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Abstract

A new 48 degree-of-freedom quadrilateral thin

shell finite element has been developed in this
paper. B-spline Coons surfaces are used to model
the middle surface of shells. The method of "dig-
Crete principal curvatures" is presented. This
thin elastic shell finite element can be applied
to analyze the shells of arbitrary shape which
are encountered in structures of modern aircrafts
and aerospace vehicles.Hence, the finite element
analysis of thin shells can work with the computer
aided design system. Numerical results show the
efficiency of this finite element.

Introduction

The analyses of shells of arbitrary shape
have significant practical interest for the air-
craft and spacecraft structural design. The
application of the finite element method to ana-
lyze the shell structures of arbitrary shape
requires accurate representation of the shell
geometry( For the geometric description of arbi-
trary shell surfaces, Wu and Abel use a modified
lofting method in which sectional curves are
represented by a uniform B-spline and the surface
is interpolated between sections by cardinal
splines '“! Moore and Yang developed a quadrilate-
ral thin elastic shell finite element using
variable-order polynomial functions and rational
B-spline functions to model the shell middle
surface. The displacement functions are that of
bicubic Hermitian polynomials. The element has
been used_for linear and geometrically nonlinear
analysis( 442 Eberhardsteiner and Mang introduced
the concept of "discrete orthogonalization of
parameter line?“ for the finite element analysis
of thin shells(5)

It is known that for the shells with arbitrary
shape the curvilinear system of reference provided
by the CAD system or finite element mesh genera=-
tion, or even the orthogonal lines, are not nece-
ssarily the principal curvature lines. However,
most of shell theories are based on the assumption
that the parametric lines are identical to the
lines of principal curvatures. In order to circum—
Vent above inconsistency, a technique of trans-
formation of the curvilinear coordinate lines into
the discrete principal curvatures has been deve-
loped. For present shell finite element the mem-
brane displacement functions U and V are repre-
sented by reduced quartic polynomials, while the
flexural displacement function W is the quintic
polynomial. The rate of convergence in strain
energy is of O(hb). To demonstrate the effeciency
of this shell element, four numerical examples are
presented in this paper. Results obtained are
better than or in good agreement with the existing
solutions by other shell finite elements or alter-
native methods.
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SURFACE REPRESENTATION AND
DISCRETE PRINCIPAL CURVATURES

There are various approaches for the surface
representation which are developed on the basis of
employing discrete data. The method presented in
this paper for the finite element analysis is
appropriate to any approach of surface representa-
tion. For instance, if we use the generalized Coons
surface representation approach to model the shell
surface(6. The general form of this surface can be
described as

r(ety soty) =S ¢;(eqr(ety , &y +
i

+§ $5(Xyr(aty ,a%) —% %cpi(o(l).

Py (Rriet] otd) (1)
where .

$iat]) = 845 (2a)

py(xd) =855 (2b)

are shape functions. Hermitian polynomials or
splines are the common choices for these shape
functions. Here we select the cubic B-splines as
the interpolation functions. In Eq.{1),r(ot;, )

is the vector-valued parametric representation of
the shell surface in terms of two parametric
variables of curvilinear coordinates &, , oly .
Usually, the curvilinear coordinates oKy r olp

for the surface representation in CAD system can
not coincide with the principal curvature lines.
But most of shell theories are established on the
assumption that the curvilinear coordinates are
the lines of principal curvature. For the shell
surface of arbitrary shape, it is very cumbersome
to find the lines of principal curvature. On the
other hand, there is no need to construct "conti~
nuously"” principal curvature lines for finite
element formulation. For such formulation the
metric and the curvature tensor only need to be
evaluated at numerical integration points.
Accordingly, it is suffic¢ient to define the
directions of principal curvature at discrete
points. To express this concept, we use the term
"discrete principal curvature" in contrast to the
"continuously principal curvature lines" i

Let Xy, X, and X3 be the Cartesian coordinates
, The she}I surface can be described in the para-
metric form

Xi=fi(°l110(2) » (3)

The coefficients of the first quadratic form of
the surface are



2 3Xg Xy
Agy = ——— o
§1 delg delq
where Einstein's summation convention is used.

Usually synbols E, F and G stand for above coeffi-
cients:

k=1,2,3, $.,%=1,2 (4)

2

2 2
E =A5;, F =25 G=3A5 (5)

Ag,,, are termed Lamé parameters.

The coeffients of the second quadratic form of
the surface L, M and N are defined as

2 2 2
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The homogeneous system of equations for the
unknown principal directions def 1 and det 2 is

(L +KE )dely + (M + KF Jdod, = 0 (7a)
{ M+ KF }dolq + { N + KG )dol, = 0 (7b)
The principal curvatures K; and K, than can

be determined by solving the following equation
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(BG - F2) K> + (NE + IG - 2MF ) K +

+ (IN-M%) =0 (8)
Substitution of the principal curvatures Ky
and K, into whichever of Egs. (5), for example
into (5a), yields two principal directions
dof L + K4E
By = ( 2 ), = - L (9a)
aot, 1 tEE
de o L + KE
B, = (—),= - (9b)
2~ ! del 27 TN kE

Let «/ and % be the coordinates of principal

curvature, e{ and eé —— the unit tangent

vectors to the coordinate lines ol’l const. and

ot’, = const. respectively. eé —— the unit normal

which is perpendicular to the tangent plane. If

the ey and e, indicate the unit tangent vectors
to o, = const. and & , = const. respectively.

The relationships connecting the two sets of unit
tangent vector are written as

{ e *+ }31e2 )/»/l + Bi + 2Bicos@ {10a)

ef =
/= (e, +Bye )/,’/l+B2
e = lep ¥ By 2 * 280086 (10b)
I
ey = e, (10c)
where cos® = F / JEG (104)

The partial derivatives, which are useful for
the chain~rule of differentiation, are given as
follows

it

(d1+82+ 280059 )7t (11a)

1 (11b)

i

( ,Jl + B'l'2 + ZBIlcose )"

. ( 1+ 852 + 285lcosg ) (11¢)

el

{11d)
ad,

(J1+82+ 280056 )?

W

Applying the chain-rule of differentiation
and using equations (11) we can obtain the Lamé
parameters in the coordinates of principal
curvature at discrete points.



The differentiation of Lamé parameters with
respect to e(& can be calculated approximately.
If at the point ( ckl r o5 ) there is an in-
crement zse(’l in the direction of c(’l,thus we
have

Bl |
AX, = A, = ]
1 1 e (12a)
, 9o,
Ad, = A 9 (12b)

By virtue of Egs. (12), the differentiation of
Lamé parameters are then evaluated, for example,
as follows

aa’

+ Aol
3,

2

= [A:’L(o(l+A°(l,o( 5 -

Ay, o) ] sax] (13)

Similarly, we can calculated the other differen—
tiations in the same way.

FINITE ELEMENT FORMULATIONS

The strain energy for elastic thin shell
finite element is given by combining the menbrane
and the flexure portions

Eh
2 2
Ug ==} (E7+E5+2VE, &, +
s 2(1-\)2)'& L 2 1%2
3
1-V 2 Eh 2
+E2Y 52y an 4 a2
2 24(1-v2)‘£1 L

+ %§+2\>x19(2+—l-—'2'—2——t2)d.n

(14)

Novozhilov's thin shell theory is applied in this
paper. The strain--displacement relations can be
found in Ref. 7.

The quadrilateral thin shell finite element
has four corner nodes, each of which has 12 d.o.f.
with a total 48 d.o.f.. The menbrane displacement
functions are represented by reduced quartic poly-
nomials, and a reduced 6th-order polynomial is
chosen as the flexural displacement function W
which is equivalent the complete quintic polynomial
for the estimation of the rate of convergence.
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NUMERICAL EXAMPLES

Four examples are presented to show the
efficiency of the thin shell finite element
developed in this paper. The B-~spline Coons sur-
faces are used to describe the shell surface.
Results obtained compare favdurably with the
exact solutions as well as finite element solutions

by employing other shell finite elements.

Example 1. A barrel vault under self gravity
load ( Fig.l ). Thickness of the shell t = 0.25 ft
, E=3.0 10° psi, v = 0, self gravity load

-wt = 90 psi. Figure 2 shows the comparison of the

present solution with the existing solutions.

Diaphragm

Figure 1. Barrel vault under self
gravity load

Normal displacements of the barrel vault
along the line BC ( see Fig.l ) are portrayed in
Fig.3.

Example 2, A pinched cylindrical shell under

two opposite concentrated loads. E = 10.5 108 psi,
vV = 0.3125, load P = 100 lbs ( Fig. 4 ). The

normal displacement of the point C ( see Fig. 4 )
is shown in Fig. 5. The results are compared with
the exact solution , and the rate of convergence
can be discovered. Figure 6 shows the normal dis-
placement of the point B of pinched cylindrical
shell. Above results are also listed in Table I.



QY

Exact solution for shallow shell

present
-2 4 +see (8) ¢ solution
® 9) a (8)
X (10) o (8) Figure 4. Pinched cylindrical shell under
-1 - ° (8) = (8) two opposite concentrated loads
o (11)
T —t— +— t T ot
100 200 300 400 500 600
Number of D.O.F.
Exact solution (12}
in
Figure 2. Numerical comparisor— normal 4{(
displacement of point B of i B ™ = —_—— -
the barrel vault -0.104 /<:j.
‘///. Present solution
-0.05
in
F T T T T
4 50 100 150 200
Exact solution of Nurber of D.O.F.
shallow shell (8)
Figure 5. Normal displacement of the point C of
-3 e DPresent solution pinched cylindrical shell
-2d .
////; in
-1 ¢.101
le B
L T i3
/o 20 30 40 0.05-
——————— i~
14 ‘ .
Figure 3. Normal displacements of barrel vault

along the line BC . 50 100 150 200

Nurber of D.O.F.

Figure 6. Normal displacement of the point B of
pinched cylindrical shell
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Table 1
. |
Normal displacement of point C (WC) Wy
< [
Mesh Present | Cantin| Ashwell Thomas | Present
and and solution
solution (12) Sabir| Gallagher
(15) (16)
1 x 1{~0.0565 ~0,1040]-0.0048 | 0.0525
1 x 2{-0.0772 0.0737
1 x4 -0.1106|-0.1107
2 x 2j-0.1138|-0.0931] -0.1103 0.1044
3 x 3;-0.1139 0.1045
4x4 -0.1126{-0.1129
6 x 6 -0.1137}-0.1135
8 x 8 -0.1139} ~0.1137
10 x 10 -0.1139| ~0.1137
Example 3. A spherical cap under concentrated
load. The spherical surface is described by the
equation
X2 + Y2 + 22 = lOO2

A concentrated load of 100 lbs is applied at the
center of the cap ( Fig. 7 ). E = 10/ psi ,

V = 0.3 , the thickness of the shell t = 0.1 in.
The results of calculation are shown in Table I
and Figs. 8 and 9 which are compared with the
analytical solutions and other finite element
solutions.

Table I
wesn | rssent | Yaos mm
1x1 -0.02521 -0.00991
2x1 -0.01859
2x2 -0.03556 -0.03595
2x3 ~-0.03785 ~0.03690
2 x4 -0.03860 -0.03747
3x3 ~0.04007 -0.03867
4x4 -0.04008

Analytical

solution ~0.03956 -0.03956

{See (13))
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Example 4. A hyperbolic paraboloidal shell
under uniform distributed load of 0.01 psi
( Fig.10 ). Thickness of shell t = 0.8 in ,V=0.4

E = 28500 psi. The shell surface has the equation

Z = 0.004xY

Figure 11 shows the normal displacement of the
center of the shell W, . These results also are
listed in Table M .which are compared with other
finite element solutions. Figure 12 describe the
normal displacements along the line EF of the
shell.

Figure 7. Spherical cap under concentrated load

Nurmber of D.O.F.

100 200 300
i 4. i AL
-0.01
© Solution of {13)
-0.02+
-0.03 Analytical solution
“0, 04 — = s = S —
-0.054 ¢ Present solution
in
Figure 8. Normal displacement of the point C of
spherical cap
5/2 15/2 25/2 in
_—-—o_l-.—._Jl._d\\l I 1
B . o)
-0.01
8 Dpresent solution \w\
T L d
~0.03 \
\
—= Analytical solution *
~0.05 1 see (13)
in |

Figure 9. Normal displacements along the line BC
of spherical cap
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Figure 10. Hyperbolic paraboloidal shell under
uniform load
Table 1T
Mesh Present Solution Solution
solution in (14) in (13)
2x2 -0.03327 ~0.0408 -0.0459
4 x4 ~0.02468 -0.0288 -0.02472
6 x 6 -0.02453 -0.02465
8 x 8 -0.02457
in
© present solution
=0.04+ :\ A (13)
A
~0.024
-0.01"
T T T T
200 400 600
Number of D.O.F.
Figure 11. Normal displacement of the point o
of hyperbolic paraboloidal shell
in
-0.0
-0.02
-0.01
E F
T :
-50 -30  -10 10 30 58 in

Figure 12. Normal displacements along the line EF
of hyperbolic paraboloidal shell
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CONCLUSIONS

The 48 degree-of-freedom quadrilateral Coons
surface shell finite element has been developed
in this paper which can be used to analyze shells
of arbitrary shapes. This new finite element also
has the advantage that it may be linked to the
data bases of the CAD system for the aircraft
and spacecraft design. By virtue of using more
exact geometric description of shell surfaces and
developing the concept of " discrete principal
curvatures and by proper choosing the displacement
function representations, this shell element
possesses higher rate of convergence which can

be observed in the numerical examples.
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