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Abstract

In structural optimization great advances have
been made in the past few years. Especially the
mathematical methods developed rapidly due to
their reliability and accuracy. The automated
design of a given structure under statical
loads might be done for a variety of different
constraints and side constraints. The goal is
to get a minimum weight design satisfying all
restrictions. It is obvious that optimization
methods are used with best benefits in the
field of designing compound structures.

The problem is to find out the minimum weight
design fulfilling all contraints by variation
of a large number of design parameters, i.e.
thicknesses of the elements or even layers,
cross-sectional areas etc.

In this paper the influence of the parametric
variation of the anisotropic axes is evaluated.
The structural optimization is performed using
the finite element model of a wing box. A mini-
mum weight design shall be obtained which sa-
tisfies constraints in a displacement an a
distorsion and constraints against failure of
the compound elements as well. The design va-
riables are the thicknesses of the layers and
the angle of the anisotropic axes for the cover
elements. The variation of the angle has been
done by hand using a quadratic parabola for
interpolation.

1. Introduction

Several years ago Dornier started to develop an
optimization program which is based on finite
element analysis and on sequential lineariza-
tion of the nonlinear optimization problem. The
combination of these two methods has proved
quite adaptable to structural design problems.
Solving structural optimization problems this
way results in a number of considerable advan-
tages

® exact mathematical formulation of the
optimization problem

® adaptability to a lot of different types
of constraints

® reliability and accuracy of the iterative
computation

® good convergence
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® extensions of the features can easily be
done, i.e.
addition of new finite elements
addition of more constraints
consideration of additional design
variables

The program system DYNOPT has a modular struc-
ture with respect to the different routine
packages. This modularity has been kept through
all extensions and alterations, thus it is
possible to easily add further more features.

Constraints may be formulated with respect to

allowable stresses
safety against failure
maximum deformations

slope (relative displacemeﬁts)

buckling {under development)

The design variables are the thicknesses and
the cross-sectional areas of the finite ele-
ments. For compound structures single-layer
optimization is possible. Balanced and unbalan-
ced compounds are permitted. The angle of the
anisotropic axes of the compounds is expected
to be an up to standard design variable very
shortly.

Setting up design variable linking groups is
encouraged. One design variable will be desig-
nated the representative, the modification of
the others of the group will be proportional to
the initial size. In case of proportion 1.0 and
equal initial sizes all design variables within
one group have the same size at any iteration.
It is assumed that only finite elements of the
same type may be linked.

1I. The Optimization Problem

For a given structure under statical loads a
minimum weight design is desired. Constraints
with respect to failure of the composite ele-
ments and stiffness of the whole structure have
to be satisfied. Furthermore side constraints
for the design variables may be considered.

Starting with an initial design represented by
the sizes of the finite elements the dimensio-
ning of the structure will be improved iterati-
vely. This process is an automated procedure.
As a result of a sequence of structural rede-
signs the minimum weight design is obtained
satisfying all constraints and side con-
straints. The computation can be stoped by



® a given number of iterations

® satisfaction of all constraints (feasible
design) and the convergency criteria.

The structural weight W, the deformations U and
the reserve factors RF are functions of the
design variables t.

W =W (t,, t,, coovens, tg) = Min. (1)
U =U (t,, t, vevennn, ty) s Uadm

(2)
RF = RF (ty, toy eveeeery ty) 2 RFpqn

The RF-values according to a simplified failure
hypothesis by Tsai and Hill should be greater
or equal 1. For values less than 1. a failure
in one of the layers may occur.

Considering a Taylor series expansion of i.e.
the structural weight neglecting higher order
terms results in

Wt AW = Wi+ At) = W(t) + M ay (3)
Using the V-operator the demand for minimum
structural weight can be written as follows

w7 (aty (V) = AW = Min. (4)
Equation {4) is the objective function of the

optimization problem. The index v herein is the
indicator of the actual iteration step.

The behaviour constraints (2) may be evaluated
the same way. .

The displacement constraints

U 4 utVHINT v gy (5)

and the failure constraints as well
(REYOVD 4+ [RpIVHLIGT (aey (V1) 2 g (6)
are linear dependent on the design variables t.

In addition side constraints may be considered
such as

(v) (v+l)
t + At 2z toon (7)
The reserve factor RF in {6) is calculated from
the three in-plane stresses o,, 0,, T,, related
to the corresponding ultimate stresses (index
u).
o, 2 o, 2 T, 2
—— + R So— =
(olu) ‘°1u) + (leu) H

(8)

The reserve factor is
1

RF = —
v H

(9)

The reserve factor is determined for each layer
of an element. To avoid failure the minimum
reserve factor must be greater than 1.
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111. Evaluation of the Gradients

For statically loaded structures the basic
equations are

{K3 [u] = [F] (10}
wherein [K] is the global stiffness matrix, [U]
is the matrix of the unknown deformations and
[{F] is the load matrix. It is assumed that the

loads are not dependent on the deformations of
the structure.

Looking more closely at the inequaiity con-
straints (5) and (6) it is obvious that the
gradients of the deformations with respect to
the design variables have to be calculated.

Derivation of equation (10) with respect to the
design variables results in
(VU3 = - [K]-* [VK] [v] (11)
The reserve factors RF in (6) are a function of
the stresses as is pointed out in (8) and (9)

and these on the other hand are a function of
the deformations either.

For compound membrane elements the relation
between stresses and strains is
[o] = [Ty1 [S1 [T,1T [e] (12)
For each layer of the compound the in-plane
stresses o0,, 0,, T,, have to be determined.
Matrix [S] in {12) is the elasticity matrix of
the layer and [€] is the matrix of the strains

in the special coordinate system of the ele-
ment.

The strains are dependent on the nodal displa-
cements U in the global coordinate system.

[e] = [ey] [T] [U]

The stress gradients are obtainable by deriving
(12) under consideration of (13) with respect
to the design variables.

(Vo] = [T4] [S] [TOJT [eyl [T] (VU] (14)

The slopes of the function RF = RF (o,, o,,
1,,) are the results of the derivation of (9)
with respect to the design variables t under
consideration of (8) and (14).

(13)

This procedure is known as sequential lineari-
zation of the optimization problem.

A1l constraints (5), (6) and {7) and the objec-
tive function (4) as well are linear in the
unknown modifications At of the design variab-
les.

In this paper two kinds of design variables
will be considered
thicknesses t of the elements

angle of orientation of the anisotropic
axes



At the moment the second one is not yet an up
to standard design variable.

Just the thicknesses t will be modified automa-
tically. The orientation of the anisotropic
axes will be done stepwise with a follow-on
interpolation. The variation of this angle is
assumed to be a powerful means for great bene-
fits in the structural weight.

Altogether the objective function and the beha-
viour and side constraints are a linear pro-
gramming problem. This will be solved by using
the Simplex algorithm. However, solutions for
the unknown values At can only be obtained in
the positive design space, therefore a trans-
formation is necessary.

As the whole optimization problem is linearized
some move limits should be selected for the
changes of the design variables. The bandwidth
of the modifications of the design variables is
a good means to control the convergency.

IV. The Optimization Program DYNOPT

The optimization program DYNOPT consists of
four major blocks. A1l these blocks communicate
with common datasets. The input data describing
the finite element model, the initial values
for the design variables, element data and
constraints and some post processing control
values pass the first module. The purpose of
this subroutine package is data processing and
determining control values and setting flags
according to the type of input data. Further-
more the input data are checked and cross-
checked to eliminate incorrect data. Most of
the error messages are printed in this block.

The second block deals with the structural
analysis. Herein the global matrices, such as
stiffness- and/or mass matrix, are calculated
followed by the structural analysis. As it can
be seen from Fig. 1 the upper part of this
block is outside the optimization loop. Al1l
variables and arrays which are independent of
the iteration steps are prepared and calculated
here, i.e. stiffness and mass gradients for
most of the element types. The lower part of
this block is responsible for the determination
of the structural analysis using the actual
sizes of the design variables. This is inside
the optimization loop and will be repeated in
each iteration,

The third block is the optimizer. Calculation
of the gradients of the constrained deforma-
tions, stresses and reserve factors is done
here. The inequality constraints are formed as
well as the move limits. When the complete
linear programming problem is established the
Simplex algorithm routines are started which
results in the modifications of the element
sizes At. Afterwards the improved structural
design will be determined by superposition of
the actual thicknesses with the modifications

) = (V) 4 ) (15)

with At 2 O,

The thus obtained design will be checked for
feasibility whether satisfying the constraints
or not and for convergency. Provided a feasible
design meets the convergency criteria a flag
will be set from zero to one and a final analy-
sis will be made followed by the fourth block
of the optimization program DYNOPT. This block
is responsible for the post-processing of all
the data, the constrained variables as well as
the design variables. Furthermore the data will
be prepared for graphical display.

1f the improved design is not feasible and/or
the convergency criteria are not yet met the
analysis part of block two and all the block
three will be repeated again and again (see
Fig. 1) until either the maximum number of
iterations is exceeded or the optimum is ob~-
tained.
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V. Optimization of a Wing Box

In this section of the paper results will be
presented of the optimization of a swept com-
pound wing box.

This structure (Fig. 2) has three spars and
four ribs. It is a clamped structure carrying
three different air pressure distributions as
statical load cases.
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FIG. 2: WING BOX OF A SWEPT WING

A z-displacement in the leading edge of the far
rib and a slope between leading and trailing
edge of the same rib are constrained (Fig. 3).

FIG. 3: FE-MODEL OF THE WING BOX WITH THE
CONSTRAINED Z-DISPLACEMENTS

Furthermore the reserve factors according to a
simplified failure hypothesis of Tsai/Hill in
the quadrilateral compound elements are con-
strainted. Primary design variables are the
layer thicknesses of the compound elements in
the covers and the spars (Fig. 4). The thick-
nesses of the ribs are fixed.

A secondary design variable in the sense of not
being fully automated is the orientation of the
anisotropic axes in the cover elements. Optimi-
zations have been done for three different
angles and the corresponding minimum mass has
been determined. In Fig. 5 these results have
been plotted. The three angles of the anisotro-
pic axes can be seen from Fig. 6. They are
related to the direction of the y-axis. Chan-
ging from 15° to 30° results in a benefit of
about 24 % in structural mass, whereas an in-
crease of the angle to 45° adds 7.3 kg.

The approximation of these three points by a
second order parabola leads to an optimum angle
of the anisotropic axes of 31.6°.
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FIG. 4: FE-MODEL OF THE WING BOX WITH
) ANISOTROPIC QUADRILATERAL ELEMENTS
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FIG. 6: VARIATION OF THE ANISOTROPIC AXES ‘

As it can be seen from Fig. 5 the orientation
of the anisotropic axes is of great importance
for the structural design. The obtained optimum
angle of 31.6° is parallel to the load path
extending from the trailing edge of the suppor -
ted rib to the leading edge of the far rib. Any
different angle results in a considerable mass
penalty of up to 0.7 kg/deg.

It is evident that the angle B always should be
considered a design variable in optimization of
compound structures. Expecially in aerospace
design mass penalties as mentioned above are
inacceptable.

The final run has been made with angle

B = 31.6° with the sizes of the layers as only
design variables. In Fig. 7 the contrained
z-displacements are plotted. Displacements and
slope as well are approaching their limits
rapidly in six iteration steps.

In Fig. 8 and 9 the reserve factors and the
thicknesses of upper cover element 115 are
plotted versus the iterations. A limit reserve
factor of 1.6 has been selected against failu-
re. The initial configuration is an infeasible
design with reserve factors of 0.85 well below
the limit.
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In about six redesign loops the limits are
approached by the 0°-layer and the * 45°-layers
as well. The 90°~layer is downsized to minimum
gauge and due to angle optimization the share
of loads is next to nothing. This results in a
reserve factor of well above 2.0.

Most responsible for carrying the loads in this
element is the 0°-layer as could be expected.
Due to the normal stress in this element it is
dominating the compound in thickness. The final
reserve factor is 1.6 as required.

The same plots are done for element 215
{Fig. 10 and Fig. 11).
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The limit reserve factor is 1.3 in all lower
cover elements due to tensile stresses only.
None of the layers is approaching this Tlimit.
Again the O°-layer is carrying the biggest
share of the loads and the thicknesses of the
90°~ and t 45°-layers are approaching the lower
limits. The iteration procedure is starting
with an infeasible design for this element, the
lowest reserve factor is 0.83. At the end of
the redesign procedure the reserve factor is
1.48, that is well above the limit of 1.3

Furthermore the iteration history of the inner-
most rear spar element is presented. The ele-
ment sizes of this quadrilateral element have
been kept fixed. Nevertheless the reserve fac-
tor has been constrained and getting it up to
the limit has to be done by variation of the
adjacent cover elements. This process had been
successful as it is obvious from Fig. 12. The
reserve factors of all layers are in the feasi-
ble region.
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In Fig. 13 the values of the objective function
are plotted against the iterations. A rapid
convergency can be observed, however it is not
decreasing monotonously. The resizing procedure
seems to go wrong way. The reason is that some
elements in the outer part of the load path are
oversized and others close to the support are
undersized.

In the first iteration step a stiffness rear-
rangement is done to obtain an adequate stiff-
ness distribution to the loads. This procedure
causes a penalty in structural mass as can be
seen from Fig. 13. The following redesigns
result in a nearly monotonous decrease in
structural mass.
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FIG. 13 : ITERATION HISTORY OF THE STRUCTURAL MASS

The final design is a minimum mass design sa-
tisfying all constraints. In Fig. 14 and 15 the
element thicknesses and the percentages of the
layers related to the overall thickness are
presented.
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FIG. 14: THICKNESSES (MM) OF THE
OPTIMIZED STRUCTURE
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VI. Conclusion

An optimization has been presented to minimize
the structural mass of a wing box made from
carbon fiber reinforced plastic. The influence
of the variation of the anisotropic axes is
evaluated combined with the variation of the
thicknesses of the element layers. Different
types of constraints have to be satisfied such
as

displacement constraints
slope constraints

constraints against failure

side constraints for the layers

The finite element method in conjunction with
the sequential linearization of the optimiza-
tion problem worked well. The optimum design is
determined within the margins of the convergen-
cy criteria passing 16 iterations.
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