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Abstract

Investigated is the problem of minimizing an
airplane's time to point and maneuver against a
target in high angle-of-attack flight. Aerodynamic
forces and moments are modelled as wind tunnel
data. The singular perturbation approach is used
to develop nonlinear control for minimizing the
time to point, maneuver and shoot in a head-on-pass
engagement for the T-2C airplane. The singular
perturbation solution is achieved with point,
maneuver and point control strategies. The first
point strategy snaps the aircraft into an optimal
angle-of-attack and pitch rate. The maneuver
strategy is nonlinear feedback control that
maintains optimal pitch rate and angle-of-attack
until target acquisition. The second point
strategy achieves equilibrium lock onto target for
the shooting mode. The minimum time maneuver
strategy is a chattering control. A nonchattering
well behaved nonlinear control is derived with very
near optimal time response.

1. Introduction

Modern high performance combat aircraft are
being designed to provide a new level of dynamic
maneuverability called supermaneuverability, Lang

and Francis.? The performance requirements for
such aircraft require high levels of agility and
maneuverability at high angles-of-attack {(a). The
payoff is in the ability to point, maneuver and
shoot in minimum time. The concept "point" refers
to changing the angle-of-attack while holding the
velocity vector fixed. The concept "maneuver"
refers to changing the velocity vector while
holding the angle-of-attack fixed. In this paper
we consider the head-on-pass engagement between the
T-2C airplane and a target and we examine the
feedback control problem of minimizing the time to
point, maneuver and shoot. We investigate the use
of singular perturbations, [2] - [9], for deriving
nonlinear feedback control to minimize the time.

In this application we simplify the
longitudinal model to a constant speed model which
reduces the problem to three states and only one
control variable. We examine the non-convexity of
the hodograph and the chattering control nature of
its convex hull. We derive a nonlinear feedback
control from the outer layer of singular
perturbations. This feedback solution places the
optimizing angle of attack at stall, i.e., the peak
of the lift curve slope. Feedback controls are

also derived for the two transition regions. The
first transition solution is a point strategy
whereby the angle of attack is brought to its
optimizing value, stall. The outer layer nominal
feedback control solution is a maneuver strategy
whereby the velocity vector is changed
appropriately. The second transition solution is a
point strategy whereby the airplane locks in
equilibrium onto its target for tracking and
shooting purposes.

We compare the performance of the singular
perturbation feedback solution with that provided
by the linear feedback control derived in Stalford

and Garrett10.

2. High Alpha Equations of Motion

We use a longitudinal wind tunnel model of the

T-2C airplane, Fortenbaugh“. Thrust is removed as
a control variable by requiring constant speed V.
Consequently, we have only one control 5e (elevator

angle) which we shall denote as & and three state
variables 8 (pitch angle), a (angle-of-attack)
and q ({(pitch rate). Under the constant speed
assumption, the state equations for zero sideslip

are given by Stalford and Garrett‘o

8 =q (2-1)
a = q + 53%?57 [cs Cos(8) + Cucz(a,s) + c,cz (a)q]
q
(2-2)
q = €€ (,8) + CeC (a)q (2-3)
q
Cz(a,é) = - [CL(a,G) Cos{a) + CD(a,S) Sin(a)]
(2-4)

Wind tunnel values of the aerodynamic coefficien;s
CL’ CD' Cm’ €, . and Cm are as given -in
q q 10

Fortenbaugh11 and in Stalford and Garrett
presented in Table A-1 in Appendix A. These
functions are plotted in Figure (2-1). Specific
numerical values for the T-2C airplane model are
presented in Table (2-1) and the evaluation of the
constants C; - C, are given in Table (2-2).

and are
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Table 2-1. Numerical Values for T-2C

Airplane Model

23.7 m?

5216.3 kg

9.31 m/sec?

mg = 51, 171.9 kg-m/sec?

[}

86.297 m/sec
19.811 kg-m?

2.26 m

45 00

(1.226)(0.428) kg/m® (altitude h = 7500 m)

Table 2-2. Evaluated Constants for T-2C

Airplane Model

Q= % pV2 = 1953,87 kg/m-~sec?

C, = %§g - 5.2826 1/sec
y

C, = %§ = 0.9049 (no units)
Co = & = 0.1137 1/sec

v

Ci = C,Cy = 0.1029 1/sec

Cg = g - 0.0131 sec

Ce¢ = C;Cy = 0.0692 1/sec

C, = C,Cs = 0.001347 (no units)

Co
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3. Minimum Time Performance Index

The objective is to minimize the duration of
time to control the T-2C airplane from an initial
equilibrium state at time t = 0

8(o) = B q(o) = 0, a(o) = Ay §(o) = 6, (3-1)

to a final reference pitch angle BR, zero pitch

rate and no condition on the angle-of-attack a(T)
at the final time tf = T:

8(T) = Og» q(T) = 0, a{T) and &(T) are free (3-2)
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4, Non-Convexity of Hodograph

chattering equilibrium points of the &, q
equation that maximize pitch rate q(8) as a
function of pitch angle 6. For fixed pitch angle

we study q and o as functions of o, q and
D in (a,8) space as

In this section we examine nonchattering and

8
§. We define the domain
those points spanned by ae[-8°,45°] and
ée[-25°,15°}. For varying levels of q we
consider the mapping defined by Egs. (2-2) and (2-
3) from the domain D in (a,§) space to the image

space (&,d). ‘We denote that image as R(q). For 8
= 40° Figures (4-1) ~ (4-U4) contain the resulting
R(q) for the levels q = 1.0, 1.5217, 1.582 and 1.8

deg/sec. We observe that increasing ¢ translates

the region R(q) in the positive direction of the a-
axis and nearly parallel to it. In Figure (4-1)

the origin (&,é) = (0,0) is contained interior to
the image region R(q = 1.0). This origin lies on
the boundary of R{q = 1.5217) in Figure (4-2) with
a = 15° and 6 = -11.385. It lies on the convex
hull boundary of R(q = 1.582) in Figure (4-3) with
a = 15° and 6 chattering between 8§ = -25° and § =
10°. Note that the pitch rate q = 1.582 is
therefore a chattering solution since the origin
lies on the convex hull boundary of R(1.582) but
outside R(1.582). The pitch rate q = 1.5217 is
attainable without chattering at a = 15° with § =
~-11.385 since the origin lies on the boundary of
R(1.5217). The origin lies outside the convex hull

1.8) in Figure (4-4) indicating that the

of R(q =
piteh rate q = 1.8 deg/sec cannot be sustained as

an equilibrium point of the &, & equations at ©

-3
, = uoe,
2.54
2.0 -
| ’ 0
' ;
s i 1.5 ’ ;
R s i {
ALPuL (neg? 1.0 110 'n ,‘.'
FIG. 210 T~2C €27 71104 RA"E DER WATVE DATA TOR Z0RS 3 2750 ! { H
5 | i
Thus, we are to control the system governed by the o3 [ ! ,’,
state equations (2-1) - (2-3) and render a minimum - / i | ;
to the performance index g [ [ i /
S 0.5 | / / ! {
T g { » ’# / i
€ -1 EtIH i i
= - ~ i / i H
T j dt (3-3) . o | / /
o] S 18 ¢ / A / },’ H
In view of Eq. (2-1) this is equivalent to the -2.0 / | : / ‘,"
performance index [ye / !
/
°r 5] k I/
T = j - de (3-4) /’/
~3.54 ,
0, I
~4.04 . .
01 6.0 0.1 6.2
from which we observe that time is approximately RO0T (ARD/SECH
minimized in a singular perturbation outer layer by ALPHA —— o8 Tl g Tl =g ——
maximizing pitch rate q(8) as a function of pitch s THETA4O MO 0.1, DEG/BEC
FICURE 4~1

angle 6.
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With our performance index given by (3-U)g We
minimize the time T by maximizing q(8). From (5-
2) and (5-3) we have the two analytical expressions
of q which is a function of 8, o and §&:

1 Cs; Cos(®) + C“Cz(a,é)

0.5
e a(e,a,8) = - Cos(a) [+ c,C, (a) ] (5-4)
q
-0.5
C,Cm(a, §)
1.0 q(8,a,8) = - FGCE OO (5-5)
-1.5 ¢ mq
& We maximize q over the domain D of (a,8)
2.5 subject to equations (5-4) and (5-5) being
satisfied:
-3.0
-3.5 *
q (8) = max q(e,a,8) (5-6)
404 . . a,d
“0.1° T 0.0 0.1 : 0.2
RDOT {ARD/SEC) The maximizing arguments of q(6,a,8) for a given @
ALPHR  ——— -5 el @ e s —— 10 ——1S —— 20

— et [ - E— * *
= * * “ * are denoted as § (8) and a (8).
HODOGRAPH: THETA«40 DEGREES AND Q»-1.8000 DEQ/SEC
The maximizing argument is independent of 9
FIGURE 4-4 and is exactly the stall angle of attack:

5. Singular Perturbations: Outer Layer

*
a (8) = 15° (5-7)

We assume that o and q are fast variables
compared to 6. Consequently, our state equations
(2-1) - (2-3) are now:

e =q 5-1)

This value of o denotes the negative peak of the
aerodynamic plunging force coefficient Cz(a,s),

Figure (5-1). We could have predicted this by

considering that (1) & has only a limited influence

1 ‘ on C,, (2) the quantity [1 + coc, (¢)] is near 1.0

0 = q + goor=s [Ca Cos(8) + CuC,(a,8) + C,C, (a)a]

q and is minimal over the range as?-8°,15°], (3) the
(5-2) quantity [-C“CZ(a,é)] is maximum at the stall angle

of attack, 15°, Evaluating the constants in (5-4)

0 = ‘ -
C,Cm(a,ﬁ) * CeCy (a)g (5-3) and using (5-7) we have the approximation

q
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*
q (8) = a[1 - cos(8)] (5-8)
where a = ,118 rad/sec which is about 6.76 deg/sec.
Furthermore, if we substitute this approximation
into the performance index (3-4) and carry out the
integration we obtain the approximation for the
minimum time

6

5]
T = - % [cotan (EE) - Cotan (59)] (5-9)

q‘fe)

*
The maximizing pitch rate q (6) is shown in Figure
(5-3).

The maximizing argument 6*(6) is shown in
Figure (5-2). The optimal setting varies between -
11.9° and =-11.2° for all pitch angles 6. We
obtain the following approximation by (1)
substituting (5-8) into the right-hand side of (5-
5), (2) linearizing Co (15°,8) using the wind

tunnel values and (3) evaluating the constants C,
and Cg:

5*<e) = - 11.23° - 0.664°[1 - Cos(0)] (5-10)

Equations (5-8) - (5-10) and Figures (5-2) and
(5-3) apply to the nonchattering control, that is,

the origin (a,q) = (0,0) lies on the boundary of
the hodograph but not on its convex hull, Figure
(4-2). As shown in Figure (4-3), an additional
pitch rate Aq = .06 degrees/sec can be gained by a
chattering control that spends roughly 85% of its
time at § = -25° and the remaining 15% at § = 10°.

*
In this case the maximizing pitch rate qé(e) with
chattering control is approximated by

(5-11)

*
qc(a) a(t - Cos(8)) + b
where a = .118 rad/sec and b = ,06/57.3 rad/sec.
Therefore, the chattering control reduces the time
as given by Eq. (5-9).

BELTA (DEG)
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6. Singular Perturbations: First Inner Layer

Consider 6 fixed.
* *
from (ao,qo) to (a (6), q (8)). We treat o and

q as fast variables in this transition. In this
first inner layer we assume q is a fast variable

We study the transition

as compared to a. From Egs. (2-2) and (2-3) we
have
- 1
a=gq+ Ka[cs Cos(8) + CuC, (a,8) + C,C, (a)q]
(6-1)
0 = C,Cm(a,s) + CSCm (a)q (6~2)

q

and from Eq. (3-3)



*
a (8)

ATa = do (6-3)

Re -

.
To minimize ATa we maximize a. We seek to

- - %
determine 6(a) and q(a) for each ae[ao,u (6)] so

that Eq. (6-1) is maximized

&[8(a),a(a)] = max &
8,9

subject to Eq. (6-2) being satisfied and 6 held

constant. We make the following definitions:

a(a) = CeC,py () (6~4)

q
C;Cm(a,é)

b(a,s8) = ) (6~5)
Ca Cos(8) + chcz(a,s)

c(6,a,8) = Tos(a) (6-6)
C7Cz (a)

d(a) =1 (6-7)

Cos(a)

Making use of Egs. (6-4) - (6-7), substituting q
from (6-3) into (6-2) and rearranging terms we have

a(8,a,8) = -bla,8)d(a) + c(8,a,8) (6-8)

Numerical results show that Eq. (6-8) is maximized
as follows:

. *
Case I: "o < a (§) = 15°

8(a) = -15° 1f o $ 13° (6-9a)
8(a) = -25° 1f @ > 13° (6-9b)
o *
Case II: o> a (8) = 15°
5(a) = 150 (6-10)

The function q{a) is determined from Eq. (6-2)

using the function & as defined by Egs. (6-9) and

(6-10):

a(a) = -b(a,g(a)) (6-11)

7. Singular Perturbation: Second Inner Layer

Consider 6 fixed.
% * '
the transition from (ao,qo) to (a (8),q (8)). The

We continue our study of

is treated in section 6 as being fast as
Herein, we change q from qo to

state q
compared to «a.
q(a) assuming that
(2~3) we have

6 and o« are fixed. From Eq.

q = €€ (a,8) + CoCy (@)a, (7-1)

q

280

and from Eq. (3-3)
q(a)
AT = d -
q [ q (7-2)
we seek maximum g for each qe[qo,q(a)]. We

choose 6(a) to maximize Cm(a,a). Numerical results

reveal:
case I: 9o ¢ a(a)
8(a) = -15° if o £ 13° (7-3a)
8(a) = -25° if o > 13° (7-3b)
case 1I: Yo > a(a)
8(a) = 15° (7-1)

8. Transition Regions

The hypothesis on multiple time scales cannot
be strictly verified especially in the second inner
layer. That is, large increases and decreases in

é, as needed at the beginning and at the end of the
evolution from eo to SR, cannot be produced

instantly relative to the dynamics of a and 8.
Therefore, we study the "switching times" in order
to get nearly optimal evolutions of o« and 9
while being in the outer layer.

The trajectory can be divided into three
parts:
* *
(i) transition from (uo,qo) to (a (8),q (8))
(ii)
*
(iii) transition from q = q (BR) to q = O.

nominal control region of the outer layer

8.1 End of the first transition

Consider values of the states at the end of

*
the first transition. Assume a 1is near a {(8) and
that the aerodynamic coefficients are almost
constants. From Eq. (2-3) we have

q = alb(s) + q] (8-1)

where
*
a = CeC (o (8)) (8-2)
q
*
CICm(u (8),8)
b(§) = ————— (8-3)

a

Integrating (8-1) from to to te with q, =

q(to). qp = q(tf) and At = te ~ to

aAt[

e = ~b(8) + e [b(8) +.qo] (8-4)



Consider the following control law

- *
8{q) = =25° if q < q (8) (8-5a)

-~ *
8(q) = 15° if q > q (8) (8-5b)

Using Eq. (8-5) we calculate from Eq. (8-4) the
time duration At needed for g to change from qo

*
to q (8):
. -
b = 5 an [$L81 2 B(8)] (8-6)
g, * b(8)

Using (2-2) and (8-6) we compute the evolution
induced on a:

& = [e(8) - db(8)] + d(b(3) + a,)e® (8-7)
where
. Cs Cos(e) + C“Cz(a*(e),g)
e(6) - ¥ (8-8)
Cos(a (9))
*
C,Cz (a (8))
d=1+ q (8-9)

¥
Cos{a (9))
The net change Aa in o is

Ao = [C(E) - db(g)]At + g (b(g) . qo)[eaAt -]
(8-10)

* .
Consequently, in order to bring q to q (8) at the
end of the first transition region we need to apply

control law & defined by Eq. (8-~5) as soon as

la*(8) - of 5 Ao (8-11)

8.2 Second and Final Transition Region.

We assume 6 is near 6 We seek the control

R

law that will bring q to qk = 0 at the same

instant that ¢ = 9 We assume again that the

R

aerodynamic coefficients are constant and that
*

q(8) >qy =0 (8-12)

(2-1) and (8-4) with & = 15° we
*
while q (9) is

Using Egs.

calculate the evolution of 8
changed to q =

[b(s) + q_]
26 = D&)A + O [BA | 4] (8-13)
where a
1 4 *+ b(8)
At = -3t (8-14)
q (6) + b(s)

as derived in Eq. (8-6) but, in this case, § = 159,

281

Consequently, as soon as

eR - 6 S A9 (8-15)
we apply the control § = 15° in order to get
exactly the required eR with qR = 0.

9. Feedback Law of Singular Perturbation Analysis

From the singular perturbation analysis of the
previous sections we deduce the follow1ng feedback
law for the transition from (9 529, ) to

(eR,aR,qR) where ap is free and qp =

*
(1) First Transition Region, Part I: ae[ao,a (6)]

ae[a*(e),uo]

or

q= ;(a) and la*(e) - a] > A
(a) g < qa)
3(a) = -15° if o £ 13°
8(a) = -25° if o > 13°
(b) q> ;(a)

8(a) = 15°

In this initial part of the first transitionhregion
we apply control 5§ to satisfy either q = a{a) or
Ia*(e) - a| s Aa, whichever comes first.

(2) First Transition Region, Part II

- *
= g(a) and jo (8) - al > Aa
. *
(a) a < a (B)
g(u) = -159 if a $ 13°
g(a) = -26° if a > 13°
*
(b) o> a (8)

§(a) = 15°
In this second part of the first transition

region, we apply control § wuntil the condition

Iu*(e) - a] s Ao is met.

(3) First Transition Region, Part III

q-= a(a) and Ia*(e) -a| A
(a) &= -25° if q < q (8)

~ *
(b) & = 15° if q > q (8)

In this third part of the first transition region
we apply control § until a =1a (e) and q = q (6)



(4) Nominal Control Region of Outer Layer

R T 8

* *
q=q(8), a=ac(8), 8 <68
*
(a) & =8 (8)
In this region of the outer layer we apply
*
control & until 6 satisfies 6 2 BR - AGR.

(5) Second Transition Region

A8

* *
q=q(8), a =a(8), 8298 R

R

(a) & =15°until q=0

In this second transition region we apply control §
= 159 to bring q to zero.

8 =9

(6) Maintaining R

q=0

(a) & is chosen so that Cm(a,a) = 0,
This final aspect of the feedback control law is to
maintain q = O,

Simulation Results and Comparison
with Linear Feedback Law

10.

We made four simulation runs: one with
initial and referenced pitch angles (eo,eR)

(40°,706°), one with (Go,eR) = (19°,35°) and @,
13.4°, another one with (eo,eR) = (26.7°,35°) and
a, = 15.8° and the fourth one with (eo,eR) =

(10°,35°).
assigned ©

The four evolutions converged to their
R’ Figures (10-1) (10-4). The

simulations highlight the importance of the
switching time during the transition period to
avoid oscillations on a and q that would have
led to catastrophic values for the final time. It
obliged us to reduce the integration time from 0.05
seconds to 0.0001 seconds around this critical
transition region to be sure to switch at the
required value of a or 8 (over shooting is
prevented).

We compare our results with the ones of

Stalford and Garrett‘o. In each of the simulations
the referenced pitch angle OR is reached in shorter

time, Figures (4~1a) (4-4a). Consider the
results in Figure 10-1 obtained by the simulation

run made with (eo,eR) = (40°,70°) and a, = 9°, The

resulting LFB control law and nonchattering
singular perturbation (NCSP) control time histories
are shown in Figure (10-1c¢). The LFB control is
bang-bang between the control limits -25°, 15°,
The NCSP control is better behaved. It is slowly
time varying with three brief impulses to handle
the transitions to and from the nominal outer
layer. 1In Figure (10-1d) we observe that the LFB
a time history oscillates about the stall angle of
attack a 15° while that of the NCSP control is
roughly constant during the nominal outer layer.
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We observe in Figure (10-1b) that the pitch rate
time history due to the LFB control oscillates
whereas that due to the NCSP is roughly constant
except at the transition points. The performance
of the NCSP control is an improvement over that of
the LFB control law. It arrives at the referenced
pitch angle eR a full second ahead of the

corresponding LFB result and there is no over shoot
nor nervous behavior during the evolution from 90

to OR as there is in the LFB case. Similar results

are obtained for the other simulation runs, Figure
(10-2) and (10~3).
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The linear feedback (LFB) law is forced into a
chattering type control in an attempt to maintain
the stall angle of attack « 15°. The root of
this chattering phenomenon is observed in Figures
(4-2) and (4-3) which shows that the hodograph is
non-convex. We understand that the LFB law
corresponds to a chattering type solution between §
-25° and & = 10° or 15° which uses time sharing

controls to keep locally (&.é) at the origin (0,0).
If we permit time sharing between § = -25° and §
15° we observe from Figure (4-2) by drawing a

straight line between the points (&,é) evaluated at
(a,s8) (15°,15°) and (a,8) = (15°,-25°) that this

straight line intersects the origin (&,é) = (0,0)
at almost the same value of g 1.5217 as the
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THETA (DEG)

nonchatterlng singular perturbation solutlon [+ (e),

q (9) and § (6)
-25° and §

from the dotted line drawn between the points (&,é)
evaluated at (a,$) (15°,10°) and (a,8) = (15°,
-25°) that this straight line intersects the origin

(2,q) = (0,0) at the higher value of q = 1.5817.
Consequently, chattering LFB control between § =
~25° and 10° will result in improved performance

If we permit time sharing between
10° we observe in Figure (4-3)

over that achieved by chattering between § = -25°
and 15°, However, there are differences in
performance between a LFB control which chatters
between § -25° and 15°, and the nonchattering

* *
singular perturbation solution a (8), q (8), and
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*
§ (8) which has the same g-value at the "origin-

intersection". This difference in performance is . X

g Control III: T
due to the inability of the LFB law to switch ntro 1 he n°n0hatter‘1ng*s1ngu*1ar
infinitely fast between § = -25° and 15°; here we perturbation solution q (8), a (8)
have assumed a time constant for the elevator and 6*(9)
actuator of 20 Hertz or an integration time of 0.05 ¢
seconds. Control IV: The chattering singular perturbation

solution which chatters infinitely

We consider the performance of four controls fast between & = -259 and § = 100,

with oy = 59, eo = 10° and GR = 35°,
The performances of these controls are compared in

Control I: A LFB control which "chatters" in a Figure (10-4). Their performances are in ascending
finite fashion at 20 Hertz between § order with Control I corresponding to the bottom
= ~-25° and § = 15°. curve and Control IV to the top curve. The two

lower LFB control performances would approach the
Control II: A LFB control which "chatters" in a upper two singular perturbation solutions as the
finite fashion at 20 Hertz between § time constant for the actuator approaches zero.
= -25° and § = 10°,
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11. Comment on Final High o vs. Low a Value

(high or
has no

The initial equilibrium values of a
low) before the evolution from eo to eR

influence on the final value of o after SR is

reached. It tends toward low alpha equilibrium at
infinite time. If we want

8(t) =6pfort 2T (11-1)

final

Then from q(t) = 0 and &(t) = 0 we have from (2-2)
and (2-3)

(‘1 = ——L'[Cg COS(BR) + Chcz(a’s)]

Cos a (1-2)

0 = cm(a,a) (11-3)
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Consequently, & is always negative and it will

start to decrease from a*(e) = 15°, It will always
tend to reach a low alpha equilibrium value. This
behavior is observed in Figures (10-1d), (10-2d)
and (10-3d).

12. Conclusion

The singular perturbation approach of
developing nonlinear control to minimize the time
to point, maneuver and shoot in a head-on-pass
engagement has revealed several interesting
results. First, the singular perturbation feedback
control on the outer layer is shown to be
chattering (infinitely fast) due to the non-
convexity of the hodograph. Second, a realizable
nonchattering control which lies on the boundary of
the hodograph but not on the boundary of the convex
hull is shown to have a performance which is very
close to that of the chattering control. Third,
the singular perturbation solution for the nominal
outer layer places the optimizing angle of attack

*
a (8) at stall a = 15° with no dependence on the

pitch angle. Fourth, the feedback control 6*(6)
along the nominal outer layer varies between the
narrow limits -11.9° and -11.,2°. Fifth, the
nonchattering singular perturbation solution is
shown to have superior performance as compared to
that of a linear feedback controller which is
limited in its behavior to chatter between the two
optimal time sharing control settings § = -25° and
§ = 10° due to the dynamics of an actuator.

We emphasize that the results contained in
this paper are due to the singular perturbation
approach in its application to a constant speed
model of the T-2C airplane. Other models are of
greater interest (e.g., constant thrust and
variable thrust and even dynamic stall models,



Ericsson and ReddingTz) and will be treated in
future research. Other techniques which complement
the singular perturbation approach are also of
interest. For example, the employment of

optimization techniques and computational
approaches that seek to satisfy necessary
conditions of optimality. The singular
perturbation solutions such as those obtained
herein provide starting nominal state histories for
such approaches. The qualitative information
provided herein by the singular perturbation
approach is very beneficial for future research.
In practical applications, the nonchattering
singular perturbation control law is probably the
most useful at high pitch angles. To be explored
in future research is the dominate nature of
singular perturbation solutions that are part of
the minimizing control laws for the full
longitudinal mode (i.e. using both thrust and
elevator input control).
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APPENDIX A

T-2C Wind Tunnel Model for Zero
Degrees Sideslip.
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