ( 8,/ m ) [(-2 A7 (t) / Rama)
[(r-t)F(B2, CK)+ (1-nXF(B2,CK)- II (B2,C2(t),CK))] +
In [(VK~(1-n)A7(t) Tan (B2)/Rama) / VK+(1-n)A7(t)
Tan (B2)/Rama))]

In the interval of t between b and n, the flow incli-
nation is given by 6, and the speed q is given by,

In (q/qc) = (A+B t)A5(t) + (61 / 7) [2/Rama/A7(t))
[(t-d)F(B1, CK) - (c-d) T (Bl, C3(t),CK)] +
In([WK+(c-d) Tan (B1)/Rama/A7(t)/(WK~(c-d) Tan (B1)/
Rama/A7(t) (2 6,/ » [-A8(t)F(B2,CK)/ Rama +
F(B2, CK) [E(B#4, CK) - E(CK) F(B4, CK)/K(CK)] -

o]

}2; : EXP(-P n K(DK)/K(CK)) Sin(Pr1 F(B4,CK)/K(CK)]

Sin(P 7 F(BZ,CK)/K(VCK))/[P Sinh(Pn K(DK)/K(CK) }+
0.5In (Sin(0.5 7 [F(B2,CK)-F(B4,CK)/K(CK))/

Sin(0.5 7 [F(B2,CK)+F(B4, CK)J/K(CK))]

In the interval of t between n and I, the speed is

given by q _ and the flow inclination @ is given by,
8= (A+B t) Al (t) + (2/ m/Rama)lg, [(t-c)F(BI,CK)+
(c-d) I (B1, Ci(t), CK)]/ A1)+ €5 [AKt)F(B2,CK) +
(c-d) T (B2, CHl(t), CK)/A2AN)IIM2 8,/
Tan™! (0.5 A10 (1) Sin (2B2)]
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