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Abstract
Solution to the dynamic behavior of
aeronautical structures subjected to random

excitation is obtained by using characteristic
results from static analysis. The dynamic response
problem is solved by using the concept of "stress
modes", which is also presented in this paper.
Static results are also used in the solution of
geometrically non-linear problems. It is believed
that the use of this approach will contribute to a
better intuitive "feel"” of the design engineer,
and thus to a better physical understanding of the
structure's behavior. Schematic procedure for the
application of the outlined approach is presented.

I. Introduction

The response of aeronautical structures to
noise excitation is a major cause of fatigue
failure. The pressure fluctuations in the flow
that surrounds the structure due to turbulence and
jet noise, cause it to vibrate continuously at
high frequencies, as a result of which new cracks
may be generated in the material or existing
cracks may propagate. The advent of
fiber-reinforced materials has increased the
incidence of these types of failure, owing to the
sestitivity of the materials to strains in
particular directions.

Research efforts toward solution of the dynamic
response of structure elements to wideband random
excitation began in the 1950's., Since then,
numerous conclusions, methods and procedures were
developed. A feature common to a large part of the
existing literature is emphasis on the mean square
values of the response amplitudes. However, a
designer has to predict the structure's life by
comparing its existing stresses to  known
allowables. Moreover, in some cases it is the
strains rather than the stresses which govern the
failure envelope of a given structure or material.
In these circumstances it is of major importance
to be able to predict the statistical
characteristics of both the stresses and strains
throughout the structure.

To the design engineer, the problem of response
to acoustic noise is not academic in nature. What
he needs is a "design routine", adaptable to his
needs and to the facilities (software and
hardware) to which he has access. Past experience
has shown that he usually has a good intuitive
"feel” for static loads, and is able to identify
points of weakness in a design by looking at a
statical analysis. This "feel" is less reliable
for dynamic stress states where the meaning of
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mode shapes may be understood, but it is difficult
to visualize a physical interpretation of a

weighted combination of several modes; it is even
more difficult to "feel" random vibration, mainly
when the excitation comprises many components,
each with a different frequency. Hence the need
for a rapid design-oriented procedure capable of
displaying the dynamic response effects during
design iterations.

In the last few decades, there was a tremendous

progress in the analytical tools with which
structural analysis experts can analyse the
structure under consideration. Large computer

codes were developed, and are in use by most of
the establishments which deals with structural
design. There is, although, a danger of losing the
physical understanding of the structure's behavior
by using these computer codes automatically,
without pausing to think and interpret interim
results. The author believes that by examination
of the statical analysis results, more
understanding of the dynamic behavior can be
obtained. By using the methods outlined in this
paper, or similar conceptual approach, the better
understanding obtained will contribute to better
designs.

The introduction of the concept of "stress
modes" by the author (1 enable to analyse the
dynamic behavior of aeronautical structures via
statical techniques, thereby contributing to
intuitive understanding of the results by design
engineers. In this paper, the definition of stress
modes and the statical methods of obtaining them
are presented, and their use in the solution of a
structural dynamic problem is outlined. Also,
considerations of geometrical non-linearities in
the analysis of a structural dynamic problem are
described. These considerations are also based on
results of statical, intuitively understood
solutions, which are available to most designers.
A schematic procedure for the application of the
approach outlined in the paper is also presented.

II. Displacement response to random exciation

Les us denote the displacement of a typical
structure (say a plate) by w(x,y,t), which can be
expanded in the following series:

N
w(zyyvt)=E¢r(z’y)'h’ﬂ'(t) (1)
r=1
é.(z,y) is mode shape, #,(t) is a generalized
coordinate, h is the thickness and N is the number
of terms taken into account.



If the structure 1is excited by distributed
pressure q(x,y,t), the governing equation of
motion for g5,.(t) reads:

fir + 26w, 5, + wl?'lr = ff q(z’ ¥ %;fz, y)dzdy (2)

where M, = / / mé?(z, y)dzdy the generalized
mass

m= mass per unit area
$r = damping ratio of the r-th mode
wr= resonance frequency of the r-th mode
For distributed load gq(x,y,t) which is a
separable function

9(z,y,t) = p(z,y) f(t)

with p(x,y) a deterministic
equations of motion become

(3)

function, the

iy + 26w, N, + wrg'l" = ff p(z’ y):;(:’ y)dzdyf(t) (L”

A classical procedure (e.g. reference 2) yields
the following equation for the mean square of the
displacement response

w?(z,y, ryX z,y)dz z,y)dz
LD 53 bl i (o, T el [0l oy,

r=1a8=1

2—11r ow |H,(0)||H,(0)|F(Q)dn

(5)

The generalized forces in the equations are in
the form of double integrals of the mode shapes.
In the evaluation of eq. 5 it was assumed that
p(x,y) is deterministic, and that the random
process is represented by f£(t) in eq. 3. The
double-integral form is due to absence of
correlation between the random pressure fields
acting at points of the structure. This is not
always the case especially where large structures
are concerned, and the excitation originates at a
source in such a way that parts of the examined
structure are downstream relative to other parts.
In such c¢ , the pr ire field downstream is
correlated with the field upstream, and the
calculation of the generalized forces involves
quadruple integrals (for details, see e.g.
reference 3, section 7.3) This fact, however, does
not affect the general approach as described
here.

III., Stress modes and stress response
to random excitation

Stresses in elastic materials are uniquely
defined by the deflection, through the material's
constitutive relations and the compatibility
equations. It dose not matter how the deflection
was obtained-statically or dynamically. The effect
of the dynamic load factor, well known in the
theory of vibration of structures is included
when the deflections are calculated.

For a specific type of structure, there always
exists the following relationship

0; = CLjlw(z,y,t)] (6)

where Lj is a differential operator in the spatial
coordinates, and C is constant that depends on the
elastic constants of the material, and the
geometry of the structure. The subscript J
indicates which stress at which location is being
calculated, not necessarily one of the components
of the stress tensor. For instance

01 =0y

O3 =0y

o7 = shear stress between two plies in a
laminated structure

o = stress at the edge of a hole, etc.
In view of eq.1 we have

N
Lylw(z,y,0) = Y hL;[$e(=, v)Ine(2) 7
N r=1
and a; = ChYy_ Lylée(z,9)In.(t) (8)
rx=1
Equation 8 can Rp rewritten as
o =3 iz, v)n.(t) 9)
rz=1

where ¢! = ChL;[¢(z,y)]

(10)
Equation (9) resembles eq. 1, and accordingly the
functions ¢}(z,y) are called hereinafter "Stress
modes". The latter permits an evaluation analogous
to that of that mean-square value of the
amplitudes, and therefore

B —— N X : : z z z X
Au =3 > vl ey Lot L oo ey,

r=1s=1

1 o0

~ [7 @ @iF @ 1)
Examination of eq. 10 reveals that the stress mode
is a characteristic of the structure. Once stress
modes for a given structure have been computed,
a complete stress distribution can be found, by
use of eq.9.

To obtain the stress modes,one naturally tends
to use eq. 10. i.e. apply the operator L: on the
mode shapes. There is, however, a disadvantage in
doing so, since the modal shapes of the structure
are not always .avaliable in closed form and are
then approximated by assumed functions which
satisfy boundary conditions. While this ensures
satisfactory accuracy in calculating frequencies
and deflections, large errors may set in on
differentiation (usually double in determining the
stresses); the same is the case when the modal
shapes are obtained by some numerical method
(e.g. a finite-element computer code).

Examining equations 9 and 10 it is readily seen
that the stress mode is also the stress
distribution in the structure for the particular
case of a deformation coincident with the modal
shape, with the generalized coordinate equal to
unity and the maximum deflection equal to one
thickness. This observation points.to a convenient
method for calculating the stress modes:

npetermine the stress distribution in the
structure, when it 1s deformed to a
deflection equal to h¢,(z,y) "-

This is a case of static pre-described deflection
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loading, which most of the modern computer
programs have the capability to accept, as input.

Further examination of the basic equations from
which the generalized equations of motion were
derived points to another method for obtaining the
stress modes{1):

“"For each required stress mode, solve the
static state of stresses in the structure,
when subjected to a static distributed

load of mwf times the modal deflection
hé,(z,y) "-
This method i1is readily applied both for

structures solvable analytically, and for more
complex ones solvable by any of the computer codes
used for static solution of 1linear systems.

A statical analysis technique thus yields
information on the dynamic behavior of the
structure.

Once the stress modes have been obtained, the
points in the structure where maximum stresses
occur can be found out for a given mode. If the
resonance frequencies are well apart, the
structure will usually respond with the basic
(lower) mode, and examination -of this mode,
obtained by statical analysis, will show the
points of expected maximum stresses in a dynamic
response problem. Even when there are modes which
lie close together, examination of their stress
modes can provide a good prediction of the
structure's most stressed points under random
excitation. In such examination, one should bear
in mind that the contribution of one mode to the
total stress i1s inversly proportional to the
square of the frequency.

IV Geometrically nonlinear response

The statical behavior of geometrically
nonlinear elastic structure can be approximated by
a cubic relation between the load and the
deflection (e.g. reference 4 ). Due to the
hardening or softening effect of the nonlinearity,
the frequency response curve of such a structure
is bent around a "backbone" curve(3X4)(5) . Using

" the same formula as in reference(6) , it can be

shown that the following relationships exist
between the general coordinate, the loading and
the stresses,

P
Wi,y + Ben? = Wi (12)
o; = Djn + Djn? (13)

Equation (12) is a static degeneracy of the
dynamic nonlinear equation of motion.

. ; P,
e + 2¢,wop Ny + Wg,.ﬂ + ﬂfﬂf =

1

M, (14)
Where B is the coefficient of amplitude
nonlinearity, D1 the linear coefficient between

stress and. deflection, D2 the coefficient of
nonlinearity of stresses, and Pr the generalized
force acting on the rth mode. If D1 and D2 are
known for a specific structure, its responge to
stationary random excitation with Gaussian
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distribution will be given by the following
expression for the expected value of the amplitude

E((w/h)*] = ¢*(z,y) E[n?]

(15)

gy < L8 v)dzdy? 1 poo
where E[n?] = ——ET)A;T!.’.}_E;/O | H{w){*F (w)dw (16)
and 0 =} + 3BE[n? 17

The corresponding expression for the expected
value of the stress reads : :

Elo}] = D} Eln*] + 3D} { E[n*))? (18)

Since g, D1, and D2 depend only upon the geometry
and material of the structure but not on its

loadings, they can be found by applying a static
load to the system {numerically or
experimentally), and tabulating load versus

deflection and stress versus deflection. From the
tables, the best cubic curve is fitted according
to eq. 12 to yield § and the best quadratic line
according to eq. 13 to yield D1 and D2. Thus a
statical technique is again wused to obtain
coefficients for analysis of the dynamic behavior
of the structure.

V Engineering Oriented Procedure

The approach described in the preceding
chapters can be translated into an engineering
oriented procedure which is demonstrated
schematically in Figure 1. Data on the basic
characteristics of the structure (enclosed in a
dashed-line rectangle) must be gained one way or
another., They can be calculated analytically for a
certain (limited) number of cases, by formulating
the stiffness and mass matrices, and solving the
eigenvalue problem, the stiffness matrix serving
also for analysis of the statical behavior of the
structure; they can be calculated numerically by
any available method (finite-element, finite-
difference computer codes); finally, they can be
determined experimentally, with the results
of dynamic and static tests performed on the
structure serving as input to the analysis. It
should be noted that, in order to establish
(analytically or numerically) the factor of
geometrical nonlinearities of the structure,

-monlinear analysis should be used.

With the basic dynamic and statical properties
of the structure known, its dynamic behavior can
be calculated. The concept of stress modes,
presented earlier, yields a general idea of "the
dynamic behavior via statical techniques. The
examination of the stress modes reveals the points
in which maximal stresses exist in the dynamic
response of the structure. This process
contributes to the intuitive understanding of the
results by the design engineer. For a given
loading, the generalized forces can be calculated,
or, if the loading (deterministic or random) is
uniformly distributed over the structure, certain
integrals of the mode shapes are required,

Following these steps, the linear response of
the structure (in terms of displacements and
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OMPARE

Figure 1: Steps in the Engineering Oriented Procedure.

stresses) to random excitation forces can be
calculated. Usually, the response has one
dominating mode, and the preceding analysis

identifies it. It also indicates according to the
magnitude of the response amplitude relative to a
characteristic dimension of the structure
(e.g. thickness of a plate or a shell), whether
the nonlinearity factor of the structure should be
determind. The methods to be used in the latter
case are described in chapter IV.

After the mean-square displacement reponse has
been calculated, the mean square of the stresses
and the strains in the structure can be found with
the aid of the stress modes. These can be compared
to allowable dynamic stresses, taking into account
the fatigue characteristics of the structure and
its failure envelope.

Based on the theoretical background presented
in the preceding chapters and on the block diagram
presented in Figure 1, a computational procedure
is proposed. The procedure is composed of three
major parts:

1. A computer program for the dynamic response, as
formulated above.

2. Data files, which include characheristic data

of the structure and the excitations. The data

may be obtained analytically, numerically or

experimentally.

A numerical computer code for the analysis of
structures, which has at last the following

capabilities:

(a)Solution of the eigenvalues problem of a
given structure.

(b)Linear statical analysis of an elastic
structure.

(c)Nonlinear static analysis.

By calculating the modal shapes and the
resonance frequencies, the user can then calculate
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the stress modes by mean of the static analysis
program. In cases where nonlinear analysis is
required, data on the nonlinear characteristics of
the structure is obtained by using the static
nonlinear capability. i

is described schematically in
details can be found in

The process
Figure 2. More
reference (7).

STRUCTURAL ANALYSIS COMPUTER CODE
(ONE OF MANY AVAILABLE)

EIGENVALUES | LINEAR NONLINEAR
& STATIC STATIC
EIGENVECTORS| ANALYSIS | ANALYSIS

JDATA FILES:ANALYTICAL, NUMERICAL,
EXPERIMENTAL

EXTERNAL PSD,MODAL SHAPES,DAMPING
COEFFICIENTS,GENERALIZED MASSES,
NATURAL FREQUENCIES,GENERALIZED
FORCES, STRESS MODES,NONLINEAR DATA)

ACOUSTIC RESPONSE PROGRAM:

DYNAMIC,LINEAR AND NONLINEAR
ANALYSIS

RESULTS: MEAN SQUARE VALUES OF
DISPLACEMENTS,STRESSES AND STRAIN:

Figure 2: Basic Scheme of the Computational

Process.



. VI Conclusion

The main purpose of the suggested approach is
to provide the user, the design engineer, with a
systematic procedure which will give him insight
into the physical meaning of the solutions he
obtains when he solves a random dynamic problem.
Statical analysis, more accessible to most users,
serves as basic tool while a new concept, stress
modes, facilitates understanding of the dynamic
behavior. The procedure was developed by the
author into a practical working method at the
Lockheed-Georgia Company, and numerous test cases
were run successfully for multilayered composite
structural elements.

The procedure proved simple, quick, convenient
in use and particularly suitable to design
engineers.
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