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Abstract

Conventional means of insuring accurate
Navier-Stokes analysis are not reliable, nor very
specific. A new approach is being developed to
streamline and simplify this process. Direct
measures of solution error sources are being
explored. The artificial diffusion ratio (ADR),
is a candidate error monitor because grid-related
errors are caused and controlled by artificial
diffusion. Residual contamination of the
dependent variables and their derived quantities
is also manifest as a diffusive type of error and
these errors are registered by ADR.

An example of using ADR to guide the Navier-
Stokes analysis of a supersonic external
compression inlet with bleed £flow is provided.
The inlet throat region flow is mixed supersonic
and subsonic flow with large viscous
interactions. These interactions are due to
shocks generated by special geometric features of
the configuration. Shock/shear-layer/expansion-
fan interactions have small 1length scales
relative to the inlet dimensions. The utility
of ADR for guiding grid selection to generate an
accurate solution is illustrated. Further work
is recommended to develop the technique for use

in analysis comparisons with benchmark
experiments or in certifying final configuration
selection in aircraft development projects.

Further work is recommended to develop the use of
ADR error monitors for general use in grid and in
smoothing level selection.
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Subscripts

a artificial diffusion
coefficient

Courant, Friedrichs, Lewy
condition

i integer grid index in x-
coordinate direction
linear

MacCormack

smoothing

total or stagnation condition
freestream condition

FL

g =+ X

I. Introduction

The purpose of this paper is to introduce a
new concept to guide the selection of the grid
for applying Navier-Stokes analysis to flow
fields of engineering interest. This new guide
is designed to indicate grid resolution problems.
It is based upon using data already available in
the numerical process of Navier-Stokes analysis
tools and can readily be formatted for graphical
output. An inlet design test problem was chosen
for demonstrating the concept.

Future tactical aircraft with stringent
maneuverability requirements will likely require
external compression inlets. The viability of
this concept in the Mach 2.2 to 2.5 range is
dependent upon special tailoring of the throat
bleed flow and slot geometry for stable engine-
face flowv delivery with minimum losses. The
spillage drag of this inlet concept is critically
dependent upon the design of the bleed flow
system. Engine face flow quality is a by-product
of the ramp/cowl/bleed system design. Minimum
spillage for shock stability and low engine face
flow distortion promote propulsion efficiency and
enhanced control characteristics.

Analysis tools are being developed to improve
the efficiency of the design of external
compression inlets. For _three-dimensional
analysis, Paynter and Chen,(l) and Anderson
have made considerable progress. 3-D analysis
will aid the design of test configurations and
aid in certifying the choice of the full-scale
configuration. Analysis will also enhance the
degree of integration of the propulsion system
wvith flight controls, airplane aerodynamics, and
structural requirements. The proper integration
of these elements is the key to high performance
in the aircraft.



II. Discussion of Error Sources

The interaction of all the relevant flow
regimes for the present inlet analysis require a
Navier-Stokes flow solution. These equations and
their boundary conditions are precise, exact and
continuous. The process of numerically
simulating these equations is not precise, exact
or continuous. Numerical solutions of these
field equations involve solving equations which
have additional properties that are not contained
by or related to the continuous equations.
These additional properties are caused by the
choice of the algebraic structure used to model
the continuous equations.

There are three categories of these additional
properties which create spurious, phase and
diffusive behavior in the solutions. Examples of
spurious behavior arise from mass sources and
sinks; or negative density or temperature; decay
of entropy or increases in available total
pressure; or simply the oscillation of some
property in a region where it should be a smooth
function. Phase shifts result from dispersive
error properties of the algebraic structure.
Diffusive behavior is manifested by poor acuity
of steep gradients or by damped peak amplitudes

of dependent variables or their derived
quantities. When special conditions (discussed
later in this paper) are satisfied, adequate
control of numerical accuracy is achieved.

Satisfying these conditions results in a well-
behaved relation between the field equations and
the computational analysis model. These
conditions may be satisfied by observing a
function that defines a multi-dimensional mapping
of errors to be minimized, called the error-space
map. This error mapping function contains the
influence properties of truncation, residual and
round-off error.

Principle factors influencing the behavior of
the error mapping function include the choice of
the artificial viscosity level, the grid shape,
the grid density distribution, the residual level
and the computer dependent factor of round-off
error. FEach of these factors directly contribute
to the numerical error in the computed solution.

In the present study, error monitors are
sought to direct the analysis process for
achieving "good" grids - those grids giving
solutions suitable for engineering application.

To focus the discussion on diffusive error
sources, the two categories of error sources
(residual error and truncation error) are
discussed under the umbrella of artificial

diffusion .

The use of time relaxation to asymptotically
approach steady state solutions produces an error
called the residual, the remnant in the time-
like terms that is. non-zero. From arbitrary
initial conditions, the residual spectrum has
mostly high frequency content, the magnitude of
residuals change dramatically cell-to-cell in
certain regions of the flow field. This feature
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of the
jumps in the dependent variables.

initial conditions produces shock-like
These jumps

create problems in getting the Navier-Stokes
codes to converge. The role of artificial
diffusion is critical in dissipating these

perturbations and driving them from the analysis
domain. The convergence to steady state (the
reduction of residual error toward machine zero)
depends upon the artificial dissipation functions
vorking properly. Therefore the primary focus of
the discussion of error sources is on artificial
diffusion.

Every form of numerical approximation of the

Navier-Stokes equations, wvhether finite
difference, finite volume or finite element,
possesses artificial diffusion. It is added

through auxiliary explicit or implicit smoothing
operators for symmetric discretization operators.

It is included implicitly in asymmetric
discretization operators, whether they are
explicit or implicit upwind expressions.

Artificial diffusion in upwind asymmetric schemes
can be quantified by computing all convective
fluxes by symmetric difference schemes of
comparable order of accuracy. The smoothing flux
is simply the difference between the fluxes of
the comparably accurate symmetric and asymmetric
schemes. This conclusion is based upon
generalizing MacCormack’s error analysis using
Taylor expansions.

There is a difference in the magnitude of
smoothing requirements between linear and
nonlinear regions of the flow analysis domain.
For example, regions of the flow featuring shocks
(nonlinear) require enormous smoothing levels.
Since shock waves abound in large numbers (as
discussed previously) during the early stages of
the convergence process, the initial smoothing
requirements are for high levels of smoothing in
most of the flow analysis domain.

As the converged solution is approached, the
smoothing levels must be low except in shock
regions and poorly -resolved flov regions that
behave like discontinuities. Inadequate grid
resolution in some regions of the analysis domain
lead to unresolved flow regions. These regions
impose demands upon the smoothing operator to
keep the computations stable causing higher than

desirable smoothing levels. Complexity is
inherent in the widely varying demands for
smoothing during the convergence process. The

smoothing operator developed by MacCormack{(4
copes with the early requirements for massive
global damping while providing highly tailored
damping for optimum grid utilization.

Artificial diffusion is specifically added to
smooth, stabilize and enhance the convergence
characteristics of centered difference operators
for Navier-Stokes solution algorithms such as the
MacCormack finite volume predictor-corrector
scheme. This is done by constructing a smoothing
flux. It is added explicitly to the raw flux in
the predictor-corrector cycles. The impact on
the solution accuracy of this smoothing operator,
relative to grid and residual effects, has been
obscure.



IIX. Discussion of the Error Monitors

A new approach 1is being developed to
streamline and simplify the process of selecting
an analysis grid. Direct measures of solution
error sources are being explored, these include
of total

measures pressure error and the
artificial diffusion defined in the followving
paragraphs. Cross-correlation of these, plus

other error measures, such as conservation error
in local and integral form, have been examined to
single out the best guides for selecting grid and
smoothing levels. The artificial diffusion ratio
(ADR) will be shown to be an excellent candidate
for an error monitor.

Instead of looking at results which include
smoothing effects, we propose looking at the
artificial smoothing itself and its role in
compromising the accuracy of the numerical
solutions. This way, the main cause of the loss
in accuracy is monitored and utilized to select
grid densities that ensure accuracy of the
analysis process. It will be shown that the
artificial diffusion will be large on inadequate
or coarse grid solutions where flow gradients are
large. This information is used to adjust grid
density until the artificial diffusion is
minimized and an accurate solution is obtained.

One mechanism for obtaining a measure of the
artificial diffusion involves constructing the
ratio of the smoothing flux and the total flux
through computational cell faces. This ratio is
called the Artificial Diffusion Ratio (ADR). By
definition, this ratio should be insignificant
everyvhere in the flov analysis domain except in
shock vaves. Viscous stagnation regions, viscous
bifurcation points, viscous saddle points,
viscous shear layers, smooth rotational inviscid
regions, smooth irrotational inviscid regions and
freestream uniform flow regions must have low
levels of artificial smoothing or small values of
ADR relative to the peak values of ADR. Coarse
grid simulations lead to the treatment of each of
these smooth regions as singularities. For
example, free shear layers with too sparse a grid
become contact surfaces. Bifurcation, saddle and
stagnation regions become singular points, lines
or surfaces. ADR will register high values in
such regions, where indeed ADR would have small
values if the grid resolution were correct.

ADR is generated for each dependent variable
of the compressible time-averaged Navier-Stokes
equations. The dependent variable are two
components of momentum (F,G), total energy (H)
and mass density (R). These dependent variables
result in four artificial diffusion ratios -
ADRF, ADRG, ADRH and ADRR, respectively. A
composite of these individual error monitors may
be constructed by averaging the individual error
monitors. All error measures are normalized to
achieve peak values not exceeding unity.

To make the discussion clear, the error
measures that have been explored are defined
mathematically in the next section. Finite

difference expressions are used for this purpose.
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They are derived directly from but not limited to
the MacCoxmack two-step algorithm. To save space
only the Burger’s equation is reviewed rather
than presenting the full momentum, energy and
mass conservation equations. Special note should
be observed that the error monitors are separate,
post-processor elements from the MacCormack
algorithm and can be used with any numerical
algorithm for the Navier-Stokes equations.

A. Mathematical Definition

The concept of error analysis for numerical
approximations of the Navier-Stokes equations can
be illustrated using a model equation called the

Burger’s equation. The Burger’s equation in
nonlinear form may be written as follows:
du oF
at T x T 0
where,
2
u du
F- 7 Vi 3%
Writing a first order forvard difference
expression for the first derivative of u yields
2 -
(uy) Cuir V)
Fi= 3 -V A

To ensure solution stability the viscosity is
augmented by adding artificial

viscosity, Vv, computed as follows:
v, = min [0.25, vy ] :
The MacCormack viscosity, wy, is given by

| vie1 =205 + uig

vy = max ECFL Cy (uy,1 *2uy + vi.1) vL]k
and, N
m-n
vy, = max [ oL~ s 0 ]

The constants C, and Cy are input values used
to scale the magnitude of the added artificial
viscosity. The constant m is a specific value
that determines the number of time steps required
to ramp the linear artificial viscosity, vy down
to zero.

The resulting artificial viscosity will have
an initially high value to aid initializing the
solution. After the mth time step (normally set
to approximately 200) the artificial viscosity

will have a very small magnitude, except in
regions of velocity oscillations. For these
regions the truncation error is producing

erroneous results.



is to
Therefore a smoothing

The purpose of the error monitor
identify such regions.
flux is defined as

3u

Fs=\’a’37('

and the artificial diffusion
defined as

ratio, ADR, is

Fs,i
ADR =

Fy |+ Fs,i

The absolute values are taken to insure that ADR
is alwvays positive. Therefore,

ADR =
(-uj + uj,1)
Vari AX
(uy)* (-uj + uj,) (-uj + uj,)
7 M Ax Vel T T
The ADR may be defined similarly for the

continuity equation, the two components of the
momentum equation, and for the energy equation.
These quantities are called ADRR, ADRF, ADRG, and
ADRH, respectively.

B. Minimizing Errors

The equations of the previous section
constitute a vector of unknowns whose range is
determined by the total number of grid points.
The number of grid points is chosen rather
arbitrarily until data is available on the
truncation error spectrum. Once this data
exists, a systematic process for minimizing the
error is defined as follows.

It should be noted that Burger’s equation has
analytical solutions for certain initial and
boundary conditions. These solutions may be used
to exactly define the basis for assessing the
truncation and residual errors. It is desirable
to show how the errors are minimized by use of
the analytical solutions. To save space, these
results are summarized without supporting detail.

The residual error level is chosen so that the
truncation error estimate is reliable, the
residual error must be less than the magnitude of
the most important truncation error which must be
minimized. This guiding truncation error must be
used to direct the process for mesh refinement
for all regions in the analysis domain (except
discontinuities where the truncation error is
arbitrarily large) The grid distribution in
physical space is chosen to make the guiding
truncation error uniform over the physical space.
Once the grid distribution is arrived at, the
accuracy of the numerical approximation can be
increased arbitrarily by increasing the number of
grid points. With these definitions in mind, the
error monitors described above can be evaluated
exactly. If this is done, a correlation emerges
between the truncation error and ADR. It is this
correlation which is critical to the viability of
ADR as a useful error monitor.

712

1V Test Problem

To test the error monitors, a Navier-Stokes
analysis problem is necessary with manageable
application costs to achieve arbitrarily high
accuracy. It must also be a problem for which
high quality test data exist so that meaningful
comparisons can be made. The inlet/aperture
flowfield test problem presented is qualified on
both accounts.

A. Geometry and Flow

Illustrated in Figure 1 is a supersonic inlet

throat region geometry and the flow physics
associated with an external compression inlet
with throat bleed flow. The inlet/aperture

approach flow, parallel to the centerbody ramp,
is at the throat design Mach number of 1.28.
The bulk of the flow in the streamtube spanning
the gap between the cowl lip and ramp crown is
captured by the inlet.

Some spillage flow may occur at the cowl lip,
depending on the engine face flow and the bleed
slot flow requirements. The cowl position
establishes a cowl shock wave which impinges on
the ramp boundary layer downstream, but near the
crown of the ramp. The ramp shock-wave/boundary-
layer interaction is stabilized in this position
by bleeding flow into a slot opening in the ramp.
This slot is downstream of the crown of the ramp.
The crown of the ramp generates an expansion fan
which locally accelerates the flow to a higher
Mach number (=1.7) before the flow arrives at
the slot opening. These flow physics generate a
complex interaction of the cowl shock wave, ramp
boundary layer and the ramp crown expansion fan.
Interaction produces a free shear layer across
the slot opening which has strong viscous
generated transverse velocity gradients and
strong local inviscid transverse velocity
gradients in the supersonic tongue. Further,
this flow region is strongly influenced by the
slot geometry and amount of bleed flow. These
influences reside primarily in the longitudinal
direction. The principal agent for this
longitudinal contortion of the flow is dictated
by the downstream lip of the slot opening. This
lip produces a strong shock wave (M1=1.7) in the
slot region. It is a stronger shock than the
cowl shock and much more local with high
curvature. This curvature adjusts the flowfield
in the neighborhood of the slot opening so that
the resultant flow downstream of the slot opening
is subsonic to match the static pressure of the
remaining flow captured by the inlet.

The slot shock and the shear layer interaction
are sensitive to the supersonic flow originating
from the ramp crown. Incomplete Prandtl-Meyer
expansion in the numerical soclution dramatically
reduces slot shock strength, and in the extreme
case, produces no slot 1lip shock. Over-
expansion in the solution leads to misdirecting
the slot free-shear layer to the slot 1lip.
Either of these mismatches lead to incorrect slot
pressure, either too high or too low
respectively. In turn, the slot flow entrance
separation point is affected dramatically by the
pressure in the bleed flow opening. The nature
of the recirculation flow field impinging upon
the bleed entrance free shear layer is subject to
change according to the separation point which
induces feedback upon .- the bleed entrance
pressure.
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Figure 1. Inlet-Aperture Flow Field Features

Turbulence in the bleed entrance and in the
bleed cavity affect the flow pressure at the
bleed entrance. The ratio of the length of the
bleed flov opening and the thickness of the free
shear layer, plus the pressure gradient in the
free shear layer, influence the structure of the
turbulence in the bleed cavity and in the free
shear layer. Favorable pre§sure gradients
accelerate the wall boundary layer at the crown
of the ramp. Mixing zone intensity is excited by
adverse pressure gradients which prevail between
the bleed cavity and the supersonic flow regions.
Feedback between the turbulence and the pressure
field can cause unsteadiness or instability of

the flow at the bleed slot entrance. The
intensity of the mixing can be damped or
amplified by the unsteadiness. The mixing

process may include at least five types of flow:

1) nearly laminar flow of the wall boundary
layer at the ramp crown and downstream of
the separation point,

2) transition to steady flow mixing between

the fully developed supersonic floy and

the bleed cavity flow field,

3) possible vigorous flow mixing between the

established bleed flow opening free shear

layer and the bleed cavity flow field,
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4) possible resonance phenomena of the free
shear layer and the bleed cavity flow
field, and

5) fully developed mixing in boundary and
free shear layers.

The occurrence of these types of flov

phenomena depends upon flow transition
parameters. Model scale inlets and full scale
inlets have transition parameters of very

different magnitude. For the model scale inlet,
examined in the present study, only flow types 1,
2 and 5 have been identified. Numerical
experiments indicate that only type 5 flow
dominates the wall boundary layers and free shear
layers.

B. Computational Approach

The computational approach in the present
study is an extension of the work of Peery and
Forester It uses a conservation-based body-
fitted adaptive grid model of the thin-shear-
layer formulation of the compressible, Reynolds-
averaged, Navier-Stokes equations together with
mass and energy conservation equations.



distributions.
governing
finite volume explicit predictor-corrector finite
difference
conditions,
turbulence
functions,
adaptive mesh mover are detailed by Campbell and
Forester
procedure for design application of this code is
given
Smoothing has been applied to the coefficients of
the smoothing algorithm
convergence.
of the smoothing coefficient would occasionally
prevent
state convergence is nov reliable.

computational regions.

computational region three

above-the-covl flow field.
point and slope continuity at each interface.

Control of the residual errors is achieved, by

an artificial time relaxation approach with a
constant CFL criteria.
by asymptotic
errors are reduced through the use of solutions

Steady state is achieved
time relaxation. Truncation

varying grid densities and
The formulation
thin-shear-layer

varying grid
of (a) the
equations, (b) the
algorithm, (c) the

(d) the twvo-layer algebraic
model with its associated wall
and (e) the mesh generator and the

boundary

and the associated references. The

by Campbell, Syberg and Forester.

to obtain consistent
Vithout this feature, limit cycles
convergence

to steady state. Steady

The computer program allows three coupled
In the present study,

computational region one (see Figure 2) is
assigned to the slot cavity flow field,
computational region two 1is assigned to the
ramp/cowl/engine face flow region, and

is assigned to the
The grid blocks have

This simplifies the boundary condition treatment
needed at the surface of grid blocks. Freestream
boundary conditions are specified on the 1left
side of regions two and three. The grid is
body-fitted to the ramp, slot and cowl. While
adaptive grids are useful and necessary for some
applications , frozen grids (at various
densities and distributions) are effective for
the present application. As shown in Figure 2,
the length scales of the grid intervals vary
wvidely over the analysis domain. The smallest
grid intervals are generally located in critical
regions as follows:

boundary layers,

free shear layers,

rapid compression/expansion regions,
shocks, and

stagnation regions.

0 Q000

To simplify the notation for grid size
definition, grid sizes are defined by a cluster
of numbers separated by commas. The numbers
betwveen the commas are the interval counts in x
by y directions of the grid in region 1, region 2
and region 3, respectively The grid sizes
employed are (10x5, 27x17, 22x12), (21x10, 54x34,
44x24), and (42x18, 106x66, 46x26). These three
grid sizes are labeled coarse, medium and fine,
respectively, The influence of grid on
resolution is considered relative to accuracy
produced by pairs of grids (coarse/medium,
coarse/fine, medium/fine.) Only the coarse and
fine grid results are shown.

e Region 3. (46 x 26)

Region 2. (106 x 66)

Region 1. (42 x 18)

Analysis Domain

Slot Region

Figure 2. Fine Grid
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C. Computational Results

There are many parameters to study in
attempting to form an understanding of promising
error norm guides for choosing residual level
selection and for directing choices in the
selection of the grid needed for flow analysis of
desired accuracy. Thus far this paper discussed
what are believed to be the most prominent causes
and measures of error. Discussion of the
behavior of some of these error measures with
illustrations are the subjects of this section.

The parameters of interest in the presentation
of this section are the total pressure profiles,
artificial diffusion ratio contours, and Mach
contours. All of these parameters except for the
artificial diffusion ratio are traditional
parameters for error assessment. Note that the
artificial diffusion ratio is shown in
conjunction with the Mach contours and does not
replace these because physical features simply
are not revealed by the artificial diffusion
ratio. In fact, the artificial diffusion ratio
should be void of physical features except near
shocks. Mach contours show physical features
including shocks.

Figures 3 through 7 provide a basis to
determine the analysis accuracy relative to
smoothing  coefficient level and to grid
refinement selection. Figure 1 shows the

traverse station for the total pressure ratio,
Py/Piwy in the throat region of the inlet.
Figure 3 shows the improvement in the total
pressure with respect to grid refinement and with
respect to reducing the artificial smoothing.

Note that the degradation of the total pressure
results from excessive smoothing or from too
coarse a grid. Also note that the results
improve with respect to grid refinement even with
abnormally high smoothing coefficients.
Ultimately grid refinement is the critical issue.
However, the efficiency of using a particular
grid is improved by setting - “smoothing
coefficients near the stability limit, rather
than to maximize convergence. Further examples
of this behavior are now discussed.

Figures 4 through 7 are comparisons of
solution results for selected grids and smoothing
coefficients. Figures 4 and 5 show the effect
of smoothing level on ADR for coarse, and fine
grids, respectively. Figures 6, 7, and 8 are
Mach number contours. FPigures 4 and 5, and
Figures 6 and 7 show the effect of grid density.
Comparison of Figures 4 and 5 with Figures 6 and
7 show that ADR rises sharply with increased
smoothing levels and 'with increased grid
coarseness. Note that when ADR is above 0.01
(except for shocks where ADR should be about
0.01), too high a smoothing level or too coarse a
grid is indicated. In these regions, the grid
must be refined or the smoothing level must be
reduced.

It is possible to generate a composite effect
of all of these error sources on a particular
grid. The grid used for this purpose is shown in
Figure 2. Figure 8 shows -an example of Mach
number contours for the aperture region. Note
the agreement between the shadowgraph of the flow
field for an experimental test of this inlet and
the predicted result for the same flov field

(Figure 8).
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Figure 5. Fine Grid Artificial Diffusion Ratio Contours
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Shadow Graph
Figure 8. Comparison of Experiment with Analysis

V. Conclusions and Recommendations

The solution of the flow field in the aperture
region of an external compression inlet with
bleed and spillage flow by Navier-Stokes analysis
has been presented. A new approach is being
developed to streamline and simplify this
process. Measures of numerical errors in the
analysis process have been explored including,
total pressure, and artificial diffusion ratios
for mass, energy, and momentum. Preliminary
correlation of these error measures show that the
artificial diffusion ratio (ADR) provides
guidance for grid and smoothing level selection.

The application of ADR leads to a grid choice
that yields an adequate solution to the flow
field. Comparison of this solution with
experiment shows good agreement.

Further work is recommended for demonstrating
the utility of ADR on other test problems. These
test problems should include comparisons of
analysis with benchmark experiments. Further
work is recommended for testing the utility of
ADR in analysis problems requiring Navier-Stokes
computations for the design of aircraft
components (both model scale and full scale).
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