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Abstract

This paper describes the principal methods used
within the computer program STARS for the
computer-aided design of optimum structures
subject to a variety of constraints.

Based on the foundations set forth regarding both
structural and optimisation aspects, a description
is given of the NEWTON Method as applied in
STARS. Likewise, the shape optimisation devel-
oped in the form of a hierarchical approach is de-
scribed. Test problems connected with this are
presented.

Practical examples are given that show how re-
search originated at RAE has been continued
and applied at MBB. This includes various com-
ponents which are typical in aircraft construction
and also a description of the manner in which
flutter optimisation is being accomplished with
STARS at MBB in combination with the in-house
aeroelastic program.

1 INTRODUCTION

The design of structural components is an itera-
tive process in which the aim is to achieve a struc-
ture which is adequate in strength and stiffness,
favourable to manufacture and inexpensive: that
1s, in some sense, an optimum design. The design
procedure can take a very long time if approached
conventionally, and it is unlikely that compo-
nents will in fact be optimised in detail against all
important criteria.
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The intensive use of computer methods, in-
volving finite element codes together with CAD
systems and FE pre- and post-processors, has
provided an important step towards shortening
the design process, and structural optimisation
provides a further valuable aid in this context.

Time and cost benefits have been found from
using structural optimisation for:

e weight assessment of designs using various
constructions and materials at a pre-dimen-
sioning stage, since it is then that essential deci-
sions are taken with regard to shaping of com-
ponents or assemblies;

e modification of structures, often at short
notice, in the case of changes of specification,
load changes and the occurence of resonance
or flutter;

o further weight reduction during production-
isation.

The references [1, 2, 3, 4] contain general infor-
mation on the state-of-the-art in structural opti-
misation. This paper outlines the principal meth-
ods used in the program STARS and shows
how the research originated at RAE has been
continued and applied at MBB.
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2 PRINCIPAL METHODS

2.1 Foundations

2.1.1 Structural Aspects. The presumption in
STARS is that we are dealing with large structural
models not amenable to exact solution. Thus the
approach is based on the finite element method in
which the equations of linear elasticity are re-
duced to a set of simultaneous algebraic equations

Ku=p, (2.1.1)
where the unknown displacement freedoms u are
related to prescribed load vectors p by the stiff-
ness matrix K. The stiffness matrix is a symmet-
ric, positive-definite, banded matrix and these
equations may be readily solved by Choleski fac-
torisation. The size of the system of equations is
such, maybe involving 1000 - 10000 freedoms,
that analyses must be called upon extremely spar-

ingly.

The most straightforward structural optimisa-
tion problem would seek to minimise the weight
N
W=
k=1
with respect to the individual cross-sectional
areas A of bars or, correspondingly, the thick-
nesses of plates, while satisfying behavioural con-
straints of the form

Pk Ak 1k (2.1.2)

g = e{u <ci, 2.1.3)
where and l are the density and length of bar ele-
ments and e is a vector of coefficients which, to-
gether with the bounds ¢, defines the constraint.
The constraint g has an implicit dependence on A
through K in the governing equation (2.1.1).

Even to reduce the size of the optimisation prob-
lem to the order of 50 - 1000 design variables re-
quires the use of devices such as design variable
linking. The use of design variable linking also
has further advantages, such as providing the
means to impose symmetry or fabrication requi-
rements or to embody the designer’s insight and
prior experience. In addition, apart from prob-

lems involving simple bars or beams which can be
modelled exactly, failure to employ design vari-
able linking correctly will lead to false solutions
in which the optimised structure is not correctly
modelled by the analysis mesh. In such a case
there is a danger that optimisation will merely
serve to increase analysis errors.

Hence, in the following, it is assumed that ele-
ments are linked into groups, each controlled by
a single design variable x. The areas A are then
given by:

n
Ax= Y, aBixj, k=1....N, (2.14)
F1

where B is a Boolean matrix and a is a reference
area for each element. The structural weight re-
duces to
n n
W= Zl wjXj = jz'l \ / Zj (2.1.5)
= =

where the coefficients w are component masses

given by
N
wj = % | Pk 3k Ik Bk; (2.1.6)

and z are reciprocal variables, z; =1/ xj, whose use
is discussed later.

To be efficient, an optimisation method requires
knowledge of design sensitivities of the con-
straints with respect to these variables. STARS
maintains a tight active-set strategy and therefore
requires relatively few sensitivities to be calculat-
ed at any iteration. It uses fully analytic deriva-
tives, to be contrasted with the semi-analytic ap-
proach employed within NASTRAN, and the
calculation employs the adjoint, or pseudo load,
method.

That is, analytic differentiation of the governing
structural equation yields

Vu=-K'VKu, (2.1.7)
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where V is the gradient operator denoting vectors
of partial derivatives with respect to z. As it
stands this expression gives the sensitivity of the
entire structural response to design change. To
calculate the sensitivity of a particular active con-
straint g(z) = e'u, the constant vector e is treated
as an adjoint load and the equation

Klv=e (2.1.8)
solved using previously calculated Choleski fac-
tors. The combined effect of the use of reciprocal
variables and design variable linking is to give a
form for the derivatives

ak Bi; Kk sz u

N
Ve = T| X
g =v Ak

k=1

(2.1.9)

involving a summation over all the elements
linked to a given design variable.

Next we turn our attention to the standard equa-
tions of mathematical optimisation, since it is
they that provide the context in which mathemat-
ical programming and engineering methods must
be understood.

2.1.2 Optimisation aspects. In structural optimi-
sation the primary goal is to satisfy a set of in-
equality constraints

gi(m)<¢y, i=1...m, (2.1.10)
which establish the behavioural response consid-
ered acceptable for the structure. Atthe same time
there is also the secondary goal of minimising
some objective functions, for aerospace applica-
tion this is usually the weight W(z), with respect
to design variables, here denoted by z.

Some mathematical programming techniques
based on hill-climbing approaches address this
problem directly. However, for the present pur-
poses, it is better to employ an equivalent formu-
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lation based on use of the Lagrangian function
L(z, ), where

m
L(z,?x)=W(z)+_Z'1 N (g —cp.  (2L111)
1=

The Lagrangian function depends on two sets of
variables: the primal variables z and the dual vari-
ables A (otherwise known as Lagrange unde-
termined multipliers). A necessary condition for
the minimisation of the original constrained opti-
misation problem is that the Lagrangian function
should be stationary with respect to both primal
and dual variables. Differentiating yields the
well-known Kuhn-Tucker conditions:

oW (z) N m . 0g;

N =0 j=1...,
azj 12=' 1 aZj J n
(2.1422)
Aj (g — ) =0 | (2112b)
i=l...,m
A >0 (2.1.12¢)

The location of a stationary point thus requires
the solution of a system of (n+m) simultaneous
non-linear equations, as difficult a task as the
original minimisation problem!

Nonetheless,this Lagrangian form offers a variety
of insights, both for the original, primal problem
and in providing the basis for deriving the dual
problem, a maximisation problem [5].

Whichever method of optimisation is adopted,
the purpose remains the same, the satisfaction of
the Kuhn-Tucker necessary conditions. The goal
is to achieve this effectively and economically,
particularly for the large structural system opti-
misation problems where a vast number of design
freedoms may exist. The very success of non-
mathematical programming techniques such as
the stress-ratio method and optimality criterion
methods show that it should be possible to make
good progress.



2.2 Newton-Based Methods

As discussed elsewhere [6], methods derived
from considerations specific to the optimisation
of engineering systems, and owing little to classi-
cal mathematical programming techniques, led to
fully-stressing design and to optimality criterion
methods. Each sets up formulae which may be
applied iteratively to solve equations represent-
ing a sub-set of the Kuhn-Tucker conditions. In
each instance limitations to the applicability of
the methods arise from the fact that the whole of
the set of equations is not addressed simultane-
ously.

The goal of the STARS Newton method was to
evolve a technique, based as rigorously as possi-
ble on mathematical concepts, but without losing
the features which made the engineering-intu-
itive techniques work so well on large problems.

The emphasis was on complementing the opti-
mality criterion method by providing estimates
for the dual variables. It is assumed that the criti-
cal constraints have been identified, and so the
Kuhn-Tucker equations are formulated for a set
of active equality constraints.

As a first step towards solving the set of non-
linear simultaneous equations representing the
Kuhn-Tucker conditions, a linear approximation
is formed about the current point, giving equa-
tions

application of Newton’s method, the repeated
solution of this set of linear equations does not
necessarily converge; but provided the starting
point lies within the domain of convergence, then
that convergence will be quadratic. Unfortu-
nately the requirement that second derivatives
should be provided for all constraints in the
active set requires excessive computation.

Thus, rather than employing an exact Newton
step, the equations are further approximated by
neglecting second derivatives of the constraints.
Such approximations are already implicit in both
the stress-ratio and optimality criterion methods,
and are known to be exact for statically deter-
minate structures, optimised with respect to
reciprocal variables z.

m m m

(VW+ Y, NVg) + | VZW+Y A V2g | 8z +) Vgd\ =0 (2.212)
i=] i=l i=l
(g — <) + Vg; 8z =0, (2.2.1b)

which determine the iteration step 8z,8A . For
brevity, gradient and second partial derivative
matrices have been denoted by VW and V*W and
the summation over j representing the inner-prod-
uct with 8z is not shown explicitly. Like any

1653



2w m Wi
Ml s+ Yy vgen = )
z- i= 72
] J
Vg 6z = ~ (g —¢p

For a more general class of problems, this need to
depart from the strict Newton form will lose the
quadratic convergence properties, indeed it is
quite possible that the iteration may diverge from
any solution. In practice, however, many struc-
tural problems appear to be exceptionally well-
behaved, giving good convergence to minimum
weight designs.

Onmitting the second derivatives of constraints, in
fact, gives a very simple form for the linear equa-
tions. The weight as objective function is convex
and separable, giving a diagonal Hessian matrix
with positive coefficients. Thus, each of the setsof
equations (2.2.2 a) may be used to eliminate one
of the primal variables from (2.2.2b) explicitly,
giving a reduced system of equations in which the
dual variables are the unknowns. When these are
found they may then be substituted into the
linearised optimality equations (2.2.2 a).

The step taken by the Newton algorithm within
STARS can be shown to be equivalent to an opti-
mality criterion step combined with a weighted
least-squares restoration step which moves into
the tangent space of constraints [6]. The effect of
constraint curvature is also discussed in some de-
tail in the same reference.

The Newton method is the primary technique
used in the industrial applications which follow
in section 4. Before moving to such applications
it 1s shown how equations similar to (2.2.2) are
also obtained by considering the dependence of a

size-optimised structure on an embedded param-

eter, representing geometric or material varia-
tion.
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(2.2.2a)

(2.2.2b)

3 SHAPE OPTIMISATION

In order to enable the large system optimisation
problems to be solved efficiently, considerable
simplification of the design problem has been as-
sumed: neither change of geometry nor material
has been considered.

As a first step to broaden the basis of the optimi-
sation, a one-parameter search over geometry has
been considered. Rather than simply expanding
the dimension of the design space, a hierachical
approach [7]has been adopted in which the param-
eter is used to move through a sequence of size-
optimised designs. This both capitalises upon the
achievement of efficient size optimisation and
enables the shape optimisation to be terminated
at any point with an efficient size-optimised de-
sign.



Firstly, straightforward size optimisation is per-
formed for the extreme aspect ratios. In each case
selection of an optimum thickness variation of
the reinforcement leads to a considerable reduc-
tion in the concentration of the von-Mises equiv-
alent stress, which was used as a strength crite-
rion for the sheet material.

a)  circular hole: radius = 100 mm
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Fig. 1 Meshes used for shape optimisation

Using the sensitivity calculation as the basis of li-
near or cubic interpolation of weight, the one-pa-
rameter shape optimisation algorithm converged
to the optimum in six steps, giving an aspect ratio
of 1.45:1, as shown in Fig. 2. The variation in
thickness of reinforcement around the cut-out,
corresponding to this aspect ratio, is shown in
Fig. 3.

Wy
320
310 1

3001
¢
290 1

280 1
w
E 270 -
1

G 260 |
H

T 250+
240 1
230

220 1

7

210

%___——'

1.00

Fig. 2

[v:d
<
i

L

(=)
<
L

L

S
(o]
4

Cross Sectional Area (mm?2)

]
<
I

T

1.448 1.563
Shape parameter (p)

(Aspect ratio)

Location of minimum weight for
shape optimisation

STARS Solution

0
0

Fig. 3

1655

1 ¥ I 1 R Ll 1 1 1 T T F Ll

T
8 10 12 14 16
Design Variable

1 i T
2 4 6
Areas of edge reinforcement for
normal mesh



3.1 Theory

The method is based on variation of Kuhn-Tucker
necessary conditions which define the size opti-
mum. Just as for the Newton step itself, a linear
approximation is formed about the current point,
giving equations

ow

dp

m og;
D Y

i=l op i=1

0gj

op

which determine the sensitivity of the solution,
dz/dp, dA /dp, with respect to the parameter p.

Again, rather than employing an exact Newton
step, the equations are further approximated by
neglecting second derivatives of the constraints.

m

+ Y Vg

i=l

dz
dp

oW

op

dAj

dp

3

Z;
J

i

dz og;j
dp op
This approximation introduces some errors into
the estimate of sensitivity of the size-optimising
values but, although this makes the shape optimi-
sation more difficult, the errors have not been

sufficient to prevent convergence of the shape
optimisation.

Vg

Omitting the second derivatives of constraints
again gives a very simple form for the linear equa-
tion. A further point of note is that slope disconti-
nuities in dW/dp arise whenever a change of
active set occurs in the underlying size optimum.
The difficulties this causes, together with the cost
of semi-analytic approach to calculating the par-
tial derivatives with respect to p, make it unlikely
that the shape facility within STARS will be ex-
tended beyond the one-parameter capability in
the short term.

Nonetheless, the one-parameter capability opens
the way to automating a series of parametric

studies as shown in the next section.
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m
+| V2W + Z N Vzgi

dz

m
+ XVg;
8i dp

=l

(3.1.12)

Vg:

i (3.1.1b)

dp

m
+ X
i=1

0g;

op

N (3.1.22)

(3.1.2b)

3.2 Test problem

The test problem comprises a large sheet of uni-
form thickness, under a 2:1 bi-axial load, and
containing a cut-out of specified area. The cut-
out is taken to be an ellipse of unknown aspect
ratio, and the sheet is reinforced by a variable-
thickness bead, capable of carrying end-load
only, around the perimeter of the cut-out.

A one-parameter family of meshes is created by
interpolating nodal co-ordinates between a mesh
on a sheet with a circular cut-out and a similar
mesh corresponding to an elliptic cut-out of
aspect ratio 25 : 16, see Fig. 1.



At the optimum design, although the stress com-
ponents vary from point to point in the vicinity
of the cut-out, there is no concentration in the
von-Mises stress. A finer mesh was also tried to
eliminate the possibility that the coarser mesh
had missed a slight stress concentration, which
would result in considerably heavier solution if
the sheet thickness had to be increased to com-
pensate. The finer mesh, however, serves to sub-
stantiate the earlier run.

An alternative application of the one-parameter
variation of size-optimised structure, currently
under investigation, is achieved by linking the pa-
rameter to material properties, in particular the
orientation of composite material.

For example, this should enable composite mate-
rials to be tailored to couple wing-bending loads
and torsional deformation, in order to achieve
static aeroelastic objectives in a forward swept
wing.

Having considered small test problems, used to
validate the methods of structural optimisation,
we now proceed to industrial problems where the
major challenges lie both in the size of the prob-
lems addressed and in bridging the gap between
theoretical and coding developments and practi-
cal engineering requirements.

4 INDUSTRIAL USAGE OF STARS

At MBB, STARS is used for static, dynamic and
combined static-aeroelastic optimisations. [8]

STARS’ modular structure makes it quite easy to
incorporate additional modules (user-written
software, FE- programs or pre- and
postprocessors). This possibility is successfully
used at MBB. As far as the static side is con-
cerned, MSC-NASTRAN, for example, is used
in this manner both for analysis und for determi-
nation of the sensitivities required for optimisa-
tion. This is of great practical importance, be-
cause it enables the stress engineers to use one
and the same analysis program in every step of
structural design work (from projecting stage to
strength analysis, including structural optimisa-
tion).

For the combined static-aeroelastic optimisa-
tion, STARS and the MBB in-house aeroelastic
program AEROOPT [9] are modularly coupled.
Fig. 4 illustrates the systematics of this procedure
for the flutter optimisation process. The wing of
an airliner has been taken as an example of a com-
ponent that is to be optimised.

The basic idea is that the FE-model of the entire
aircraft is used for the aeroelastic analysis and
computation of flutter derivatives whereas only
the FE-model of the wing is used for the static
analysis and determination of static derivatives.

Redesign in the course of flutter optimisation is
achieved with the Newton Method (so-called
Pseudo Newton Method — PNM) described in
chapter 2.2.

First flutter optimisations with this process, based
on a submodel of the civil aircraft wing described
in chapter 5.2, have proved to be successtul.

AEROOPT/AEROELASTICS

-

STARS/STATICS

STARS AEROELASTICS

oaTABASE oATASASE

Fig. 4 Flutter optimisation with STARS in a
’multi-model” process
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5 INDUSTRIAL APPLICATIONS

This chapter describes some characteristic ex-
amples of the practical application of STARS at
MBB. These examples relate to stress and stiff-
ness optimisation of metal and composite com-
ponents.

In industrial application it showed that time and
cost advantages can be achieved particularly for
the following fields if structural optimisation is
used:

e pre-dimensioning:
—early weight-optimal designs for various
constructions and materials

e weight-optimal modification of structures at
short notice in the case of
— specification changes
— load changes
— occurrence of resonances, fluttering, . ..

e productionisation/ value analysis
— optimal weight reduction of structures.

. Itis very important to commence structural opti-
misation already during the pre-dimensioning
phase since essential decisions with regard to the
shaping of components or assemblies are taken
during this phase.

Consequently, the detailing of FE-models used
for optimisation will differ, depending on the
phase of application. The characteristic values of
the FE-models and optimisation models are
shown in the different illustrations of the applica-
tion examples.

5.1 Military Aircraft Frame

Fig. 5 shows the FE-model of the frame fora mod-
ern fighter aircraft. This aluminium frame is
subjected to the wing attachment forces.

From the optimisation results obtained, Fig. 6
plots the weight curve versus the iterations. The
weight curve shows clearly that the optimum

weight is achieved within 10 iterations.
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In this case, the Stress Ratio Method (SRM) was
used as the optimisation procedure for pure
stress optimisation.

The minimum gauges for all finite elements to be
optimised were specified as initial design.
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Fig. 5 FE-model of frame
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Fig. 6 Optimisation results for frame



5.2 Civil Aircraft Wing

Elements

4500 Degrees of freedom
2 Materials
1 Load case
294 Design variables
2450 Stress constraints
Fig. 7  FE-model of wing box
Fig. 7 gives a further practical example of the FE- . WEIGHT - HISTORY-PLOT
M . . v SRM_PNM
model of the wing box of a modern airliner. This ~ wy =4+

FE-model (metal inner wing/composite outer
wing) served as the basis for stress optimisations
at the inner and outer wing within the scope of a
study. In these optimisation runs the number of
DV’s was systematically increased in successive
runs.

Fig. 8 gives the example of a weight history plot
for an optimisation run of the outer wing with
294 DV’s.

Initially, the inexpensive SRM was used for two
iteration steps in order to obtain an ‘almost opti-
mum’ structure relatively quickly. This was then
followed by the more comprehensive PNM until
the optimum structure was reached.

The curves show that the SRM quickly converges
and reaches the ‘almost optimum’ structure. The
subsequent PNM introduces some corrections of
the design, thus resulting in the optimum.

In practical industrial application SRM and PNM
have proved to be very successful for redesign
purposes. Moreover, experience has shown thata
combination of both procedures can be very
advantageous for many practical problems [8].

WEIGHT
33

s & 7 s ¥ w w n u
ITERATION NUMBER

0t T ~—r T
3

Fig. 8 Optimisation result for wing box
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5.3 Airbus Tail Fin 2y

///

Fig. 9 shows the FE-model of the composite fin g
bogx. The ba:ic structure of tthe FE-Irjnoc;el 1s /%/%%
shown in Fig. 10[10]. g

9001 Elements
8398 Degrees of freedom
1 Material
2 Load cases
130 Design variables
5689 Stress constraints
6 Displacement constraints

Fig. 9 FE-model for fin box
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//////////
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Fig. 10 Basic structure of the FE-model
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In the composite design, layers with identical
fibre direction were combined and idealised by a
membrane element in the FE-model (see Figs. 11
and 12).

Weight optimisation of the fin box was carried
out for the two dimensioning load cases, lateral
gusts and maneuvers.

Allocation of the design variables to the element
thicknesses and element cross-sections of the
individual component areas is shown in Fig. 13
for the skin, taking into consideration the follow-
ing aspects:

e Since the 0'/90" and + 45’ layers of the webs
used are always a part of one and the same web
and can thus be changed only as a whole, the
thicknesses of the respective elements were

combined to one design variable each (0° and
90°; +45° and —45°).

e Owing to the symmetrical structure of the ver-
tical tail, the respective LH and RH elements
of the skin and of the stringers could be com-
bined to one design variable each.

The following elements were fixed, i. e. they were
not optimised:

— connections of the fin box to the fuselage

Layer
' 2 e
+45°
90°
XN it
¥ . 19 0*

9, HT LI/ k 9

Fig. 11
optimisation

FE-model structure for composite

— connection areas of skin and spars to the fuse-
lage

— spar edge reinforcements

— stringers in the connection areas mentioned
above

— all ribs.

Minimum limits of the element cross-sectional
values to be optimised were governed by the speci-
fied structural and manufacturing require-
ments.

Displacement constraints at characteristic points
of the front and rear spars and strain constraints
for all elements to be optimised had been speci-
fied as constraints. '

Attachment Areas

Fig. 12 Construction of skin FE-model
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The CPU time for 7 iterations amounted to app-
rox. 1.8 hours.

A subsequently performed, simplified analysis of
local stability based on strains resulted in the fact
that the skin of the optimised structure had to be
thickened in parts.

The optimisation described above applied to the
idealised component structure. In this case, the
results and the resulting element cross-sections
and layer thicknesses were defined solely numeri-
cally. Therefore, adaptation of these values to the
production requirements will again result insome
increase of the optimised model weight.

This example of practical application for the
CFRP Airbus fin box shows that STARS can also
be used for weight optimisation of large struc-
tures under realistic conditions.

Fig. 13 Design variables of the skin

No detailed stability analysis was carried out WEIGHT - HISTORY-PLOT
within the scope of optimisation. A subsequent LA T S R N
simplified analysis of local stability was per-
formed for the optimised structure based on the
existing strains. However, only strains parallel to .
the stringers were taken into account, s

WEIGHT

S
The Pseudo Newton Method was selected as S A (o 4
D S S U SO AR A et 1174

optimisation procedure since, in the present case, T s T e o e
stress and displacement constraints are specified.

5 6 7
ITERATION NUMBER

Fig. 14 shows the standardised weight develop- Fig. 14 Optimisation results for fin box

ment versus the number of iterations as optimi-
sation results.

It can be seen that

e a significant weight reduction as compared to
the original component was achieved

e an optimum weight was achieved after the 7th

iteration step and virtually none of the con-
straints was any longer violated.
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6 CONCLUSIONS

Industrial application of structural optimisation
at MBB has convincingly demonstrated many ad-
vantages. Large and complex structural compo-
nents made of metal and composite materials
have been weight-optimised using the method
described in this paper and considerable weight
savings over conventional component design are

possible.

Structural optimisation has become an efficient
“design tool” at both preliminary and main
design phases, making it possible to develop com-
ponents at minimum weight and low cost within
a relatively short time and thus improves compe-
titiveness.
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