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Abstract

The control of a longitudinally unstable
canard aircraft with high order feedback
loops is examined, using multiloop
analysis methods. Simple control struc-
tures which reflect current industrial
practice are successfully implemented on
two system designs using the eigen-
structure assignment method together with
a robustness and sensitivity optimisation
scheme. A true multiloop design which
incorporates incidence feedback exhibits
better robustness and sensitivity charac-
teristics than the more conventional
system which uses only pitch rate
feedback.

1 Introduction

In recent years the practical application
of electronically signalled flying con-
trols has made possible the design of
longitudinally statically unstable
aircraft with active stabilising control
systems. The implementation of such
systems is not trivial since they are
required to operate full time with high
integrity throughout the flight envelope.
Furthermore, in practical systems the
feedback loops incorporate many dynamic
elements such as actuators, and anti-
aliasing and structural notch filters. The
resulting control system is inevitably of
high order.

Severe problems have been encountered in
designing control systems of such high
order, which are also able to provide good
low order characteristics such as pilot
handling qualities(l'z). A further problem
is that the use of more manageable,
simplified low order models to design
control systems, has led to stability
margin problems when the resulting schemes
have been implemented(3). Indeed even with
an accurate representation of the system,
the simultaneous achievement of good
handling qualities and stability margins
throughout the flight envelope is a
challenging requirement.
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Recent European high performance combat
aircraft designs have been canard configu-
rations. In these designs the aircraft's
pitch response is controlled by two
surfaces, the foreplane and flap. Despite
this, their use as independent motivators
for control in normal flight is not well
developed. One aim of this study is to
examine the way in which the freedom
offered by multiple control inputs can be
utilised to the benefit of the overall
system design.

Many current flight control systems are
basically single loop proportional plus
integral pitch rate feedback systems. This
type of structure results in the pilot's
commands being interpreted as pitch rate
demands and has proved to be the most
successful in producing good pilot
handling qualities(4). Furthermore,
amenable to analysis using classical
single input techniques such as root locus
and Nyquist stability margin tests. Modern
control techniques such as optimal control
with full state feedback or observer
systems have not been seen to be benefi-
cial in Industry. One problem with the
resulting multiloop designs is that the
robustness analysis is more complex than
the single loop system, and techniques are
not generally accessible to Industry. A
further aim of this study is to investi-
gate simple output feedback structures
that, together with the multiple control
inputs, produce multiloop systems.

it is

2_System Description

The aircraft which formed the basis of
this study was modeled using the data set
of a representative longitudinally
unstable high performance canard aircraft
flying at Mach 0.5, 5,000 feet, derived
from wind tunnel tests. The work presented
here is limited to consideration of
longtitudinal motions. The canard aircraft
configuration is illustrated in fig 1 and



is capable of independent flap and fore-
plane movement as depicted. The aerody-
namic forces included in the data exhibit
typical unstable close coupled canard and
delta wing aircraft properties(s). The
model was limited to rigid body motions,
with no aerodynamic lags or transport
delays. The engine dynamics were described
by a simple first order lag from the
throttle demand.

A feature of this work is the inclusion of
high order sensor and actuation system
models. The schematic of these is shown in
fig 2. Clearly inclusion of all these
elements considerably increases the order
of the model. The extra complexity is
justified because the total phase lag in
each path can be significant. Indeed
several problems encountered in the X-29
programme through omitting filter and

actuator dynamics(3).

This study was limited to the continuous
time domain. Thus to model the effects of
a digital system sampling and delay, two
1st order Padé approximations were used.
Sample rates of 80Hz and delays of

12.5m sec were assumed, since these are
typical of flight control systems.

The actuator model was a 3rd order system
with rate and travel limits. The size of
the model was again justified again by
phase considerations. Care was taken to
realistically model the rate limits to
obtain the correct phase lag effects(6),

This model was used for all time response
simulations. All linear analyses were
carried out by linearising this model
using the built in features of TSIM2, the
modeling package used for this study.

For canard configuration aircraft it is
possible to trim over a range of incidence
angles. For studies at higher normal
acceleration conditions, it was required
to have a schedule for nominal control
deflections with incidence. This was
calculated based on a range of g values at
the bottom of a pull-up. The schedule was
determined so that to achieve a smooth
increase in incidence as vertical acceler-
ation is increased
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3 Pilot Handling Qualities

The main performance criteria for a flight
control system of the type discussed here
are the pilot handling qualities. These
criteria define acceptable time response
boundaries and input/output frequency
response characteristics. There are many
separate criteria, the most important of
which are reviewed in (7). The criteria
used in this study are those described in
(4 and 8). These place boundaries on
features of the time responses following
the application of a step input from the
pilot. The stick force to pitch attitude
frequency response rate of change of
phase, at the frequency where the phase
angle is -180°, is also limited to a
maximum of 100°/Hz.

3.1 Time response parameters

Inspection of the response of a high order
system in fig 3 in detail, with the ¢ and «4
responses overlaid, enables the important
features to be identified. These are:-

Time at pitch acceleration peak tq sec

Ratio of peak to steady pitch rate I9m sec

dss
Time at peak pitch rate tqm sec
Effective time delay of pitch rate tqd sec
Pitch attitude dropback EE_ sec

9ss
Flight path angle delay tq sec
Response time to steady g t, sec

4 Eigenstructure Assignment

The approach taken to the design of the
feedback loop in this study is to use
simple output feedback structures with
proportional plus integral compensation
where required. The resulting system
requires a gain matrix connecting the
compensated measurements to the actuator
inputs.

Determination of the gain matrix requires
a systematic approach in which all ele-
ments are allowed to take values necessary
to meet objectives. An approach which



identifies the target modes is appealing
because engineers are familiar with the to
visualisation of modes and the main
elements of the associated responses. One
method which can provide a direct solution
to this problem in terms of mode frequen-
cies is known as eigenstructure
assignment(g).

Eigenstructure assignment provides a means
whereby, with certain restrictions, as
many eigenvalues as there are independent
measurements can be assigned exactly, and
as many elements in the corresponding
eigenvectors as there are independent
controls can also be specified exactly.

The process whereby the gain matrix is
calculated involves two stages. First, the
total vector assignment, resulting from
the specification of m elements, is
calculated for each of the r eigenvalues
assigned. The gains can then be calculated
using the complete eigenstructure specifi-
cation.

4.1 System Mathematical Description.

Let the system be described in the usual
state space form :~-

Ax + Bu

x (1)

Y = Cx (2)

Where A is of order nxn, ¥, nxl, u mxl, y
rxl, and B, C are conformably dimensioned.

For output feedback with zero input,

u = Fy (3)
Hence,

X = (A+BFC)x (4)
Putting x = xoe)‘t in this equation yields

the standard expression
(A+BFC) v (5)
for j

Where the J; are the eigenvalues of the
closed loop system and vs; are the
associated eigenvectors.
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4.2 Vector assignment

The complete vector assignment, for the
case where the number of specified eigen-
vector elements equals the number of
independent controls, can be found as
follows.

Let v; be the total eigenvector
corresponding to the ith eigenvalue
assigned and let it be partitioned so
that;

(6)

where 1; is a vector of specified elements
and d; contain the unspecified elements.
(1; is therefore dimension mx1).

From (5),

vi = (3;I-a)"lpFOV; (7)

and thus

(8)

s

1

ray=1g = |1 ]
(x;I-3)"'B [_b;_J

where (8) is row conformable with (6), so
that Lj is of order mxm.

Clearly, from (6), (7) and (8)

1; = LyFCv;

If L; nonsingular, this can be solved to
obtain

and using (7) we can reconstruct the
entire eigenvector, viz
-1 -1
vy = (/\iI—A) BLi 15_ (9)

4.3 Gain Calculation

To find the feedback gain matrix, ¥, may
be determined by repeating the above
process to find the eigenvectors corre-
sponding to the eigenvalues specified,
thus )

V.A

(A+BFC) V.. -

r

where V,. denotes the nxr matrix of r
assigned eigenvectors, V., = [V, V5 ...
vyl, and Ap is the diagonal, rxr, matrix



of assigned eigenvalues. Rearranging the
above equation gives

BFCV, = VA _-AV,

and so BF = (V, A,.-AV,) (CV,)"1
Partitioning and making appropriate row
interchanges gives

[ﬁ”_%r = (VpA-AV,) (ev,) "1 (10)
By
Where B; is nonsingular (a nonsingular B;
must be possible since the are m
independent controls). Thus

= -1 - -1

F =By 1[Iy, 0] (VeA~AV,) (CV,) (11)

where I, is the identity matrix of
dimension mxm. Rather than forming a non~
singular B; equation (11) can be
premultiplied by a matrix "1, Where T is
defined by

8 = |In|
[+]

This leads directly to;

F = [I,,01T 3 (Vv a-av,)(cv,)~l  (12)

4.4 Assignment Limitations

Various workers have suggested methods
whereby more than m eigenvector elements
can be approximately assigned in some
optimal way(g'lo . These methods result in
an inexact achievement of the desired
vector and were found to present practical
problens. For this reason exact assignment
of r eigenvalues and m eigenvector
elements is discussed in this paper.
Clearly all feasible assignments can be
achieved by manipulating this
specification.

Apart from the limitations on the assign-
ment arising from the number of feedbacks
and inputs there are important limitations
on the achievable assignments. Firstly, in
order to guarantee that the gain matrix P
is real, it is necessary to specify a
conjugate eigenvalue and vectors elements
whenever a complex eigenvalue is speci-
fied. Secondly, unobservable and uncon-
trollable modes cannot be affected by any
assignment. In addition, as might be
expected, unobservable states cannot be
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assigned values in the desired
eigenvectors.

Finally, an important limitation of eigen-
structure assignment using output feed-
back, when some states are not measured,
is that closed loop stability cannot be
guaranteed by an a-priori assignment.

4.5 Input Syste

An important aspect of the application of
the eigenstructure assignment procedure is
the incorporation of an input filter
system. The system used in this study is
show in block diagram form in fig 4. This
provides both feedforward inputs and a
filter on the reference input. The feed-
forward input utilises scheduled gains to
set the nominal control surface deflect-
ions to the desired operating point as
described earlier. This filter is used
later to tune the pilot handling quali-
ties. The reference input filter is
designed to provide compatible incidence
and pitch rate demands. This is achieved
by noting that the realationship between
incidence and pitch rate given by the
approximate short period transfer func-
tions is a first order lag(ll). Thus this
filter is a simple first order lag on the
incidence input and a gain of 1 on the
pitch rate demand. Trim offset inputs are
also provided into the feedforward and
incidence inputs.

With this system the overall transfer
function can be shown to be
Y = (I+PG.H) "1p(6.6;+G¢)s, (13)
6 _Short Perio e a Vecto
Assignment Procedure

The prime objective of the control system
is to stabilise the aircraft, and thus the
two eigenvalues chosen for assignment were
the short period frequency and damping. An
undamped natural frequency of 1.1Hz and a
damping ratio of 0.9 were chosen to meet
the time and frequency response criteria.

The eigenvector assignment, in which only
two elements can be fixed, may seem very
limited, since even with the simplified
models, there are many states of signifi-
cance to the response. However, it was
desired to have some influence over the



control surface demands since, as inci-
dence increases, the flap becomes less
effective and the foreplane must be used
in preference to avoid saturation. This
leads to the choice of the actuator
deflections as the two vector elements to
be assigned. In this way the ratio of
their responses was clearly visible and
physically meaningful. It also turns out,
that varying this assignment has a negli-
gible effect on handling, while having a
profound effect on system gains and
robustness (11) | Furthermore, development
of analysis methods for this type of
assignment can readily be extended to
systems with more inputs.

For steady 1g flight, a foreplane to flap
deflection ratio (8¢/n) of -1.0 is a
reasonable a-priori assignment, since this
will cause the moments produced to be
added together. Conversely a ratio of 1.0
might be expected to generate high gains
since the moments produced by the control
surfaces will in opposite directions. aAn
interesting feature of this method of
assignment is that when the ratio of con-
trol surface responses is assigned to be
real and equal for all the modes speci-~
fied, the resulting gain matrix imposes a
simple gearing between them. In this situ-
ation the rank of the gain matrix is 1,
and the resulting loop transfer function
matrix has a rank of 1. Thus the system
becomes effectively a single loop, albeit
with several outputs being mixed. For
systems with a simple proportional plus
integral q feedback, the loop reduces in
any case to rank 1, though the gain matrix
may have higher rank.

With the above in mind 2 design cases are
presented here, design 1 is a conventional
proportional plus integral pitch rate
feedback system. Design 2 incorporates the
feedback of incidence in addition to
proportional plus integral pitch rate.

5 Robustness and Sensitivity Optimisation

So far the discussion has assumed that the
eigenstructure assignment procedure can be
used for design of the control loop.
However, in practical designs, some
allowance must be made for both
nonlinearities inherent in the system, and
the approximations made in formulating the
model. Since the system incorporating
incidence feedback is a multiloop system,
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classical single loop methods cannot be
used to analyse its robustness and
sensitivity. To permit comparisons between
designs 1 and 2 and to provide a unified
design process, a more general approach to
robustness and sensitivity analysis is
required.

The general approach has been formulated
in terms of the singular values of the
return difference and inverse return
difference matrices(12:13,14) 1n this
approach the system approximations and
nonlinearities are described by a
perturbation transfer function which
modifies the nominal system. For the
system shown in fig 4, described by
equation (13) the perturbations can be
represented by a multiplicative
perturbation to the actuation system
inputs. Thus if the perturbation to the
system makes P(s) become P’(s) then the
following relationship can be written

P’ (s) = P(s)Ap (14)
where A, is the perturbation. For the
system show in fig 4 the return difference
and inverse return difference matrices

appropriate to the above perturbation are

(I+G_HP)
and (T+[G.HP] ™)
respectively.

The singular vales of a matrix are the
positive non zero square roots of the
eigenvalues of aHa, where A is the subject
matrix. Singular values are a measure of
the size of a matrix(15). The maximum and
minimum singular values of a matrix A are
denoted 5(A) and ¢(A) respectively.

5.1 Robustness
It can be shown(12:14) that for the

perturbation described above, the system
will remain stable if

5(Ap-I) > g(I+{G.HP}™T) (15)
for all s = jw
or &(Ap"1-I) < g(I+G_HP) (16)

for all s Jw
Inequalities (15) and (16) represent two
sufficient conditions for stability.

Clearly, therefore, it is necessary to



satisfy only one to guarantee robustness
against a perturbation defined by Ap. The
description of the purturbation and the
properties of the singular value as a norm
are quite general and assume no structure,
thus some conservatism could be implied by
the inequalities

5.2 Sensitivity

Although the most important requirement is
for stability to be maintained in the face
of system perturbations, it is necessary
to minimise the performance degradation as
the system changes. This can be achieved
by ensuring the closed loop transfer
function remains close to its nominal
value.A measure of the closeness of the
perturbed systems transfer function to the
nominal one is therefore required. A
method of achieving this can be found by
considering the closed loop transfer
function given in equation (13). This
equation can be rearrange as

Yy = P(I+G_HP) 1r

where r = (GcGi+Gf)6p

Since the perturbations considered are
multiplicative in nature, let B’ = PAy
as before, so that for the perturbed
system

Y = PAp(I+G.HPA,) ~lr
Y = P(a,"l+6 HP) "1r
or y = P8[ (A, l-T)8+1]71r (17)
where 8 = (I+GCKP)'1

From this it can be seen that the pertur-
bation from the nominal is governed by the
size of the matrix (Am'l-I)s, ie. it is
desirable for

F(ay"1-1)5(8) < 5
or inverting, for

15(Aap"1-1) < g(I+6_HP)
5

(18)

where § is some small number defined to
give the required performance tolerance.

It can be seen that for § < 1 as required,
equation (18) is a stricter condition on
g(I+G_HP) than the stability and robust-
ness criteria given in inequality (16).
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It is useful to consider the trends of the
above parameters as frequency increases
since, as w — o, the response of each of
the transfer functions considered here
tends to zero (ie they are strictly proper
rational functions). Clearly therefore, as
W - 00

APm — 0
Ay = (I+APp) — I

Similarly
GCHP — 0
o g(I+G.HP) — 1
and 2(I+[G.HP]™Y) — oo

Also, since Ap = I+AP, it is quite poss~-
ible for g(A,) to be less than 1 at freq-
uencies where the perturbations reduce
gains. Thus since G(Am"l) = 1/a(4y),
E(Am'l) and hence E(Am'l-I) can be much
larger than 1. Generally the perturbations
due to unmodelled dynamics will be more
significant at high frequencies where
g(I+G HP) =~ 1. Therefore, it might be
expected that at high frequencies 3(A"1+I)
> g(I+GcHP). In these circumstances
robustness must be satisfied by ensuring
inequality (15) holds.

To view the system behaviour, two plots
are required as shown in fig 5. Clearly,
since good performance sensitivity is
required over low frequencies, condition
(18) needs to be satisfied; thus stability
robustness will also be guaranteed from
(16). This is illustrated in fig 5a. At
higher frequencies above the bandwidth, it
is more appropriate to consider the
condition implied by (15) shown in fig 5b.

6 Optimisation

Using the above reasoning it is possible
to develop singular value objectives,
based on likely system perturbations(ll).
These objectives lead naturally to the
idea of utilising an optimisation scheme
to enable to best design to be identified,
given the system structure imposed. Indeed
a similar idea has been pursued by others
(16,17) However, in these studies the
controller was modelled in state space
form and every element of the matrices
considered to be an independent variable
in the optimisation process. The optimisa-
tion formulated in this way allows the
system roots, and hence performance, to
vary, focussing on robustness rather than



overall system objectives.

In this study the eigenstructure assign-
ment algorithm is used to obtain the
elements of the gain matrix. This approach
allows certain eigenvalues and their
associated eigenvector elements to speci-
fied. Clearly if the assigned eigenvector
elements are chosen as independent vari-
ables in the optimisation, the assigned
eigenvalues will be held where required
during the optimisation.

The objectives of the optimisation are, to
keep the "size" of the gain matrix as low
as possible, and to maximise the low
frequency performance sensitivity margin
shown in fig 5a. In addition it is
required to constrain the solution such
that there are no unstable roots and the
high frequency stability margin shown in
fig 5b is positive.

The resulting cost function is therefore

Jp = Wyo(F) - WyAop + wy[min(0,Acy) ]2

+ W, [min(0,1077-Re () oy ) 12 (19)
where w;_, are weightings, Aoy, and Aoy are
the low and high frequency singular value
margins respectively. The first 2 terms of
the cost function are objectives, whereas
the final 2 are penalty functions which
constrain the solution as required above.
The mimimum of this function can be found
using, a quasi-Newton algorithm employing
a forward difference approximation of the
gradients(la).

71 _Results

For the cases where the same, or where
appropriate conjugate, vector assignment
is specified for all modes, contour plots
of the cost function values against the
real and imaginary part of the ratio of
flap to forplane deflection (é¢/n), can be
drawn. Fig 6 shows contour plots of this
kind, for design 1 at 1g and 4g. Fig 7
shows similar results for design 2. In
both cases unacceptable values are reached
in the upper right hand quadrant where no
contours are shown. Indeed since at some
assignment it is possible to have the
foreplane moment canceling the flap
moment, there exists a singularity in the
value of the gain matrix within this
region.
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A list of optimised assignments is given
in table 1, for a range of g values at the
bottom of a pull-up. It is interesting to
note that at 1g the optimisation of design
2 gives an assignment which implies a rank
1 gain matrix. Evidently in this case a
single loop design albeit with several
outputs mixed would provide the best
result. However, this is not in general
the case, it is notable for example that
different flight conditions have different
optimised assignments. Interestingly the
results for the conventional design 1
indicate that a phase difference between
flap and foreplane responses would be
beneficial in improving robustness and
sensitivity. In addition, values of Aoy
and Aoy given in table 1 suggest that
design 2, incorporating incidence feed-
back, has a better stability margin and
lower sensitivity to system changes than
the more usual pitch rate feedback system.

Figs 8 and 9 show the time and frequency
responses for designs 1 and 2 with the
optimised assignment. Some shortcomings
exist in the response time to the peak
pitch rate. This can be improved by the
use of lead lag filters on the input(4).
Fig 10 shows the result of this refinement
for design 2. In this case the lead lag
filter was applied only to the feedforward
input as described earlier. These results
demonstrate good precision tracking
characteristics in accordance with the
requirements of (4).

8 Conclusions

A practical multiloop design method has
been demonstrated using, eigenstructure
assignment together with a robustness and
sensitivity optimisation scheme. Good
handling qualities have been demonstrated
on the high order system examples
presented.

Results for the classical proportional and
integral pitch rate feedback system,
indicate that robustness can be improved,
and gains reduced, if a phase difference
is specified between foreplane and flap
response in the short period mode. These
results also apply to a system which
includes incidence feedback and, in addi-
tion, indicate that benefits will accrue
from the use of a multiloop approach to
the design problem. In particular, the
feedback loop robustness and sensitivity
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