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Abstract

Quasi-optimal real-time feedback guidance laws
have been developed for three-dimensional minimum-
time interception of a fighter aircraft. The technique
used is derived from singular perturbation theory
(SPT) with a realistic time-scale separation between
different state variables. Two feedback control laws
have been developed. They are based on two sets of the
state variables.

In the first one, the state vector is split in four
distinct time scales, namely in order of increasing
speed: horizontal relative position x and y, specific
energy E, azimuth angle ¥, altitude h and flight path
angle y. A linearization of the dynamic equations
associated with the fastest variables h and y, used in
conjonction with the reset technique, allows a feedback
control law, uniformly valid in the whole flight
envelope for a three-dimensional interception.

In the second one, the same time-scale
decomposition as above is used, but the state variable £
is replaced by the kinematic velocity V. In order to
improve the accuracy of the final interception, where
the SPT fails, different techniques are then proposed.

The obtained control laws are of closed-loop type
and can fulfil terminal constraints on interceptor-
target distance.

Three sets of three-dimensional interception
examples covering the whole range of azimuth angle x
and a large range of speed V and altitude h have been
computed by the two above methods.

Numerical results have been compared with the
exact open-loop optimal control solutions obtained by a
projected-gradient optimization algorithm.

The trajectories provided by real-time guidance
control laws are slightly less accurate than the optimal
ones, but the computation times are very small and are
compatible with real-time on-board computer
applications.

1. Introduction

An improvement of the performance management
could be obtained for combat aircraft by computing
optimal guidance laws, in real-time on-board
computers. The flight path optimization involves non-
linear optimal control, and the exact solutions are only
available by using non-linear programming techniques
which require a large amount of calculations, and so
are not suited for on-board real-time computation of
optimal flight paths. For this reason, research in quasi-
optimal flight path, with reduced time-consuming
computations, remain an interesting domain for
investigation,

The present paper is concerned with the three-
dimensional interception manoeuvers, Although this
subject has required the attention of many studies,
quasi-optimal guidance laws,uniformly valid for the
whole flight envelope, with low computational cost,
have not been available up to now.
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Among the various approximations techniques,
the singular perturbation theory (SPT)10 has been used
successfully and provides simplified control laws, in a
closed-loop form, suitable with on-board real time
computationl-7. Nevertheless, few comparisons have
been made with the "exact” optimal solutions in order
to quantify the accuracy of the obtained solutions5,7. In
a previous study?, an application of SPT, based on a
realistic time-scale decomposition, has provided

idance laws for vertical interception trajectories.
%l;mparison with exact open-loop optimal solutions,
derived from an iterative numerical method based
upon a projected gradient technique, has shown the
quasi-optimality of the obtained guidance laws, a
better than 1% accuracy has been achieved for the
performance index. Moreover, those guidance laws
were uniformly valid for the whole flight envelope and
were suitable for on-board computers.

The objective of this paper is to extend the
previous technique, based on SPT, in order to develop
quasi-optimal guidance laws for three-dimensional
mimimum time interception and for on-board computer
application, and valid for a large flight envelope. Two
control laws, of closed-loop type, are derived from two
sets of state variables, by using a realistic time-scale
decomposition. A general approach is proposed in order
to improve the accuracy of the final interception, where
the SPT fails.

The approximate solutions are then compared in
numerical simulations with the exact ones provided by
a numerical gradient technique. :

2. Optimal aireraft trajectory formulation

The aircraft is assumed as a point mass model,
constant mass, and the motion is referenced to an
inertial frame in a flat earth with constant gravity.

The state variables of the aircraft are the
horizontal coordinates centered at the target airplane x
and y, the aircraft velocity V or the specific energy E
defined as E =h+ V2/2g, the path azimuth angle x, the
altitude h and the flight path angle y. The control laws
are developed with the assumption that the target is
flying with constant velocity V7 at constant altitude
hy. :

The thrust F is directed along the flight path with
the maximum value F given in a two-dimensional
table Fy(h,M). The aerodynamic polar is assumed to
have conventional parabelic form: C,=Cyx,+k C;2
where C,, and k are tabulated functions of the Mach
number M.

The control variables are the load factor n,
defined as n, =q S C,/mg, where g=p V2/2 is the
dynamic pressure, and the bank angle n. For
interception trajectories considered in this paper,



thrust is assumed to be always set at its maximum
value Fp.

4 In the following, dimensionless variables will be
used: -
i=gtla,, T=gxlay2, §=gylas2, h=ghlas2, V=Via,,
F,,,:FM/mg, E=Egla,2, where qa, is a reference sonic
velocity. Dropping the symbol () for simplification, the
aircraft equations of motion are given by:

(la) x=Vecosycosx-Vr
(1b) y= Vcosysiny
(lc) E = VWy-D,-Dyn2)
(1d) X =n,sinwVcosy 1)
(le) k= Vsin ¥
(1) § = (n, cos u-cos YWV
with D, = q8Cyo/mg
Dy = kmglgS.

Using the velocity V instead of specific energy E,
we have the same equations of motion, except that the
third equation of (1) is replaced by:

(1c") V=Fy-Dy-Dyn2-siny

The problem consists to find the optimal control
laws n,, p in order to minimize the performance index:

4
J:J dt=1 (2)
o f

subject to the following state and control constraints:

Cz min = Cz = Cz max

Nemin S Nz < Nzmax

3)
qg=pVi2s 9max

M= My,

AReduced altitude h Aircraft flight envelope

\\ Outer solution

Fig. 1 - Energy-climb profile kg and velocity-climb
profile hy for minimum-time interception.

_The initial state vector of the aircraft is fully
specified, and for irnterception problem, the final
requirements are:

) =0, ) =0, hitp=hy (4)
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A typical combat aircraft model, with high
performance level, will be used in numerical
applications. The flight envelope of the model is given
in Fig. 1,

3. General outline of guidance law computation

3.1. Singularly perturbed optimal control problem

In what follows, SPT is applied to two sets of state
variables: the first set uses the state variables as
described by equations (1), the second one uses almost
the same set,with the exception that the specific energy
E is replaced by velocity V.

For the first set, the equations of motion (1) are
written in the following singularly perturbed form:

2 =Vecosycosx-Vr

y= Veosysiny

cE = V(F,-D,-Dyn2 5)
e2x = n,sinw/Vcosy

3k = Vsiny

e3y = (mg cos u-cos y)V

where ¢ is a "small” parameter which is artificially
introduced to separate the time-scales between the
state variables,

In this form, the aircraft dynamic is thus ordered
in four time-scales, respectively from the slowest to the
fastest one as follows: the relative horizontal
coordinates x and y, specific energy E, azimuth angle x,
altitude h and flight path angle y.

For the second set, the same time-scale
decomposition is considered, and the equations of
motion, in a singularly perturbed form, are:

£=Vcosycosy-Vrp
y= Vecosysiny
eV =Fp-D,-Dyn2-sin
. m. 0 17y Y (6)
eX = nysinpw/Veosy

e8h= Vsin y

e3y = (n,cos p - cos V)V
In the following, the method is described only for

the first set of state variables, the aglplication to the
second one can be done straightforwardly.

To solve the optimal control problem defined by
(2) (3) (4) (5), the Hamiltonian is formed (by neglecting
terms taken into account the constraints on state
variables and on controls (3)):
H=1+4 ) (Vcosycosx-Vr) + Ay Vcosysiny...
vt Mg V(Fpy - Dy -Dy n2) + Aynysinp/Veosy ... (7)
ot Mg Vsiny + Ay (n; cos p-cos YWV

where the adjoint variables Ay Ay, AE, Ay, Ap, Ay are
given by the differential equations:

he=-0HBx =0 My = Vs
Ay =-9Hlay=0 A=,
e AE = -aH/3E|s with Mg, =0 )
2 Ax = - aH/aX A, =0
3 Xy = - 3H/oh|g M= vp
¢3 Xy = -aH/ey Ay, =



where vy, v, and vp, are arbitrary constants.

The optimal control laws (n,*, u*) must be chosen
in order to minimize the Hamiltonian (7), that is:

(n*, u%) = Arg {Win H(X, A\ ng,p) (9)

2,1

where X is the state vector, A the adjoint vector, with
components: X = [x,y,E,x,h,yL,A = [D.90. 90 V- SV V0. 0% B

. Let us notice that the Hamiltonian, along a
optimal trajectory, is identically equal to zero:

HX* A*, n,* p¥) =0

This property is used to derive optimal solution in the
singular perturbation approximation technique.

3.2. General outline of the method

In order to obtain approximate guidance laws, of
closed-loop type, and valid for a large flight envelope, it
is necessary to modify the original zeroth-order
solution derived from SPT, by adding corrections based
upon considerations about first-order approximations.

A complete guidance law is obtained by using the
following steps:

i)  Computation of zeroth-order solution by SPT,

ii)  Closed-loop control law for "initial" and "outer"
solution,

iii) Final control law,

iv) First-order corrections.

i) Zeroth-order solution by SPT

A zeroth-order solution of the singularly optimal
control problem, given by (5) (7) (8) (9), is obtained by
solving firstly the reduced problem which is defined by
setting £ =0 in equations (5) and (8). The so-obtained
solution is called outer solution, or reduced-order
solution. This outer solution introduces discontinuities
on initial and final conditions on the “fast" variables,
that is on E, ¥, h and y. The "matching" on these
variables is obtained by introducing three successive
"boundary-layers”, each of which is related to a time-
scale among the fast variables. A composite control
law, uniformly valid from initial time to final time of
interception, can be obtained by a superposition of the
control laws obtained from reduced-order solution and
"boundary-layers" solutions.

Thus, a typical composite control law ugp(t) can
be written in the following form:

3 3
uep®= 2 & X@E)) + TXO+ Y T X)) (10)
i=1 i=1
The used symbols in this equation have the following
meaning: u={[p,n;}, X is the state vector, the subscript i
is related to the ith "boundary-layer", t; and o; use the
transformation variables related to the corresponding
boundary-layer (v; = (t-to)/ei, 0; = (tp-t)/ei, the symbol &
is related to the initial boundary-layer, i is related to
final boundary-layer, i is related to the outer solution.,

. The "boundary-layers” controls #1; and &; satisfy,
in principle, the following asymptotic convergence
properties:

eim 2 X(gy),v) = XL
T —>® (11)
Cim  i(X(o),0) = TX(p)

0; >

ii) Initial and "outer" control law

A closed-loop control law is obtained by noticing
that, at initial time t=t,, the "final boundary" controls
u{(X(0;),0;) are neglectable and the control is given by
the innest boundary-layer term, that is:

ucp (to) = 43(Xo) (12)

where 03(X,) is, for the case in study, the control
related to the boundary-layer equations on altitude and
flight-path angle.

Thus, by replacing the initial state by the current
state X{(#), we obtain a closed-loop control law which is
uniformly valid along the flight path, with the
exception of a neighbourhood of the final conditions.
The reason for this simplification stems from the
asymptotic convergence properties of the boundary-
layers controls, given by (11). This control is named
"reset” control.

iii) Final control law

At the vicinity of the final conditions, the above
control law is no more suitable, and the final boundary-
layer control, given by the last terms in (10) should be
used, in order to achieve final desired conditions.
Nevertheless, as the final "boundary-layers" controls
are asymptotically stable in inverse time, their
application in direct-time would provide inaccurate
final conditions.

A particular technique is suggested in order to
circumvent this problem.

iv) First-order corrections

Finally, improvements of the closed-loop
guidance laws can be obtained by taking into account
some first-order correction terms.

A more detailed derivation of the guidance laws,
in a closed loop form, is described below.

4. Closed-loop control law for three-dimensional
interception

4.1. Zeroth-order control laws

Until further notice, the following statement is
available for the two previous state variable sets.

4.1.1. Outer solution

The reduced-order solution, obtained by setting
£=0in(5)(8)is given by:
‘70 = Vinax
by, Ey = arg #aéc(V) with Fp,-Do-Dy =0
Yo = - sinl (Vpsing V) (13)
Vo=0, ip=1 fi,=0
Ayo = €08 X/ (VT cos Xy - VO)
X-yo = sin{/(Vreos Yy~ Vo)



where w = tan-1(y/x) is the horizontal projection of the
line-of-sight angle (Fig 2).

The outer solution is defined by a point in the
(h,V) diagram (Fig 1) and corresponds to a level flight
at maximum speed Vy, = V,4x. In horizontal
projection, the "outer solution" is a "collision"
trajectory type (see Fig 2).

Fig.2b - Geometry of three-dimensional collision
trajectory: Vpsin g = V cos i sin(y - ¥).

4.1.2. First initial boundary-layer (E or V
transition)

This boundary-layer connects the initial value
Eo(resp. V) to the outer solution Ey(resp. ;).

The equations are obtained by using the
trangfonnatxont = t/einto (5) (6) (8) and by setting
e=0.

The solution differs here according to the state
variable set.

The analytic solution is given by:

a) Time-scale decomposition with E variable

Xe = Yo

'ITO = arg hmax {V (FM - Do - D;)/(Vo - V)}E=E current
(

YE=0, fg=0, fg=1
Xe= - (Vo - VoV, - Vrcos T)VE(Fm - Do - DDa=7g}

b) Time-scale decomposition with V variable

]

Xo
v =arg ;lnax V(Fp-Dy- D1)v=v current

fod]

14

[

&

_ _ (15)
yv=0, jy =0, ipy =1

Ay = - (Vy- VIV, - Vi cos To)F - Do - D=}

In (14) and (15), the symbol (0)g (resp. ()y) denotes
the first boundary-layer solution.

This hg (resp. hy) profile is given in Fig 1 for a
typical aircraft model. Let us notice that this figure
does not show the original profile, computed from the
relation (14) or (15), but a smoothed profile which is
deduced from the original one by a classical polynomial
profile which is deduced from the original one by a
classical polynomial smoothing technique. It can be
seen then that the discontinuity on altitude in
transonic zone has been cancelled 7. It turns out that
this smoothing has no effect on degradation of
performance of the aircraft, as can be shown in
numerical simulation (section 5).

This hg (resp. hy) profile is independent of the
target characteristics, so it can be computed off-line
and preregistered as a function of E (resp.V).

4.1.3. Second initial boundary-layer (y transition)

The equations are obtained by using the
transformation 12 = t/¢2 into (5) (6) (8) and by setting
e=0.

The analytic zeroth-order solution is given by:

a) Time-scale decomposition with E variable

hy = arg puin {Hgo (h,Y) X VI(2 - VIDy (VZDy)y=Ty 1}
with: _ -

Hgo (hx)=[V,- Veos(y-Xo )W(Vy-VrcosT,) ...

et Xpgo V(F - Do - D] (16)

Yx =0

Ky = 2 Rgo (V2D))h=Fy tg iy

fiy = sign(Xo - x).tan H{H g (hy, xW{-Xigo (VD14 =1 }#

Rz = Vcos fiy

b) Time-scale decomposition with V variable

hy = arg pin {Hya (h, V(2 Dy /D a=Fyl}
with: - _

Hyo (h,x)=[V,- Veos(x-Xo W(V,-VreosX,) ...
v+ Ayo(Fp - Dy - DY) (17)
?x =0
Xx =2 XVo (VD)p=Ty g By
Hy = sign (% - X)-‘a”'l{HVo (Ex,x)/[- XVo (Dl)h=Fx]}5
fiox = lcos iy

In (16) and (17), the symbol C)x denotes this
second boundary-layer solution on azimuth y.



4.1.4. Third initial boundary-layer (h and y
transition)

For this initial boundary-layer, the symbol () is
used. The equations are obtained by using the
transformation t3=+¢3. By setting £=0, the first four
equatignsinx,y, Eor V, y provide: £ = x,, = yo, £ =
EolorV=V,),X =1%o ané the two other give:

dhidvy = Vsiny

(18)
dildvg = (R, cos {1 - sin WV

In this boundary-layer, the optimal control laws
are given by

Azt = arg min H(X, \, ng, p)
"

ng,

(19)

where H is given by (7a) and x, y, E (or V), y, Ay Ay Ap
(or Ay), Ay variables are frozen at their initi;(l values.

It can be noticed that this boundary-layer control
problem (18) (19) is equivalent to the system (19) with
the infinite-horizon performance index:

J= J |1 +Hx(h,y,nz,p)ld¢ (20)
[
with Hyh, y, nz, 1) = (Vy- V cos y cos(x, - Ko WAV, - Vpcos o).
wr + Xggo V(F - Dy - Dy n2) + Kyg ny sinp/Veos y
To obtain zeroth-order feedback control laws for
fi; and fi, the boundary-layer equations (18) (20) are
linearized about the "outer" solution which is defined
by the azimuth boundary-layer.
The linearization of (18) and (20) provides then:

ddy
iz A8y + B8u

d
B @1)
A * Q@ S &y
— Teo T
8J = L @Gy &u’) g (su)‘ha
with:

b~ Z)( = 'sz

6y=v»?] Bu = p-‘u‘]
X X (22)

2
e=(37), 5= (5), == (53),

The optimal control variable #, and {i for the
linearized boundary-layer is given by the well-known
solution of the quadratic linear infinite horizon
problem:

82 = - R-V(BTP + ST)éy (23)

where P is the non negative definite solution of the
algebraic Riccati equation:

PA+ AT+ Q-PBRBTP =0 (24)
with A= A-BR1ST, Q=Q-SR1ST

For the zeroth-order boundary-layer problem, an
analytical solution of Riccati equation can be obtained.

4.1.5. Final boundary-layer

For minimum-time interception, the final
conditions on fast variables involve only altitude, to
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complete zeroth-order solution of the singularly
perturbed optimal problem, we have to introduce only
one final boundary-layer on the altitude and flight path
angle variables.

For this purpose, the time-scale is stretched by
using the transformation o3=(tr - t)/e3 in (5). The
equations obtained have a simi{ar form as for the
initial boundary-layer equaticns (18) (20). The zeroth-
order control ¥ for the final boundary-layer control is
obtained by linearizing the equations about the outer
solution, given by (13). The asymptotic stability is
obtained by a backwards integration and thus the
linearized optimal control is given by (23) with the non-
positive definite solution N of the algebraic Riccati
equation (24).

4.2. Final control law

In order to achieve final interception condition on
altitude, the final control is obtained by using the
following approaches:

1) The final flight path is first computed by a
backwards integration of the complete motion
equations (5), with the control defined as above
for the final boundary-layer, from final conditions
up to the outer-solution. The obtained flight path
is then stored and a simple guidance control law
is u;ed, in direct time, to follow the stored flight
path.

The computation of unknown final state
;afiables, for backwards integration, is described
elow.

2)  An other technique for final control is to apply a
three-dimensional collision-type control law
when the relative range to the target becomes
below a specified value. The geometry of such a
three-dimensional collision trajectory is shown in
fig. 2b.

Computation of ﬁnknown final state variables (short-
range intercept)

The statement is described, as previously, for the
first set of state variables (with E), the afplication to
the second set can be done straightforwardly.

For minimum-time interception, the following
final variables are fixed : xf = yr=0, hy=hr. For the
remaining state variables (x, y), their fina] values are
given by the outer-solution, that is: Ef = Ko, Xf = Xo,

Yr=Yo= 0.

Nevertheless, it can be noticed that, for short-
range or medium range interception-trajectories, the
flight-time is not longer enough so that the outer
solution, defined by E,, cannot be reached.

In order to take into account short-range
trajectories, the final conditions Ef, X and yr are
computed by writing that the total relative distance,
which is covered from initial position to final
interception, is equal to variation of energy level from
itsinitial value E, to the final value Ef.

The total relative distance to be covered is defined
as the sum of relative horizontal distance and the final
climb (or dive) from altitude given by outer-solution
he(E) to the target altitude. The trajectory is assumed
to be of collision-type for each of both phases.

With the above assumptions, the final conditions
Ef, xrand yrare given by the relations:



P E 2 dE:q)"[El’xf]
o VIF -D —Dn
m e R
E .
1 Vsiny
Y=Y, = =Y, J dE =¢ IE, x|
E ) 2
° V[I'm—DO—Dlnz
£ (25)
_ E, VVi-vE
hl.—-hF(El)z J dE ...
i E 2
o VIF -D ~Dn
m o Yzge
E
V’r
Lo ¢h[El,Ef], cosy, = 7
f

4.3. First-order SPT correction

It can be seen in numerical examples that the
zeroth-order solution, given by boundary-layer control
%22) (23), is unable to follow the energy-climb profile

E(E) (or ky(V)), because the nominal flight-path angle
Yy is identically zero. The real flight path angle is
undoubtedly different from zero, since altitude changes
in the energy climb profile (see Fig. 1). To improve the
accuracy of the control law, first-order asymptotic
expansions could be performed for the outer-solution.
Nevertheless, we adopt here a small correction term
which has been successfully used in a previous study?7.
The zeroth-order boundary-layer control (22) (28) is
still used, but the nominal value ¥y is replaced by its
first-order asymptotic expansion term which can be
written in the form:

1 (d)TE .
NV )<
where the (dhg/dE) term can be computed easily by

numerical differentiation along the kg profile (see Fig.
1.

(26)

4.4. Summary of the closed-loop guidance law

A closed-loop guidance law, valid for a large flight
envelope three-dimensional interception is obtained by
using SPT with some further improvements which
have been Froposed in order to achieve the final

conditions of interception where the original SPT fails.

The closed-loop control law requires the following
step of calculations (as previously stated, the solution
is related to the first set of state variables, the

stat)ement with the second set is similar to fhe first
one):

1)  Outer altitude profile Ag(E) (see (14)).

2) Final values Ef, X1, yr(see (25)). _

3 ?‘lxg)t boundary-layer altitude profile hy(E) (see
4) '('Esn.xinal" values of controls fiy, 7i; defined by
5)  Closed-loop control given by (22) (23) (24) (26).

6) Change from previous control to final control can

be performed very simply: it is obtained by
changing nominal value of y, and fiy, when E =
E; (see (25)), by the values o tained( from three-
dimensional collision trajectory geometry, given
in fig. 2b.

5. Numerical results

Numerical results have been performed with the
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closed-loop obtained, by using the two sets of state
variables described above.

The solutions obtained with both control laws are
defined respectively by SPE for the control related to
the first set (that is with E variable), and by SPV for
those related to the second set (with V variable).

In numerical simulations, the target trajectory is
assumed to be a level flight with constant speed and
constant altitude (V=200 m/s, hyr = 12000 m).

Several initial conditions have been considered
for the aircraft including high and low altitude, with
large offset of line-of-sight.

In all the considered cases, approximate closed-
loop control laws provided very accurate final
interception conditions, the final relative range to the
target remains below 100 m.

Those solutions have also been compared with the
optimal exact numerical solutions which are given in
an open-loop form by a projected gradient algorithm,
This last technique allows to fulfil all the constraints of
the optimal atmospheric flight paths, given by (3), by
using multiple adjoint vectors9.

In comparison with the optimal exact solution,
both the closed-loop control laws (SPE and SPV)
provide a better than 4% accuracy on the time of
intercept as shown in Table 1.

6. Conclusion

Sub-optimal guidance laws have been developed
in this paper for three-dimensional interception
manoeuvers. The technique used is derived from
singular perturbation theory. In opposite with many
studies on this subject, a realistic time scale separation
has been used with two sets of state variables, where
altitude and flight path angle are simultaneously
treated in a same time scale. A closed-loop control law
has been obtained by linearizing the boundary-layer
equations about the "outer” solution defined by an
energy-climb profile or velocity-climb profile.

With the expedient of "control reset" whereby
each current instant is taken as an initial time, and
with convergence properties of boundary-layers, the
control laws apply everywhere, with the exception of a
vicinity of the final time when terminal condition on
altitude is specified.

To satisfy this constraint, the control law is
switched to a linear feedback guidance mode about a
stored trajectory in the neighbourhood of the terminal
state. This latter trajectory is computed off-line by
backward integration of dynamic equations with the
suboptimal closed-loop control obtained as above.

These sub-optimal laws have been compared, in
numerical simulations, with the exact open loop
solutions, obtained from an iterative numerical method
based upon a projected-gradient technique. In most
examples, a better than 4% accuracy was obtained for
the yerformance index. The computation time is very
small, and is compatible with real-time on-board
computer applications.



TABLE1 COMPARISON BETWEEN SEVERAL SOLUTIONS
FOR MINIMUM-TIME INTERCEPTION

Main parameters
3- = interception time
f= relative distance to the target at ¢
yf= terminal flight path angle of the interceptor.

Abbreviations
E: singular perturbation with E-transition first boundary-layer solution
SPV: singular perturbation with V-transition first boundary-layer solution
gradient: optimal solution obtained by a projected-gradient technique

Target Altitude hr =12000m; velocity Vy = 200m/s
Interception Vertical plane Three-dimensional
t .
ype High altitude interception Pow alt)tx.lde
interception
Axg(m) 25000 25000 15000 10000 20000
Initial | Aygm) 0 5000 0 0 Y
aircraft hotm) 12000 10000 10000 10000 2000
conditions | V (m/s) 313 300 300 300 300
Xol®) 0 0 -90 -179 -90
Yol 0 0 0 0 0

Final parameters | dy Yf ‘) i Yf i dr Yr U dr Yf t ds Yf
(s) (m) ) (s) (m) ) (s) (m} ) (s) (m) (¥] (s) (m) )

Optimal solution | g5 5 | 3 | 95 | 102 5 | 205| 8 | 33 | 32 |1054] 97| 31 |1235] 7 | 40
(gradient)

SPE solution 98.5 34 10.8 | 1046 | 49 58 | 89.7 33 169 | 107.2 | 57 173 (1277 | 17 24.8

SPV solution 99.1 11 143 [ 1036 | 14 11.3 | 91.3 27 14.6 | 1055 | 27 25 128.1 8 26.3

Figure n® 3 4 5 6 7
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