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Abstract

The global performances of the spaceplane
HERMES in approach (altitude below 25 km, Mach
below 2) are evaluated by the determination of
maximum recovery areas. For one given initial
azimuth, each maximum recovery area is the set of
points wich allow to reach the runway with respect
to all the constraints (load factor, longitudinal
equilibrium,...). Each point of the boundary of
the area is obtained by means of optimization of a
trajectory maximizing the approach distance in a
particular azimuth.

The singular perturbation technique has been
successfully used to solve this optimal problem :
not only the boundaries of the recovery area for
different initial azimuths were computed but also
the effects of aerodynamic dispersions,
supplementary constraints, presence of wind were
studied.

I, INTRODUCTION

In order to qualify the global performances
of the space plane "HERMES" (European project of a
space shuttle), and to estimate the requirements
for the guidance system during hypersonic reentry,
it is necessary to compute the maximum recovery
area in approach. This area is defined as the set
of points from where, for a given velocity (Mach
2), altitude h (h < 30 km) and azimuth, it is

possible to reach the 1landing runway, while
fulfilling all the constraints (longitudinal
equilibrium, maximum load factor and dynamic

pressure,...).

Each point of the boundary of this area can
be determined by optimization of a trajectory
maximizing the distance in a given azimuth towards
the runway. The exploration of this azimuth allows
to build the whole boundary of the area.

One method has been particularly investigated
for this study : the singular perturbations
technique (SPT) {1, 2, 3].

The SPT leads to an approximate resolution by
splitting time scale among the state vector. For
HERMES, velocity and horizontal 1location are
assumed to be varying slowly, altitude and flight-
path angle quickly, and azimuth is intermediary.

This dynamic decomposition yields an analytical °

solution for the controls. :

The so found trajectory (by the SPT) is
afterward used as an initial trajectory for a
numerical optimization method (generalized
projected gradient [lb]). The trajectory,
obtained by this last method, is used as a
reference for comparisons.
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II. MAXIMUM RECOVERY AREA PROBLEM

II.1. Equations of motion of spaceplane

The flight of the spaceplane in terminal
phase (with altitude below 30 km and Mach ¢ 2)
is described with the following assumptions :

i) the Earth is fixed and flat, gravity
acceleration is constant (g = 9.81 m/s2).

ii) the flight is performed without side-

slip.

iii) the transients on attitude motion are
neglected.

The control variables are the attack angle
A and the aerodynamic banck angle a4 . & is
defined as the angle between velocity vector and
fuselage axis ; bank angle A& is given by the
angle between the symmetry plane and the
vertical plane containing the velocity vector V
(see Fig. 1).
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Fig. 1 — Definition of angles o and u.

The spaceplane is located by its horizontal
position (x towards North, y towards East), and
altitude (h). The velocity vector is defined by
its components : modulus V, flight-path angle T
(positive if V is above an horizontal plane) and
azimuth X in regard to North (positive if
Eastward).

With those assumptions, the equations of
motion of the space plane are [5] H
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Cp respectively lift and drag coefficients ;
i3

Ny iz QV ,SY\CL : normal lead factor with

© : mas(g density of atmosphere at altitude
h,

m : mass of vehicle,

s : reference area.

As the relation n, (( (&))can be inverted to
provide O‘(nz), the lift to drag ratio f is a

function of nz, therefore nz can be conveniently
used as a commande instead of the attack angle.

I1.2. Formulation of the maximum recovery
area problem
Let us recall that the maximum recovery

area (MRA) is the set of space points, defined
by its horizontal coordinates (x, y) at a fixed
altitude, from where the space plane can reach
and land on the runway. At the begining of the
terminal phase, that is at the end of the
hypersonic reentry, azimuth X, and Mach number,
or equivalently total height H, = ho+V¢7ﬁgL are
well defined.

By another way, in order to land on the
runway with appropriate safety conditions, the
spaceplane must reach the vertical plane along
the runway axis, at a given distance and height
from the runway threshold, with specified
velocity and flight-path angle.

More precisely, the final state vector of
the space plane 1is fully specified by the
following landing conditions :

- altitude of 3 km ;
velocity
flight-path angle } fixed,

- azimuth equal to that of runway : )Cr ,

- horizontal position on the runway axis,

at 10 km of the runway threshold.

For same reasons of safety, the space plane
trajectory must also satisfy following current
constraints @

- normal load factor nz ( 2.5,

- conventional velocity Ve <

kTs).

The determination of a MRA, related to a
fixed initial azimuth X, , is obtained by
seeking a family of optimal trajectories by
proceeding in the two following steps :

i) we search the optimal trajectory which
allows to reach the runway from an initial
horizontal position (%, , ¥o) as far as possible
the azimuth X, , as can be seen on Figure 2.
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Fig. 2 — Approach configuration.
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The cost function to be maximized is then
the horizontal distance along direction X, ,
wich can be written as :

J = Yo

ii) The boundary of the MRA, related to
initial azimuth X, is got by varying the
azimuth JX(,. The whole set of MRA is afterward
obtained by changing the value of X,.

cos Xa %o + sin Ka (2)

11.3. Optimal control problem

By application of Pontryagin's principle
[2], it is well known that the optimal controls
nz and M must minimize the Hamiltonian H
associated to (1) and (2) :

nz*//u* = Arg Hin P*(nz//“7 (3)
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In this relation (4), the adjoints
variables Py, Py, Pn, B, P,,Bsatisfy the
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where Ak ’ )v ,)a,xxare Lagrangian multipliers
assoclated, respectively, with the final
constraint, onh , V, & and X.

Let us notice that, as the system (1) does

not depend explicitely of time ¢t, the
Hamiltonian, associated with optimal_ controls
nz* and /A*, satisfies the condition [6 :
* o *) _
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The solution of such an optimal control
problem involves the well known two-points
boundary value problem, and requires specific
numerical iterative methods.

In order to nminimize the amount of
computational time (which is also usefull for
guidance purpose), an approximate, but quasi-
analytical, solution has been seeked by means of
the singular perturbation technique.

III. APPLICATION OF THE SINGULAR PERTURBATION

TECHNIQUE TO OPTIMAL CONTROL

The SPT {1, 2, 3] is an approximate method

of resolution of a differential system of



equations. It 1is based on the existence of
several time-scale on the state variables.
Typically, for a linear system, this implies
that there is large differences between the
eigenvalues of the system.

For the flight of the space plane HERMES,
the dynamic is assumed to have the following
time scales : the horizontal position x, y and
the velocity V are "slow" variable, while
altitude h and flight-path angle T are "fast"

variables and azimuth X is an intermediary
variable. Naturally, this assumption is to be
verified afterwards by comparisons with
solutions provided by numerical optimization
technique.
The equations (1) are rewritten in a
singularly perturb form as follows [5]
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& is a small parameter wich is
artificially introduced to separate the time

scale between (x, y, V), (X) and (h, T ).

The above assumption on time-scale
separation between different state variables
induces the same time-scale separation between
the corresponding adjoints variable in equations
(5).

A zeroth-order solution of the singularity
perturbed optimal control problem, given by
equation (8), is obtained by solving firstly the
reduced problem wich is defined by setting & =
0 in equation (8).

The so obtained solution is called
solution" or "reduced solution".

Nevertheless, this solution introduces dis-
continuities on initial and final conditions on
the fast variables (X, h and T ).

The "matching" of these fast variables is
obtained through two "boundary-layers", related
to the intermediate variable X and to the fast
variables h and T .

THe global control laws of the system (8),
of close-loop type, is then given by the
solution provided by the 1last "boundary-layer"
problem, by using the "reset" technique.

Nevertheless, for purpose of
computation of maximum recovery area,
further simplifications are also considered.

The detailed description of the solution is
given below.

III.1. Outer solution

Assuming that £ is a "small" parameter, an
approximate solution is obtained by setting ¢ =
0 in the equation (8) and the problem can be
solved analytically.
This outer solution corresponds
trajectory such that [5] :
z A 5 F =0
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h(V) can be computed off-line end stored as a
one-dimensional table. For HERMES this descent
profile is indicated on Figure 4.

The outer solution is a plane trajectory
where HERMES is flying with the selected
approach azimuth Xa with maximum 1ift to drag
ratio, at such an altitude that load factor nz
is equal to unity.

III.2. Initial boundary layer in azimuth X

The time is streched near initial time by
the transformation t,=(t-t.)/€ in (8). Then, by
setting £ = 0, the slower variables are frozen
to their initial value (% = X5, § = yo, V = Vo),
while we have for the azimuth the following
equation [5] :
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As the Mach number is varying slowly with
the altitude (for a given velocity), we have
approximately £ X fo and then we deduct :
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The initial boundary layer (IBL) in azimuth
corresponds to a turn from the initial azimuth
%o to the azimuth Xs of the outer solution.

Thig turn is performed with maximum 1ift to
drag ratio, at an altitude, for a given speed,

lower than for the outer solution.

III.3. Initial boundary layer for altitude

and flight-path angle

The goal of this second initial boundary
layer is to fit the initial values of altitude
and flight-path angle to the "outer" values of h
and U , these values being given by the initial
boundary layer in azimuth.

As only the total height is fixed, we can
choose the set (ho, Vo) in order to respect this
total height (see Fig., 1) as initial conditions
; and as the flight-path angle of both  outer
solution and first IBL is irrelevant (3= 0:=0),
the adjustment of flight-path angle 1is also
ignored.

III.4. Final boundary layer in azimuth

The time is stretched near the final time
by the transformationt,=z(t-E)/ € in (8). The
equations obtained are identical to those of IBL
in azimuth, with X, replaced by X« ( Kris the
landing azimuth of runway).

Nevertheless, due to difficulties
encountered with SPT for fulfilling the final
boundary~layers (FBL), it has been preferred to
switch from the outer solution to the FBL in
azimuth at an a priori altitude, function of the




difference between approach and landing azimuth
: X3-Kv. For this purpose, the bank angle Mo Was
set equal to Ke-X.

I1I.5. Final boundary-layer in altitude and

flight path- angle

As for the FBL in azimuth, the same
difficulties arise, but as altitude and flight-
path angle are the fastest variables, the
correction of the FBL will occur only at the end
of the trajectory, with 1little influence on the
approach distance under maximization. So this
FBL is ignored.

III.6. Summary of the control laws

The first computationnal tests have shown
that a further simplification of the expression
of controls can be achieved in selecting for a
given point of the trajectory :

- attack angle corresponding to maximum
lift to drag ratio,

- bank angle equal to the difference
between target and current azimuth., The target

azimuth is initially the approach azimuth X3 and
close to the final altitude, it is switched to
runway azimuth X,

IV. RESULTS

The method previously described has been
applied to the space plane "HERMES", with its
aerodynamic coefficients, function of Mach
number and attack angle.

In order to qualify the results of the SPT,
a comparison has been done with the solution
provided by a numerical optimization method :
the generalized projected gradient (GPG) [U],
without taking into account the approximation of
time-scale separation as previously.

The GPG is an original method developed at
ONERA. It is an extension of the classical
projected gradient technique, allowing
simultaneously the optimization of a choosen
performance and the satisfaction to all the
‘given constraints, while giving priority to the
last ones. Unlike many other numerical
optimization methods, the GPG fits easily for
numerous, varied constraints, even if they are
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not satisfied for the initial trajectory.

In order to reduce the computationnal time
with this numerical method, the trajectory
provided by the SPT has been used as the initial
trajectory for the GPG.

As expected, the results show a good
agreement between the two trajectories obtained
by the two methods, with a discrepancy at the
end of trajectories, because the numerical
provided by the GPG fulfill all the final
constraints on state variables.

This discrepancy does not
approach distance under maximization,
two methods agree within one percent.

Moreover, thanks to the great proximity of
the SPT trajectory compared to the optimum, the
GPG had only a few iteration to perform,
typically 20.

Figure 3 shows the maximum recovery area
corresponding to an initial azimuth equal to
that of runway.

Figures 5 to 9 display the evolution,
respectively, of d\,/u versus ¢, h versus V, h,
V, nz, T versus t for the recovery trajectory
related to approach direction X3 = X,+30%and with
initial Xy , and designed by the symbol
"¥" on figure 3.

affect the
since the
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Maximum recovery area for an initial
azimuth equal to that of runway

Fig. 3 — Perspective view of a maximum recovery area.
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Fig. 5§ — Typical recovery trajectory,altitude versus velocity.
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Thanks to the quasi-optimality of the SPT
method, a great number of cases have been
treated. Not only the boundaries of the maximum
recovery initial azimuth have been computed, but
the effect of several dispersion causes has also
been investigated.

These were (see Table 1) :

- effect of aerodynamic perturbations :

lift to drag ratio lower or higher than

nominal case, speed-brakes set out

- effect of initial flight-path angle

- effect of initial altitude ;

- lower allowed normal load factor

- velocity continuously decreasing

- limitation of flight-path angle ;

- wind effect at Istres (France) and Kourou
(Guyane).

.
’

»
s
.
b

Table 1 — Dispersion effects.

. . Mean effect on approach
Cause of dispersion distance
-10% -15%
Lift to drag ratio {
+25% +27%
Speed brakes set out -13%
Initial flight-path angle -3%
reduced of 6°
Initial altitude reduced of -23%
2.5km
n;max = 2 instead of 2.5 -0.2%
Velocity continuously -1.5%
decreasing
Flight-path angle > - 20° -3%
Wind profile at Istre -9%
(France)
Wind profile at Kourou -1%
(Guyanne)
V. CONCLUSION
The singular perturbation technique (SPT)
has allowed to perform a quasi-analytical

resolution of the Pontryagin's principle applied
to the problem of the maximum recovery area of
HERMES in the terminal phase.

The control law found were simple : angle
of attack corresponding to maximum 1ift to drag

ratio, bank angle equal to the difference
between the current azimuth and the target
azimuth.

In comparison with an T"exact" optimal
solution given by a numerical iterative
optimization method (generalized projected

gradient, GPG), the SPT has provided relatively
very accurate solutions, since the approach
distance under maximization was in good
agreement with GPG solution, within one percent.

Regarding to the simplificity and accuracy
of these singularly perturbed control laws, a
great number of cases have been carried out :
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computation of maximum recovery areas for
different initial azimuths, influence of
aerodynamic dispersions, additional constraints,
influence of wind.
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