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Abstract

The present communication addresses a sequence
of four problems, and justifies the following
conclusions: (i) the aerodynamic forces and moments
acting upon an aircraft in a perturbed atmosphere,
can be calculated from the airspeed vector along
each point of the flight path, i.e., the local wind
profile does not matter, except for an aircraft
flying in the wake of another; (ii) the effects of
atmospheric disturbances on flight performance,
viz., velocity and incidence changes and vertical
accelerations in straight and level flight, can be
specified by a single dimensionless parameter, the
disturbance intensity, e.g. it indicates ifastall
could occur at take-off or landing; (iii) the
phugoid mode excited by windshears can be suppressed
(not just damped) by a suitable pitch control
schedule, which keeps the aircraft on a constant
glide slope; {iv) the suppression of the phugoid
mode is also relevant to an aircraft starting a
dive or climb at initial velocity far removed from
the steady flight speeds, in which case the
relevant pitch control law is found as a solution
of a non-linear stability problem.

|. Introduction

One of the natural motions of an aircraft is
the phugoid mode, which is usually countered by
introducing damping, e.g. an autothrottle or pitch
-stiffening, so as to cause the phugoid motion to
decay. In the present paper we consider adifferent
approach, namely, the cancellation of the phugoid
mode, by using pitch control to prevent the phugoid
motion from occurring. This may designated as the
'inverse phugoid problem', taking Lanchester's [1]
famous researches as the reference. In the original
phugoid problem [2] the aircraft flies at
approximately constant incidence, along a curved
flight path, exchanging kinetic and potential
energies in an oscillatory manner. iIn present
inverse phugoid problem a pitch control schedule is
determined, which keeps the aircraft in a straight
flight path, exactly cancelling the phugoid mode.
Two kinds of excitation of the phugoid mode should
be considered: (V) the case of an aircraft starting
a climb (or dive) at a velocity distinct from the
steady flight speed, i.e. the phugoid would be
excited by initial conditions and cancelled by a
suitable pitch control law; (1V) the case of an
aircraft in a climb (or dive) at the steady flight
speed encountering winds, e.g. the phugoid would
be excited by a windshear and cancelled by an
appropriate pitch control law. Both of these are
response problems in pitch, the former (V) non-
~linear if the initial velocity is far removed from
the steady flight speed. The cancellation .of the
phugoid mode in a windshear is a linear problem
(1v) if the wind.velocity is not more than 30% of
the groundspeed. As a preliminary to this problem
of aircraft response to atmospheric disturbances,
we compare aircraft performance in a still and a
perturbed atmosphere (I1I1). Both the performance
(1V) and response (V) problems take as an input
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the aerodynamic forces on an aircraft flying in a
perturbed atmosphere, and a brief discussion of
these is presented first (11).

11, Effects of non-uniform wind on
aerodynamic forces

An aircraft flying in still air is subject to
£33 an aerodynamic force:

?:% oSV {-Cy & +C, Zy+cL e, )

where p,S,V have the usual meaning (mass density,
reference area and velocity), and Cp is the drag
coefficient if the x-axis lies tangent to the flight
path, C is the lift coefficient if the z-axis lies
upward in the plane of symmetry of the aircraft, and
Cy is the sideforce coefficient. In the presence of
an uniform wind, the aerodynamic force is still
given by (1), provided that V be interpreted as the
airspeed, i.e. the sum of groundspeed U and wind
velocity V. If the incident flow is not uniform,
then it is characterized [41 by the dilatation V.V
and vorticity VAV, for flight at low-speed, when
windshears are of most concern, we can neglect
compressibility V,V=0, and need consider only the
vorticity:

- -
VAV= (3v, /3y - 3V, /3z)e, +
- ->
+ (V732 - BV, /ox)e, + (3V, /3x -3V /3y) €, (2)

which gives rise [5] to a vortical force, scaling
as:

finp VA (VAV) =
oV, (3, /3x - 3V, /3y) - v, {3V /3z - 3V /3x) } e
+ 0tV (V, /3y - 3V, /32) -V, (3V, /3x - v, /8y)} Zy
+ 01V, (3V, /02 = 3V, /3x) =V, (V, /3y - BV, /32) } e,.3

The fundamental question which arises [6] is: do we
need to consider the vortical force (3) in addition
to the usual aerodynamic force (1), when considering
aircraft in a non-uniform wind?

We address this question in the case of lift,
which is given by (1) in an uniform wind [73:

o) 2
L=5pC Vs, (4)
and in the presence of vertical shear (Figure 1) is
modified by a vortical contributions [81:

1
A= p Cg SV O/c, 5)

where Q2 ZdV/dz is the vorticity, ¢ the chord and Cg
the shear coefficient. In the case of an uniform
wind dV/dz =0, theére is no vortical contribution to
1ift AL=0 in (5), and the lift force (&) is
determined by the dynamic pressure acting on the
reference area. In the case of a wind increasing
upwards (Figure 1, top) the airspeed is greater



above than below the airfoil, implyinga reduction
in pressure above and a increase in pressure below,
which causes extra 1ift AL>0; this agrees with
the expression (5) for vortical lift, since
QR=dV/dz>0 in this case. Conversely, if the wind
increases downwards (Figure 1, bottom) there is a
1ift loss. The magnitude of the lift loss or gain
due to vorticity in the incident stream (5),
relative to the aerodynamic 1ift in an uniform
wind (4), is given by:

(BL) /L =N Cg/C, (6)
where:
N = c/V, 7)

is a dimensionless shear parameter, comparing the
airspeed V to the velocity change due to vorticity
{2 over a chord length c. Having shown qualitatively
that vorticity in the incident stream can affect
1ift, we should now check whether that effect s
quantitatively important.

In order to estimate the shear parameter (7)
we note that the vorticity Qvu/f scales on the
wind speed divided by a scale %, so that:

N (/) (e/8), (8)

the shear parameter (8) scales on the wind speed u
divided bv airspeed, and the number of flow scales
in a chord length, i.e., is greater for a large
aircraft flying at low speed, e.g. a jet transport
in take-off or landing configuration. Atmospheric
measurements at airports [9] suggest that wind
speed changes of u™Vv5-75 m/s occur over scales
2730 m, leading to vorticity values in the range
fvu/en0.2-2.5 s=}; for a large transport air-
craft, with a wing chord c=3m, flying at low-
~-speed V=60 m/s, this corresponds to a small value
N=Qc/V=1/100-1/8 of the shear parameter. In the
wakes of propellers, the velocity profile may be
given by:

u(z) =v{1 +N(z/c)}, (9)

where N = (c/V) du/dz=cQ/V is the shear parameter,
which may take values Nv5 much larger than for the
case of atmospheric disturbances. The preliminary
conclusion is that the non-uniformity of incident
wind is a small effect, unless an aircraft is
flying in the wake of another.

The latter conclusion was based on the shear
parameter (8) alone, and should be checked by
considering the relative 1ift change due to non-
-uniformity of the incident stream (6), which
involves both the lift C, and shear C_ coefficients.
The 1ift coefficient depénds on body shape and
attitude, and is calculated for an uniform
incident stream; in flight away from the stall, it
is a linear function of effective incidence
0 =0-0gp, which is the incidence o relative to the
angle of zero 1lift ay; as an order of magnitude,
we note that the 1ift slope 3C_ /3 is about 27 for
a Joukowski airfoil [11], The shear coefficient (g
depends not only on body shape and attitude, but
also on the profile of the incident wind [12]. For
example, for a wing in a linearly sheared wind (9),
the vortical 1ift is given [8] by:

AL=7pc VR, (10)
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corresponding by (5) to a shear coefficient:
Cq=2c AL/pSV Q= 2mc?/s =2n/A, amn

where A=5/c? =b/c is the aspect ratio, with b=S/c
denoting the span; in the case of parabolic

or other velocity profiles of the incident stream,
the shear coefficient would be modified. Also, the
shear coefficient for a two-dimensional body, e.g.
Cg=2m=6.28 for a cylinder, is larger than that
for a corresponding three-dimensional body, e.qg.
Co=4.41/3=4.61 for a sphere [13]; the reason s
that in a vortical flow past a two-dimensional
body the vortex lines must be stretched, whereas
they can be partially deflected past a three-
-dimensional body, reducing the deformation of
vortex lines.

The comparison of the 1ift €~ 27mo and shear
Csv2m/A coefficients suggests that their ratio
CL/Cg VAR generally s of order unity, and thus
the conclusion concerning shear number (8) extends
to vortical lift (6); similar arguments could be
used to estimate the effects of a non-uniform
incident stream, on other components of the
aerodynamic force, or on the aerodynamic moments.
The overall conclusion is: for an aircraft flying
in a perturbed atmosphere, the aerodynamic forces
and moments may be calculated from the airspeed,
including the wind velocity at each point of the
trajectory, and disregarding the profile of the
wind; the latter can become important for an air-
craft flying in the wake of another.

111. Comparison of flight performance in
still and perturbed atmospheres

The preceding conclusion implies that an air-
craft flying with groundspeed U in an atmosphere
with longitudinal wind u and vertical wind w, has
an airspeed V and incidence 6 given respectively
by:

V=/{UFu)2+w?, O=a+arc tan{w/(U+u)}, (12a,b)
and hence experiences a lift:
1 2
| % o=
Lx=5C (8) pSVZ. (13)

The ratio of lifts in the perturbed (13) and still
(4)  atmosphere is:

L*/L = (8/a) (V/U)?, (14)

where we have assumed that the 1lift coefficient is
a linear function of incidence for flight away from
the stall. If the wind is '‘moderate', in the sense
that it does not exceed 30% of the groundspeed
u,w<0.3 U, we can neglect squares u®,w? <0.09<<U?,
and (14) simplifies to:

L*/L = (1 +w/oU) (1+2u/U). (15)

If we define [14] the disturbance intensity G as
the relative 1ift change:

GSL*/L-1=2u/U+w/al, (16)

it is clear that 1ift increases G>0 in a headwind
u>0 and upflow w>0, and decreases in a tailwind
u<0 and downflow w<0 (for a given groundspeed U
and positive incidence).

The simplest applicat?én is an aircraft flying



straight and level in still air, for which the 1ift
() balances the weight:

W=g 0SVC (@), (7

in still air. in the presence of atmospheric
disturbances the lift L changes to L* given by:

L¥=(146) L=F 0SV? ¢, (1+6), 18)
i.e., this is equivalent to replacing the 1ift
coefficient €, in still air by a value

¢ > (1+6), (19)

corrected by the disturbance intensity (16) due to
wind. The atmospheric disturbances generally change
the atrcraft velocity and incidence respectively to
V* and o*, and may cause a vertical acceleration A,
so0 that the balance of transverse forces (17) is
replaced by:

WemA=30SV3 € (o)) (1+6), (20)

where m=W/g is the aircraft mass. The ratio of
(20) to (17), with 1ift a linear function of
incidence, yields the formula:

T+A/g= (Ve /V)? (0,/a) (1+6), (21)

relating aircraft flight performance to the
atmospheric disturbance intensity G. For example,
if the aircraft flies at constant velocity V=V,
and incidence o =0a, through the atmospheric
disturbance, it experiences a vertical acceleration
A=Gg, expressed in g's, equal to the disturbance
intensity (or relative 1ift change). This gives a
flight dynamical interpretation of the disturbance
intensity, which had been defined (16) in aero-
dynamic terms.

There are other alternative interpretations,
e.g., if the aircraft remains on a straight and
level flight path A=0, at constant incidence Oly=0t,
in an atmospheric disturbance of intensity G, the
velocity changes from V to V, given by:

1= (V,/V)? (1+6), (22)

viz., a headwind or upflow G>0 allows straight and
level flight at a given incidence at a lower speed

V4 <V, whereas a tailwind or downflow G<0 must be
compensated by an increase in velocity V,>V. The
result also applies to stalling speeds:

Vg =V /YT, (23)

and shows that a positive disturbance (headwind or
upflow) reduces the stalling speed, whereas a
negative disturbance increases the stalling speed,
as shown in Figure 2. A disturbance of intensity

Gy =-0.17 raises the stall speed by 10%, to the
unstick speed Vi =1.1 Vg, causing an aurcraft to
stall on take-off. A disturbance of intensity Gy =
=-0.42 raises the stall speed by 30%, to the
approach speed V; =1.3 Vg, causing an aircraft to
stall prior to landing. The values of the
atmospheric winds which, if uncompensated, can
cause stall on take-off (or landing), can be
calculated from (16), for the critical disturbance
intensities Gy =-0. 17 (62 =-0.42); for example, for
an aircraft taking off at U=60 m/s in still air at
an incidence a=10°, a downflow w=-=1 m/s and an
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uncompensated tailwind of u=-2.5 m/s, leads to a
disturbance intensity G=-0.178, which will cause
a stall at unstick speed.

The atmospheric disturbance may give rise to
an incidence change, at constant velocity in
straight and level flight:
ag/a-1=(1+6)""-1=-g, (24)
which is equal to -G for small values of the
disturbance intensity G%<<1, Thus the disturbance
intensity equals minus the relative change in
incidence, in straight and level flight, at
constant velocity, through the disturbance, i.e., a
positive disturbance (headwind or upflow) requires
a reduction in incidence, and a negative
disturbance (tailwind or downflow) is compensated
by an increase in incidence. The change in
incidence Ao=a*-a required to compensate a
disturbance of intensity G, is indicated in Flgure
3, for three values of the initial effective
incidence. We have considered the cases where the
atmospheric disturbance is compensated by (i)
vertical acceleration A=Gg, (i1) incidence (24)
or (iii) velocity (23) changes in isolation.
Generally all three occur simultaneously, so that
no simplification of (21) is possible; it can be
re-written:

(V/V)% (1 +A/g) =1+h, (25)
where
h= (1+6) (0,/a) = 1 =G+ Ao/, (26)

is the disturbance intensity corrected for
incidence change. The ratio of velocities in the
presence V, and absence V of atmospheric
disturbance, and the vertical acceleration in g's,
are plotted in Figure 4, for several values of the
corrected disturbance intensity.

The velocity V is the groundspeed if .the
disturbance intensity (16) includes both the
longitudinal and transverse wind; iIf only the
second term, i.e. the transverse wind is included,
then V should be interpreted as the airspeed. As
an example, consider an aircraft on approach to
land at a groundspeed V=60 m/s and effective
incidence G =10"; suppose it encounters a tailwind
u=-5.5m/s and downflow w=+~2 m/s, corresponding
(16) to a disturbance intensity G=-0.38. Assume
that |ncsdence is raised to the stall limit

=12°, and the groundspeed has dropped to V, =50
m/s, as a consequence of pilot reaction to the
earlier, headwind phase of windshear. The vertical
acceleration (20) is A=-0.48 g=-b m/s?, and if.
the disturbance acts for two seconds t=2 s, the
sink rate will have increased by AV, =At =9.4 m/s,
which is more than an undercarrladge is designed
for; the height Ioss 7=-At?/2=-9.4 m, for a
glide slope of 3°, corresponds to an error of
X==9.4 cot 3° m=310 m in touch down point, i.e,,
the runway could be missed.

V. Flight on a constant glide slope
through a windshear

The preceding performance calculations may
give an indication of the order of magnitude of
the effect of atmospheric disturbances on aircraft
flight, but they do not replace a response



calculation, which is appropriate to an unsteady
phenomenon like a windshear. Research on this topic
has concerned mainly the prediction or simulation
of flight path deviations of an aircraft as it
flies through a windshear; we would like to consider
the inverse problem, of finding the pitch control
schedule which would keep (Figure 5) the aircraft
on a constant glide slope through the atmospheric
disturbance. I1f, and only if, this control scheme
is achievable, can the disturbance be fully
compensated; in fact, we will give only a partial
answer to this problem, since we will consider the
compensation of the phugoid mode alone, leaving the
short period mode to future work. For an aircraft
flying on a constant glide slope v, the inertia
force is equal to thrust, plus the component of
weight along the flight path minus drag:

m dU/dt =W sin y+T(U) -D, (27)

where the equation is written in terms of the
groundspeed U, for flight in stil) air. The
component of weight transverse to the flight path
is balanced by the 1ift L=W cos vy, and dividing
(27) by W we obtain:

g dusdt =siny-T(U)/M-cosy D/L, (28)

where T(U)/W is the thrust-to-weight ratio at

velocity U, and the drag D to lift L ratio s
given by:

D/L =Cp/C =Cpe/C (U) +k C (U) +K, (29)
where Cpg is the form drag coefficient, and k
relates the induced drag coefficient to the square
of 1ift coefficient and K applies to anon-symmetric
polar. The constancy of lift implies that the lift
coefficient varies inversely to the square of
velocity:

=y 12 o 2
€ (@ u*=¢ @) v} cosv, (30)

with the constant calculated for a reference level
flight condition at the same weight.

Substitution of (29,30) into (28) leads to:
g" du/dt =F (V) = - aU? - b/U?, 31)

where F(U) is a dimensionless force, and the
coefficients are given by:

. - - - -2

f=f +siny~K cosy, a=f, +{Che/C {a)} Uy
- - 2 2 ’

b.-f2-+k CL(uO) Ug cos™y,

assuming that the thrust characteristic is:

(32a,b,¢)

-2
T(U)=f - F, U2-f, UZHW. (33)

1

For flight in a perturbed atmosphere the ground-
speed U, satisfies (31):

g7 du/dt=FW), (34)

with the total force calculated from the airspeed
V, and thus including wind effects. The perturbation
in groundspeed q=U, - U due to wind, satisfies:

-1 -
g”! dq/dt =g d(Uy-U)/dt =F V) - F(U); (35)

for a moderate wind u®,w? << U? the groundspeed
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perturbation is also moderate g2 << U?, and (35) may
be linearized:

™! dg/dt =A(v-U) (36)
where -the coefficient A may be calculated from the
unperturbed velocity:

Azg U dF/du=-2(a - b/U") g. (37)

We may also use:
=(V-U,) + (U -U) =q+u, (38)

since for a moderate wind, the difference between
airspeed and groundspeed is the longitudinal wind
velocity.

Thus the groundspeed perturbation q(t)
satisfies the differential equation:

dg/dE =X{q+u), (39)

where U=d&/dt with & the coordinate along the
flight path. The constancy of lift:

c, (@) u?=c¢ (&*+w/U*) (U2 +2uu,}, (40)
for 1ift linear on the effective lncrdence a,

specifies the change of incidence a*-a due to
the windshear:

Gy - o= -{w+ 28 (u+q) /U, I

where the q is the solution of (39) and the
longitudinal u and vertical w wind are assumed
known. Typical simplified profiles for a windshear
[15-18) are: (i) a longitudinal wind changing from
a head- to a tailwind:

u(t) =A U sin(21E/2), _ (42)

over a scale &; (ii) a downflow, peaking at the
transition from headwind to tailwind:

w(t) ==B Ua sin(nE/8). (43)

in (42,43) the constant A,Ba are the amplitude of
the longitudinal, transverse wind relative to the
unperturbed velocity U.

If the perturbation of groundspeed q(0) =0
starts at x=0, with the windshear, the solution
[191 of (39) with u given by (k2),

P(X) ={A/(1+u?)Hp(l -~ cos 2mX)} ~sin(2mX)},  (4b4)

where the groundspeed is made dimensionless by
dividing to the unperturbed velocity (45a), and the
distance along the flight path is divided by the
shear length:
the aerodynamics of the aircraft appears through
the parameter u defined by:

pE2n/Ab=-m/{af{a - b/U*) } = U2 /kgl C, (a )cos?y,

[ o LY (46)
where we have used (32b,c), with the simplification
of thrust independent of velocity fi =0=f, in (33)
and form drag much smaller than induced drag, both
of which apply approximately for an aircraft in



the landing configuration, wheny is small and the 1ift
coefficient is about unity; using k=1/1A for
the polar coefficient, (46) simplifies to u=w2U2A/
/9% " UZA/R. Taking a windshear length £ =2000 m,
the susceptibility parameter u takes typical values:
(i) u=1.2 for a light aircraft (approach speed
U=20 m/s, wing aspect ratio A=5); (ii) u=5.4 for
a jet fighter {(U=60 m/s, A=3);(iii) u=10 for a
large jet transport (U=50 m/s, A=8). The
susceptibility parameter also appears in the
dimensionless airspeed perturbation:

Q(X) ={q(€) +u(E)}/U=P(X) +A sin(2mX), (47)

which is the sum of the groundspeed (44) and
longitudinal wind (42); the transverse wind (43)
appears in:

R(X) =0, (E)/G=1=-2 Q(X) - B sin(mX), (48)

which is the relative change in incidence required
to exactly cancel the phugoid mode induced by the
windshear.

We have plotted in Figure 6 the phugoid mode
compensation curves, for a windshear with
longitudinal wind amplitude A=0.3 of the approach
speed, and transverse wind amplitude corresponding
to a decrease of incidence by a factor B=0.1. The
curves show that, for a large jet transport u=10,
incidence (bottom) must be decreased in the headwind
phase and increased in the tailwind phase, giving
(middle) a large initial increase in airspeed
followed by a decrease in airspeed, leading (top)
to small groundspeed change overall. As the
susceptibility parameter becomes smaller, for a jet
fighter unv5 or a light aircraft pnv1, the exact
compensation of the phugoid mode involves (top) an
increase in groundspeed in the tailwind phase of
the windshear, implying (middle) an increase in
airspeed in the headwind phase, and (bottom) a
delayed change from pitch-down to pitch-up.

V. Straight flight path from an
arbitrary initial velocity

Cancelling the phugoid mode, so as to keep on
a straight flight path, is an objective not only in
the case of an approach to land through a windshear,
but also in other situations of interest in
aviation. For example, an aircraft which starts a
dive towards a target of opportunity, should remain
on a constant glide slope for accurate tracking; in
the case of emergency landing in a clearing in
otherwise cluttered ground, it is important notonly
to keep on a straight approach path but also to
stabilize the velocity. In both cases, if the dive
is started at a velocity distinct from the steady
flight speeds, the compensation of the phugoid mode
will require a suitable pitch control schedule, with
the incidence changing as velocity approaches the
steady flight speed along the constant slope. |If
the initial velocity is far removed from the steady
flight velocity, this is a non~linear-stability
problem, which requires an exact solution of "the
longitudinal equation of motion [20-22], in the
present case (31). The linearization of the problem
is possible only if the initial velocity is close
to the steady flight speed. In order to overcome
this limitation, we solve first the non-linear
problem, and then consider the linear approximation
as a particular case.
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The steady flight speed{s) in a dive correspond to
zero acceleration or total force in (31), i.e., are
roots of the bi-quadratic expression:

0 =al" - fU? + b; (49)
the roots are real and positive:

U= (f+A)/2a, A% = 2 - hab, (50a,b)
if the discriminant {50b) is non-negative., The
implication is that steady flight is possible only
if (50b) is non-negative, e.g. the minimum thrust
for straight and level flight is given by f2=hab,
which implies, from (32a,b,c) with f] =0==f2:

(fo+siny-K cosy)? = bk Cof cos?y. (51)
In the case of level flight Yy=0 and a symmetrical
lift-drag polar K=0, this leads to the usual
expression f =T/W>2/Cps k for the minimum thrust
-to-weight rStio required to sustain steady flight
[23]1; the formula (51) extends this result to a
non-symmetric polar K#0 and a dive Y>>0 or climb
Y<0. The condition A=0 specifies the minimum .
drag velocity:

2 _ 2 A c (=
Umd-f/Za-Uo(fo-+snnY K cosy) CL(aO)/ZCDf, (52)
in a dive; in level flight y=0 for a symmetric

polar K=0, we have Uyg=Ug since at the minimum
drag condition the form and induced drags are equal

" 2 .
ch"k CL. In general:
2 _m2oy?
u = (V2+u2)/2, (53)

the minimum drag speed squared is the arithmetic

mean of the two steady flight speeds, implying that

the higher steady speed is closer to the minimum

grag %Psed than the lower steady speed U+*-Umd <
md -°

The total force (31) is given in terms of the
steady flight speeds by:

F(U) =-a(u? - U3) (U? - U2) /U2, (54)

and causes an acceleration F>0 for velocities
between the steady speeds U.<U<U,, and a
decceleration F<0 outside U<U_, or U>U;. The
implication is (Figure 7) that the higher steady
flight speed is stable, because a velocity
perturbation below (above) it is followed by
acceleration ( decceleration) towards it; it is
seen in the same way that the lower steady flight
speed is unstable. The acceleration (31) can be
puted into the form:

du/dt = (dU/dE) (dg/dt) = U dU/dE, (55)

where £ is the coordinate along the flight path.
The equation of motion (31), in the form:

d(U?)/dg = -2ga (U* - U2) (U* - UZ) U2, (56)

is integrated readily [24] for the variable u?,
viz.:



- 1/ (1-u%/u?)
U(E)Z-Uﬂ A

2_yy2
L ]
() 2-yz] 1/ W3/u2=1)
X | 57)
2112
s

exp (~2gak) = x

where Uy =U(0) is the initial velocity. The formula
(57) gives velocity as a function of distance, e.g.
at along distance §+x, either U>U, or U-U_+= ,
i.e. the velocity either approaches the upper U,
steady flight speed, which is stable, or diverges
from the lower steady flight speed U_,which is
unstable.

We could determine similarly £24] velocity as
a function of time U(t), or the effective angle of
incidence as a function of time 8(t) or distance
8(E). The latter is the pitch control law which
exactly balances the phugoid mode induced by
initial conditions. All these profiles are
interrelated, e.g. for flight away from the stall
the 1ift coefficient_is a linear function of
effective incidence anC, (8) vU™2 and varies (30)
like the inverse square 6f velocity thus (57)
implies the following pitch control law:

1/8(8) - 178, |1/ (178,78,
exp(~6/2) = X
L._1/90-'1/9_'__-1
Nrete) <178 |1/ 01041
x : , (58)
e - i
178,176 |

where distance along the flight path is measured on
the scale 2=2ga. In the initial stages of the
perturbation, i.e., when the velocity and incidence
are still close to the initial value and far from
the steady value:

(U2 -u2) << Wi-u2)?, (8-8,)%<< (8,-0.)%, (59a,b)

the velocity (57) and pitch {(58) control laws
simplify respectively to:

{uE) ) =u§{1 + (ui/ug -1 - Uf/ué) (1 -e5%)y,
{60a)

8(8) =0, {1+ (1-8,/6.)(8, /0, -1) (1 -e ") };  (60b)

for £=0 we have U(0) =Uy and €(0) =6 _, but for
£+ we do not have U(E) Uz , e(g)-9e¢ because
the approximation (59a,b) does not hold. It is
clear from (60a,b) that L=2ga is the lengthscale
of initial convergence towards stable equilibrium,
or divergence from unstable equilibrium. In the
thrust law (33) with f, =0, the term f; U® is the
thrust loss relative to the static thrust f,, due
to increasing a velocity. It cannot exceed the
static thrust-to-weight ratio, which ranges from
0.2 for a large jet transport to over unity for a
high-performance fighter. Taking f Ué’bﬂ.l -1.0,
the first term is usually much larger than the
second in (32b), so that the lenghtscale 1/%=2ga"
'uaﬁw(mz-zm)xgmé,is£=5kmforalame

jet transport at Uy =100 m/s, and £=2 km for a
jet fighter at U°=200 m/s.

The evolution of velocity and incjidence
normalized to the minimum drag values U=U/Upg,
§=06/0,4 are plotted as function of distance
normalized to the lengthscale XZ£&/% in Figure 8.
Since the higher steady flight velocity cannot by
{53) exceed vZ=1.41 times the minimum drag speed,
we consider the scale U, EUy/Und=1.2 which implies
a lower steady flight speed U_=U_/Uyg=0.75; the
initial velocity is given twelve values, in 0.05
steps from0.65 to 1.35;the incidence normalized to
the minimum drag value is the inverse square 8=1/
/0% of the velocity so normalized. The curves show
that in order to compensate the phugoid motion
exactly, and keep on a constant glide slope; (i)
there is a very fast divergence towards the stall
below the unstable steady flight speed; (ii) there
is a relatively rapid convergence towards the
stable steady speed, if starting close above or
below it; (iii) the convergence to the stable
steady speed is slowest if the initial velocity is
close above the unstable steady speed, with the
response curve having an inflexion as the minimum
drag speed is crossed.

The author acknowledges the contribution of
A.J.N.M. Aguiar, who did the computing work
necessary to obtain the plots in Figures 6 and 8.
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Legends for the figures

Figure 1: A wind increasing (decreasing) upwards
increases (decreases) 1ift relative to an uniform
wind with the same mean velocity.

Pigure 2: Ratio of stalling speed V; in the
presence of atmospheric disturbances to the stalling
speed in still air Vg, as a function of the
disturbance intensity G.

Figure 3: Change of incidence Ao due to an
atmospheric disturbance, as a function of the
disturbance intensity G, for three values of the
initial effective incidence.

Figure 4: Ratio of airspeed in a perturbed v* and
still V atmosphere, as a function of vertical
acceleration, for three values of disturbance
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intensity corrected for incidence change.

Figure 5: Aircraft flying on a constant glide slope,
in the presence of longitudinal and transverse
winds, by using pitch control to compensate the
phugoid mode.

Figure 6: Groundspeed (top) and airspeed (middle),
normalized to velocity in still air, and relative
incidence change (bottom) between windshear
conditions and still air, as a functionof distance
along flight path divided by the length of the
windshear. The curves specify the phugoid motion
compensation required to keep a constant glide
slope, for aircraft with susceptibility parameters
ranging from 1 to 10.

Figure 7: Drag curve as a function of velocity,
indicating the minimum drag speed, and the stable
and unstable steady speeds.

Figure 8: Variation of velocity (left) and
effective incidence (right) normalized to the
values at the minimum drag speed, as a function of
distance along the flight path divided by length-
scale. Convergence to the stable condition (+
subscript) and divergence from the unstable
condition (- subscript) are represented for twelve
initial conditions, assuming flight on a constant
glide slope with exact compensation of phugoid
mode.
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