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Abstract

Explicit formulas of optimal guidance laws for
linear, time invariant, arbitrary order and
acceleration constrained missile are derived.
These formulas are given in terms of the missile's
transfer function and acceleration constraint.
Optimal, full state feedback guidance laws are
synthesized and compared to lst order
approximation and the Proportional Navigation for
minimum and non-minimum missile's dynamics.
Simulations on a third order missile's model show
the relative gain from using the full order
guldance law versus the acceleration constraint as
well as some robustness tests.

I. Introduction
The optimal control theory has been used to derive
modern guidance laws which have improved
performance. This improved performance is
achieved by considering the detailed dynamics of
the target and missile. However, it comes at the
expense of increased complexity in realization,
sensitivity to knowledge of various parameters,
etc.

An extensive study of the literature on guidance
laws (GL) in general, and on o?fimal guidance laws
in particu1?516§s performed in ). In various
references * optimal guidance laws are derived
for lst and 2nd ordeg missiles, respectively, In
our previous paper( ) the structure of optimal
guldance laws for linear, arbitrary high order
missile was considered. Mainly, we derived the
closed loop, general structure formulas of the
guldance law. Further, we studied the behaviour
of the gains for minimum and non~minimum phase
missiles and compared the performance of some
suboptimal approximations of the guidance laws
(GL).

The effects of the acceleration comstraint
(imposed by the structural or aerodynamic
limitations) on guidance laws and performance for
lst order_pmissile are systematically treated by
Anderson'’).

In this paper we derive an optimal guidance law,
on collision course, for linear, time invariant,
arbitrary order and acceleration constrained
missile. It is shown that for minimum phase
missile the optimal guidance law is the guidance
law for unconstrained missile with saturation on
the commanded acceleration. However, for non-
minimum phase missile this is only a suboptimal
guidance law and the optimal controller is more
complicated.

In the paper comparison of the Proportional
Navigation, 1st order approximation and full order
optimal guidance laws is performed on a third
order minimum and non-minimum phase acceleration
constrained missile. The comparison is performed
on a common basis. Moreover, the robustness of
these guidance laws is subject to an analysis,
namely, the sensitivity to uncertainty/variation
in parameters, radome refraction slope and
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acceleration constraint 1s checked for minimum and
non-minimum phase airframes.

The main conclusions are that for minimum phase
missile the full order guidance law does not give
improved performance with respect to the lst order
approximation, while for non—minimum phase missile
there are situations, (combinations of pole and
zero placement, and acceleration constraint) when
the full order guidance law is worth being used.

II. General Problem and Solution

In order to derive an optimal guidance law let us
consider the minimization of the following
quadratic performance index. (This performance is
equivalent to "any other" quadratic unconstrained
index, as shown in Appendix A).

1.7 £ T oyRu(1)d 1
J =5 x (te)Gx(tg) +{ u*(t)Ru(r)dr (

where x(+) is the state vector, u(e) is the
control vector; G20 and R20. are weighting
matrices; and t. is the time of flight. All
vectors and matrices are of the appropriate
dimensions. The minimization of the performance
index is subject to the linear differential
equation constraint

%(t) = Ax(t) + Bu(t)’ (2)
and a constraint on the input
ulu € U°2 . (3)

In appendix B the following solution is obtained*

u(t) = U, Sat[%: R8T (e, 006x(ep)] 4 (&)

where the terminal state is given implicitly by
the integral equation

t
x(tg) = o(tg,t) x(t)—J’f o(te,T)BU o

sat [FRIBTeT (g, 1)6x(ts)]dx (5)
and °
(e, ) = Ae(e,t ), #(t e ) =1 . (6)

This optimal solution is usually difficult to
implement. It may be approximated by the
following practical solution:

‘ 1 ,=1,T,T e FE .
u(t) = —UOSat{U;R B'o (tf,t)b[1+{ o(tg, 1)

BR1BoT (£, 1)C dr) ™t o(tg, 0)x(0)} - (D)

This practical solution is for some cases, that
will be described in the sequel, the optimal
solution, when (5) has at most one solution.
other cases, for which (5) has more than one
solution, it is only a suboptimal solution.

For

* The saturation vector function is defined
= X lIxisl
sat[x] = { §
MxT ixi>1 .



I1I. Optimal Guidance Law Derivation

The intercept geometry is shown on Figure 1. ?gge
we use the same methodology and notation as in .
The linearized kinematics are given by the
differential equations:

y=v

vV = apmay, . (8)
The dynamics of the n-th order missile are

d | % 211 212 ay by )

g = + t) .

d [9411] [221 a2 P by | % 29)

This is a partition of the state variables where
the missile's acceleration, a_, is the lst state
variable and Py are the rest n-1 state variables.
291 5}2’ _t_)z are (n~1)xl

and u(t)

ajy, by are scalars;

vectors; aj,; is a (n-l) x(n-1) matrix;

is a scalar input. Consequently, the system
equation (2) is:

y 01 0 0 y o]
d v = 0 0 -1 0 Vg4 0
dE | ay 0 0 ajy ap| | ay, by | o(®)-

on 0 0 25 %o | fa 5

(10)

The contribution of deterministi tf{ et's
acceleration, ap, 1s treated in 6, , therefore

it will not be considered here and is left for the
example.

Further, let us assume that we are interested only
in the minimization of the final miss, y(tf),
i.e.:

R=1 .

G = diag [g,0....0], (11)

A. General Solution

The substitution of (10, 11) in (4,5) results in

- a_(s)
u(t) = U sac {§- 171 & By ) y(te)l
° te-t
(12)
where y(tg) is given implicitly by
y(tg) =y + (tg=t) v -
-1,1 (s) - (S)
[L e | | p
tf°t tf‘t
- ay(s)
'IfL 1[ %7 u?si ]‘ *
o=t (13)
£
-1, 1 2p(®)
U _Sat L t d
o {ﬁz [ 5750y | y(tg)lde
tf—r
where
ay(s)
ETEY— missile transfer function,
a,(s)
) missile acceleration response to initial
n condition in the acceleration state,
ay(s)

~—T—7- missile acceleration response to initial
conditions in the states ,m'(“ 1)x1
vector¥*.

. the saturation function in (12,13).
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The initial condition responses a (s)/a (o) and
a (s)/pm(o) are evaluated from the homogeneous
equation of the missile (9).

B. Minimum Phase Missile

This section deals with a minimum phase missile.
The ramp response of minimum phase missile is
monotonou lx increasing®*  i.e.

-1 {é 3 = }| > 0. Figure 2 describes the

behaviour of the argument of the saturation
function in (12,13). From this figure one can see
that for t;<t<ty no saturatiom occurs and (12,13)
can be solved explicitly. At t=t; saturation
occurs simultaneously in (12,13). This saturation
sustains for t<tj. The polarity of the saturation
depends con y(tf). Consequently, for stable
minimum phase missile the optimal GL is

u(e) = - 0, Sat [ = aceg0) 2(egt) | (4

where A( ), the guidance gain and Z( ), the zero
effort miss, are given by:

a (s)
[ ~T “(55 ] |tf—t
A (tgmt) = T a (8)
J'g-'f'{f{L—l[—s—z—ﬁ-(—é—y] lt— 2d'l’
Eoasy
‘ - a (s)
Z(tg=t) =y + (tgt)v - [ L 1{%7 > }|
“1,1 4y (s) a
L {?m}} 102 ]
(16)

this 1s exactly the practical solution (7).

C. Non=Minimum Phase Missile

For non-minimum phase missile the ramp response is
not monotonously increasing***, as may be seen on
figure 3, for missile with one zero at RHP, which
describes the behaviour of the argument of the

For t g<t<t
(14, 15, 16) is the optimal solutionm, however, gor
t<t, it is not. Close inspection of the problem
will discover that the gain given by (14, 15, 16)
is smaller than the optimal and the switching
times t;, ty, t3 are given only implicitly. Since
the exact optimal guidance law is complicated to
solve and implement, in the sequel only the

suboptimal/ practical guidance law will be
considered.

* The following notation is used:
YA, ¥ ¥ LA
L "

*% This section applies as well for the more
general class of missiles with monotonously
non-decreasing ramp response.

*** To be precise, this section applies only for

class of missiles with
response.

the more restiricted
non~monotonous ramp



IV. Example

As an example we will consider here guidance of
missile whose airframe and autopilot model is
described by a 3rd order transfer function with

one zero, i.e.
_ ag(s) - - st,+l
H(s) = 5y~ BTy (557D Gy - 4D

In this example it is assumed that the target's
acceleration, ayp, is described by a step function
whose initiation time is uniformly distributed
over the flight time.

Figure 4 shows the schematic diagram of the
guidance loop. It includes the target model,
where wT(t) represents the random target's

maneuver (13), the kinematics, glint noise -
w,(t), steady state Kalman Filter which produces
tge best estimates of the state variables (y, v,

ap) (11, Appendix B) ' ipe oyidance law (e1» 3,

€3, €4, Cj, c6), saturation function and model of
the airframe + autopilot.

We consider/compare the performance of three
guldance laws:

a) The full ofder suboptimal GL;
b) First order approximation of the GL;
c¢) Proportional Navigation.

The comparison is performed by a computation of
RMS miss due to the target'?ggcceleration and
glint by the SLAM analysis.

A. Full Order Suboptimal/Practical GL

In order to derive the full order suboptimal/
practical GL we use the following state space
description of the missile (derived from (17))

d o g é —IZ cm g (t)
P2 | = P2l + ult
Eley | |- e 22| | L
ay as as P3 ag
(18)
where
a = 1 + T2 + T3
ay = 1) 19 vt 11 T3 +t 1y T3
az = 1) T3 T3 ¢
The full order GL is then given by
¢y = 1
C2 = tf_t
C3 = %‘ (tf-t)z
I S T\
e =L | 575 (0 ] l (19)
tf—t
- - 11 1 am(s)
st US|
tf‘t
_ -1 1 am(s)
I N O
tf"t
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Y O l
tf—t

AMEgt) = - , g = loio.
Le L b wo)) | b
t Cf'T
(20

The commanded acceleration, before the saturation,
is

A, = Mtgmt)[egyteyviegapte a tespgtegry]  (21)
and

am(s) . aj s2 +a; s+ ay tr,

am(o) ajz 52 + a, 52+ a;s + 1

az(s) _as +a, + 1, (1,%a;) (22)

pz(o) ag 53 + a, 32 + a; s + 1

ap(s) _ a3 (- s 1,)

p3(0) aj s3 + a, s? + a; s +1

The coeffic%f?g of the target's acceleration cy is
taken as in + Although the coefficients Chs
¢5, €, can be solved explicitly we precomputed
them by integrating backward as part of the SLAM
analysis.

B. First Order Approximate GL

Here in order to derive the guidance law we
approximate the missile transfer function by a
single pole, i.e.

1

H(s) = g Fr (23)
a
where L 5] + 1)+ 13+ 1. Then ¢y, ¢ and ¢y
are unchanged, c5 = 0, cg = 0 and
te~t
= ~-T _ ACE
Cl(, = Taz [ e + T -1 ] N T _ta , (24)
and
- 1
L e s |
te-t
Atgmt) = T £ (25)
1 -1 1 1 2
st { L™ §T ST AT ]I bdr

tf-r
which gives (11, eq-(b))’ for g + =.

C.  Proportional Navigation

Proportional Navigation is derived if the missile
is assumed to have Instantaneous response, i.e.

am(s)/u(s) = 1. Then we have cjand ¢, unchanged,
ey =0, ¢4 =0, c5 = 0, ¢4 = 0, and

AMreg-t) = zz;%fyz o g - (27)
D. Results

This section presents representative results of
the performance for the missile's model and GL's
previously described.

Figure 5 presents curves of the effective



navigation ratio, N', ( (tf-'t)z A(tf-t)),
versus time-to-go, t o = ~-t), of the lst
order approximate GL and tge 3rd order GL for
minimum and non- minimum phase autopilots,
respectively. One can see that the effective
navigation ratio goes to the positive infinity
(g + =) for the lst order approximation and 3rd
order minimum phase case. For 3rd order non~
minimum phase case the effective navigation ratio
behaves more "wildly” and goes to the negative
infinity.

The following analysis is presented for target's
acceleration of 5g uniformly distributed over
5 sec and glint with spectral denmsity of 1 m?/Hz.

Figure 6 shows the RMS miss distance versus the
value of the missile's autopilot zero, for
unconstrained missile. One can see, as may be
expected, the uniform performance of the 3rd order
full state feedback GL. For minimum phase case
the difference between the lst order approximation
and the 3rd order GL is minor. However, for the
non~ minimum phase case one can see the
superiority of the full order GL.

Figures 7 and 8 present the RMS miss distance
versus the autopilot's zero placement for
missile's constraint of 50g and 30g, respectively.
One can see that the acceleration constraint
degrades the performance. The 3rd order GL with
the constraint is superior now for smaller range
of the zcro placement.

Figures 9, 10 and 11 present results for
constrained missile in a normalized form, i.e.
curves of the normalized miss, RMS wmiss/RMS miss
without constraint and full order GL , versus the
normalized wissile's maneuverability, maximal
missile's acceleration/target's acceleration,

(a /ag) for aq = 5g.

FromaFigure 9, one can see that for minimum phase
missile the full order GL is no better than the
lst order approximation. In other words, for such
airframe the lst order approximation is sufficient
and the higher order GL gives negligible
improvement. However, for non-minimum phase
missile, one can see from figures 10 and 11, for
aM /ag>10 (i.e. aM >SO at ap = 5g), the gain

fromxusing the 3rd order full state feedback GL.
By comparison of Figures 10 and 11, one can trade
off between maneuverability and response time (the
missile on Figure 11 has shorter response). The
same results can be deduced from Figures / and 8
as well. (The RMS miss without coustraint and
full order GL for missile on Figures 9 and 10 is
2.56m, and on Figure 11 is 2.36m).

Figures 12, 13 and 14 present sensitivity/
robustness studies with respect to the radome
refraction slope, for missiles acceleration
constraint of 30g. Figure 12 is for minimum phase
airframe. One can see that the difference between
the lst and 3rd order GL's is practially
negligible. For non-minimum phase airframe,
Figures 13 and 14, for 1, =1, 4 sec, 14,

for 1, = 1, 4 sec, respectively, one can see the
improved robustness in respect of the radome
refraction slope of the 3rd order GL.
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Appendix A

Let us consider the following two optimization
problems on finite interval.

Problem I:

1

t
11 ETex + 2uTsx + uTRu] dr

_1.T
i = Fexgt g

min Jy, subject to % = Ax + Bu

Problem II1:

1

t
, = é.xfTfof + 3 { £uTvu de

min J,, subject to % = Fx + Hu
Lemma: Optimization Problems I and II are
equivalent if

a - sx"ls - sr7lsTP

B

pe - F

=R

T is the solution of the Algebraic Matrix
Equation

F
H
We

"

where
Riccati

1

(A-Br™1 ) TP+P(a-BR718)-PsTk LuPry-sTits = o

Proof: a) The solution of Problem I is
u = R + 8Tp)x
= (a-BR " s)Tp+p (a-BR™15)-PBTR L 8Pq-sTk1s;

P(tg) = Pf’tStf,

the solution P is then
B(t)=Prel (tg,t) (2gP)e

-1
{I+ftfo(tf,T)BR'1 ToT (tf,r)(Pf-P)dr} #(tg,t);
t

tStgs e o(e,ty) = (a-Br7s - BTR7IBF) o(t,t )
o(tyty) =1

and

(a-88718)TP+F (A-BR1s)-PRTR 1BPy-sTr™ls = 0 .

Then the closed loop is

% = {a-BR ts-BRIBTP-BR™IBoT (4, 1) (2c-F)e

-1
[I+{tfo(tf,1)BR—1BTOT(tf,T)(Pf‘F)dT] #(tg,t) }x

b) The solution of Problem 11 is

v 1nTw x

u
= FTw + WF - WHTV'IEW , W(tg) = Wg, tStg,
the solution W is

t -1, T,T -1
W(E) =¥ (e, (T4 £yt e, OBV T (e g, 1)V gd v

(e £)5 de wE,te) = Fu(e,tg)s Wegeg) = 1



and
i={F—HV—1H¢T(tf,t)Wf
te -1,T,T -1
[L+{ Y(Eg, TRV THIY (tg, TIWedt]  9(tg,t) }x.

and the equivalence directly follows.

Appeudix B: General Problem and Solution

The problem being considered here is to minimize
the quadratic performance index (1) subject to the
constraints (2) and (3).

The solution is fgtiiged by the minimization of
the Hamiltonian(!¥»

H(x,p,u) = %-uTRu + pl[Ax+Bu]
T

(8.1)

with the constraint u
costate vector.

u £ Uo2 where p 1s the

Ta<u 2 so that H

1) First let us assume that u
Then the solution is gerived from

is derivable.

H, =0 (B.2a)

HL = -p (8.2b)

Pte) = ghreylPR(eg)en(ee))] = Gx(ee)  (B.20)
then from (é-Za) the feedback is

u = R"1BTp (B.3)

and we have the following two-point boundary value
problem

%= ax - BRI 5 x(e)) = x, (B.4a)

b= -aTp 5 p(te) = G x(tg) (B-4b)
From (B.4a) we have

Ly ~1,T

x(tg) = o(tg,t)x(t)-[1o(ts, T)BRT B p(1)dr (8.5)
where t

B(t,ty) = Ae(t,e ) 5 o(tg,t) =1 (B.6)
and from (B.4b)

p(t) = #T(t,t) 6 x(eg) - (8.7)

Next, substitution of (B.7) into (B.S5) and
rearrangement give

ts ~15T,T
{1+{ o(tg, T)BR "BTO T (tg, v)Gdrlx(ty) = o(tg,t)x(t)
(8.8)

and finally (B.8), (B.7) and (B.3) give
u(t) = —R'IBT¢T(tf,t)G-
(B.9)
t - -
(4] for g, BR80T (1, 16a7) Lo(t g, E)x(E)

2) Now, let us assume that u reached the
constraint (3) so that the Hamiltonian (B.l) is
underivable and one should look for a solution by

direct minimizatigp_ of H according to Pontriagyn's
T2y
’

minimum principle ..

min  H(x, p, u) R uTu.SUoz (B.10)
and it is necessary that

Hx®, p¥, u¥) < HEF, p%, w (B.11)

where ( )* denotes the values at optimum.
So we find that
3 u*TRurtp*T (AxreBu*] < & WTRutp*T[Ax*+Bu]  (B.12)
and we have
wl[8Tpx + 5 gur) < oTBTpr + S ra) . (3.13)

The optimal control must minimize the scalar
product

<u, BTp* + L Ru> , (B.14)
i.e. u and BTp* + % Ru should be parallel and in

opposite direction. Figure B.l shows a geometric
interpretation of equation (B.14).

4

% Ru*

BTp* +‘% Ru¥*

Figure B.1

Since u*Tu* = Uoz we claim that the optimal
feedback 1is

-1

R “Bp*
u* = =y _—:quJL-_ (B.15)

° WKTBpH

Since the Hamiltonian is unconstrained with
respect to x(tg) and p, (B.2b) and (B.2c) must be
satisfied, 1.e. we have the two-point boundary
value problem
(B.16a)

% =Ax + Bu x(t,) = x,

b= -aTp 5 p(tg) = Gx(ty) (B.16b)

where u is taken from (B.15).
3) Finally, from the previous section we deduce

that the solution to the problem considered here
is the two-point boundary value problem

%X = Ax + Bu x(t ) = x, (B.17a)
b = -alp 5 p(te) = Gx(tg) (B.17b)
1_ o=1,T
u = -~U, Sat { LN R"'B'p} . (B.17¢)
From (B.17b) we have
p(t) = oT(ts,t) Gx(ty) (B.18)



and from (B.17a) we have the implieit equation for

x(tf)

and

x(tg) = o(tg,t)x(t) —{tfo(tf,r)auo .

sat{{~ R71BTeT (b, v)0x(t ) Jax (8.19)
]

u(t) = -U, sat{ FR71BTeT(te,e)0x(ep)} . (B.20)
o

{1l

[2]

{31

(4]

(3]

(6]

[7]

[8]

9]

[10]

f11]

[12]

[13]
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Figure 1: Intercept Geometry.
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Figure 2: Argument of the Saturation Function in

(12,13) versus time for minimum
phase missile.

<:vn

y{tg)

tf—t

-1 1 2
o [}’E&)
1,

1 zero at RHP

Figure 3: Argument of the Saturation Function

in (12,13) versus time for non-minimum
phase missile with one zero at RHP.



airframe + autopilot

The effective Navigation Ratio versus
time-to-go, for lst Order Approximate
Guidance Law and 3rd Order Guidance Law
for Minimum and Non-minimum Missiles.

Figure 5:
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Figure 4: Schematic Diagram of the Guidance Loop.
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Figure 6: The RMS Miss Distance versus The Zero

Placement for Unconstrained Missile.
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Figure 7: The RMS Miss Distance versus The Zero
Placement for Missile's Acceleration
Constraint of 50g.
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Figure 8: The RMS Miss Distance versus The Zero

Placement for Missile's Acceleration
Constraint of 30g.
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Figure 9: Normalized Miss versus The Normalized
Missile's Maneuverability for Minimum
Phase Missile.
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Missile's Maneuverability for Non-—
Minimum Phase Missile.
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