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Abstract

Variable reduction in an optimization process is a
necessary task to match acceptable computation

times and costs in the predesign phase. A method is

presented which reduces the number of design
parameters in the optimization process with large
structures, without cutting the variational degrees of
freedom, such as the variable-slaving method will do.
Both, the optimizor and the finite-element analysis
program are separated and the parameter set is
determined out of an interpolating routine which is
controlied by the optimizor itself. The advantage of
this procedure is to reduce the computation time
rapidly due to the small parameter-set in the
optimizor. Variations with the onedimensional and
twodimensional interpolating functions, such as
polynomials and splines are carried out with aircraft
structures in comparison to ‘full-variable-size'
optimizations and those with the classic 'variable
slaving’ method. This contribution is completed by a
view on how to implement this method in CAD
environments and on future extensions with it.

introduction

The design process for aircrafts is a complex task
which is intensified by the ever growing demands on
the performance and profitable aircraft yield.
Nowadays it is absolutely necessary to use powerful
computer systems and software products to match
these demands in the aircraft design process. In
structures FE methods are carrying out the stress
analysis and are used for determination of dynamic
processes, in aerodynamics CFD methods such as
Euler codes and Navier-Stokes computations are able
to calculate the aircrafts aerodynamic behavior.
Those processes are coupled indirectly in CAE systems
() and the variational tasks are partly controlled by
numerical optimization routines, especially in the
field of structures (23,

Acting together of those topics will become much
more important in the future to realize the
additional potentials by common variation in
between the design process.

But although the computer performance increases
heavily, it is nearly impossible to handle larger
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optimization problems which are important for the
predesign phase in aeronautics, because of the
tremendous computation times, needed for them.
Two main tasks for it may point out the evidence of
implementing efficient routines to the optimization
process, to make those tasks practicable today:

- The 'overall' design process
~  The interactive design process

Figure 1 describes the disciplines of the computer
aided predesign phase within an ‘overall’ design
process. Numerical analysis methods are coupled by
optimization routines. Parameters of this task is the
surface geometry or to relate to the analysis
methods, the node point locations of the FE and the
CFD grids, nearby the dimensions (sizes) of the
elements and . their mechanical behaviour for
structures in special. A node point variation itself
results in a form-optimization process in general and
a shape variation process for structures, such as the
tapering of stringers and the shaping of a hole. A
variation of the thickness- or the stiffness-
distributions results in a sizing process in general.

The size of the analyzing models are different. A
finite-element mode! will have a total number of
DOF of about several 10.000 with a detail analysis
for acomplete aircraft model (. Main parameters of
it are the element thicknesses as described above,
nearby node point locations for shape variation. The
number of parameters with this model reaches more
than 1000. And the parameter sets for the
computational fluid dynamics model with typically
more than 100.000 grid points for analysis ©), reaches
the number of 1000, too.

Nearby those topics other analyzing models have to
be considered in the ‘overall’ design process, such as
the flight-mechanics model, a aero-thermodynamic
model where necessary, systems-technology and
flight-management models nearby  engine
analyzation. With those models and their parameter
sets, the total number of free design variables
increasés up to several thousands.

This task is dependent mainly on the computer
performance and on efficient optimization routines
in conjunction with excellent FE and CFD analysis
methaods. The 'overall’ design process is difficult to be
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Aerodynamics

Flight Mechanics Variation of form, shape and

dimension of the discretized

Engines structure
Systems-Technology

Flight Management

Model sizes for example:

FE with 105 to 10¢ DOF
CFD with 106 to 107 node points

Resulting in several 1000 parameters for numerical optimization.

The 'overall’ design process in the detail

Fig. 1:
predesign phase

carried out in the near future because of the extreme
number of DOF and number of parameters which
will result in days and weeks of pure CPU time even
with the fastest machines. So a variable reduction
without cutting the variational degrees of freedom
will make this process practicable today.

But not only this design process is based on efficient
procedures, but also the interactive design process
with structural - optimization or fluid dynamic
computations is essential and should be highlighted.

This 'desktop’ design process, which is carried out by
the designer interactively, consists of the following
steps for structures:

- Make up the initial geometrical model for your
aircraft or spaceplane

- Attach the preprocessor to generate the node
point and element set

— Choose the optimizor and attach the parameter
model to it

~ Start interactive optimization and receive a data
set after each iteration from the mainframe. This
data set is presented graphically on the
workstation. Decide wether the process works
well and stop it on'convergence.
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Figure 2 presents this task and its necessary computer
equipment.

The interactive design. process such as described
above depends mainly on short turnaround times for
the interactive tasks and for the information flow
during the optimization cycle. To keep this period
short, the size of the analyzing model should be
moderate and the parameter number for the
optimization process has to be cut down. A very
effective method for this task is decribed later on.

————
i

Geometric modelling

Finite element net-generation
Optimizor selection

Graphics output

® Finite element analysis
e Optimization

Fig.2:  The 'interactive’ design process and its

computer equipment

Tasks in structural optimization in special

In structural design the finite-element analyzer is
controlled by an optimizing routine and pre- as well
as postprocessors as interfaces. These modules are
capable in handling the dimension variation process
and also the shape optimization process with
arbitrary structures, load conditions and arbitrary
initial parameter vectors. Each finite element and its
thickness information nearby the node-point
locations of separated structural parts are
parameters in this automatic design process. This
leads to huge variable sets due to the large number
of finite elements in structural analysis (typical up to
several thousands). In practice the large variable set
especially for thickness optimization has to be
reduced.

To demonstrate the increase in computation time
with an increase in variable number, figure 3
presents a time log with a calculation of a wing
structure for example. The weight optimization
(sizing of the thicknesses of the elements) with a
moderate Finite-Element set with 430 elements
results in a total optimization time of 1.8 hours. For
comparison a computation time of 24 hours results
for a refined model with 4300 elements and a
reduced gradient computation with only 1/10th of
the gradients are analyzed.




Additionally figure 3 presents a computational task
with the same structure but a reduced parameter set.
Here the rough model as well as the refined model is
controlled by 57 parameters. Supposed that the
reduced parameter model gives the full variational
freedom, the resulting structure and the weight will
be nearly identical compared with the ‘all-free'
optimization process. For the smaller model the
resulting computation time is 26 minutes, compared
with the 1.8 hours of the free set (factor of 4.2). For
the refined model a total time of 3.3 hours resulits
with it (factor of 7.4). Optimization with this reduced
set gives an advantage in computation time. That
means a cost reduction and a possibility for larger
structural optimizations, such as the 'overall' design
process or the interactive design task.

430 elements 4300 elements
430 parameters 4300 parameters
PRSP, 6630  sec 88400 sec
Tota! optimization time ~18 h ~24 h
430 elements 4300 elements
57 parameters 57 parameters
PRI 1595 sec 12025 sec
|
Total optimization time ~26  min ~33 h

10 iteration steps to convergence on CDC 180-860 mainframe

Fig.3: Comparison of time-logs with the weight

optimization of a twinjet wing-box

Reduction of the parameter number seems to be self-
evident in structural optimization. Several methods
are useful for this process and they are listed in
Figure 4.

Let us begin with the ’all-free’ model, it means the
parameter set is identical to the variable set of the
analyzing routine. The variational potential with this
method is large and is limited only by the degree of
refinement of the FE model and its resulting degrees
of freedom.

Reduction of this large parameter number comes
with an interpolating functional set. It may give the
‘all-free' potential if the functions are implemented
correctly, so that their behaviour describes the
optimal thickness contours. This method gives
acceptable results with a continuous behaviour of
the dimensions or the shape. For example it may be
excellent with the nearly square thickness
distribution in spanwise direction of a two-spar wing
box.

In most practical calculations the variable slaving
method is used. This method is acceptable with
manufacturing constraints, such as the constant
thickness distribution of a fuselage shell-structure or
the skins of a sandwich flap-construction. But
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[ Variable treatment - | [“Vvariational potential |

~ Full variable size Fuli potential with the
variational freedom of the
analyzing model

- Interpolating functions In most cases full potential
with correctly adapted
interpolating functions

- Variable slaving Reduced variational potential,
useful in conjunction with
manufacturing constraints

~ Variable neglection Extremely reduced variational
potential

Fig.4:  Methods for parameter reduction in struc-

tural optimization

reaching the weight optimum with this method is
not possible in general because of the reduction of
variational degrees of freedom. And the quality of
the weight optimum decreases mainly with the
intensity of variable coupling.

Variable neglection is a further possibility to reduce
the parameter number. It is useful were parameters
may not or must not be variated in the design
process. it needs no discussion, the optimum is
extremely cutted off from the design-space and it
should not be the first choose for parameter
reduction.

An efficient method for variable reduction

Normally the numerical optimization process consists
of the analyzer and the optimizor coupled by pre-
and postprocessors. This way of module interfacing
isn't very effective from various points of view:

~ There is still the full variable size to handle within
the optimizor

- Woeak variances between elements and their
gradient information are not used to reduce the
variable number

Various investigations have been carried out by the
authors and one method comes out to be very
effective with structural optimization. Figure 5
presents this special way to interface the program-
modules of the optimization process. The finite-
element analyzer and its pre- and postprocessors are
handling the full variable set of the refined model. in
contrast to it the optimizor variates only a reduced
parameter set to control the interpolating functions
and it receives the full constraint set from the
postprocessor. From this reduced parameter set an
interpolating function computes the variables for the
preprocessor and the analyzer.
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Fig.5:
tural optimization in a CAD environment

But it should be mentioned here that this process is
not quite so new. Interpolating functions are used
with the shape variation for a long time ®7 and
there have been investigations with airfoil
optimization and interpolating functions too ®. So
the idea was to bring in this exellent variable
reduction routine to the thickness- or in general, the
dimension-variation (sizing) process.

Let us have a view on how to implement
interpolating functions for variable reduction to the
optimization process in general. Normally an
objective function is to be minimized, subject to
constraints and a variable set:

min F(x)

gx)= 0
h(x) =0

X = [xh RERS Ian]

In structural optimization with a finite-element
analyzer and a discrete element set , the weight of
the structure has to be minimized subject to limit
stress constraints:

min W(x)
(O(X)ilﬁ()()nm - 1) =0 1=5i= Ngi

The vector of variables x consists of the thicknesses of
the finite-elements if we are changing the
dimensions, or it consists of the node point or surface
geometry if a form or shape variation has to be
carried out:
dimension

X = [th aee rth]T

shape x = [Xy,y1,24, ... XnvaYnveZou] T

As described before, this variable set may be identical
to the parameter set in the optimization process, but
itis very uneffective to walk this way.
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If we are using interpolating functions for variable
reduction the objective function as well as the
constraint set remains the same. But the variable set
itself is influenced by a reduced number of control
points, so that the timeconsuming optimization
process and its gradient computation comes out to
be more effective.

interpolating function

T -1 1 ¥ l L] LN Ll L}

1 2 3 4 5 6 7 8 9
full number of design variables Xy

O\

r —

1 2 _ 3
reduced number of control points §,.

With this the variable vector decreases to the control
pointset of the interpolating function itself:
interpolated variable set x = [§, .57

No discussion that the variational freedom with such
a function is reduced to the freedom of the function
itself. So it will be impossible to have an accurate
variable set with a square function if the optimum
values are distributed in a cubic manner. And in
addition to it, unsteady distributions in the optimum
are filtered so that the unsteady value lies in
between the interpolated region of the function. If
those points are fundamental for the optimum itself,
they should be treated separately or the function
should be piecewise steady.

An additional advantage with this method, which
should be pointed out is a more stable convergence
rate to the optimum because of the steady variation
capability of the variable set.

'Interpolating functions

In design of aircraft structures the handling with
almost continuous dimension distributions for large
structural parts, such as for the panels for example,
could be stated. The problem of variable reduction, a
cut of variational freedom can be reduced if a type of
interpolating function is used which matches the
behaviour of the free model in the optimum. Care
has to be taken into account in areas were single
forces are to be adapted or the structure changes its
geometric behaviour (e.g. a kink), as mentioned
before.



In practice two types of functions are used which fit
the above mentioned demands very well:

~ Polynomial functions in one- and twodimen-
sional projections

— Spline functionsin one and two dimensions

Figure 6 presents typical parameter models with the
related functional types. In general spline functions
are stiffer in their behaviour and they are almost
implemented in CAD Systems, which is an advantage
1o use those subroutines from this program package.
This point should be highlighted later on again.

It is worthwile to have a look onto the possibilities
with such a parameter model. Assumed we are using
a cubidsquare twodimensional polynomial function,
this mode! will fit the requested variational freedom
to control the thickness distribution of a wing panel.
Figure 7 describes the parametric freedom which can
be obtained with this model.

Only 12 parameters are necessary to fit the thickness
distribution of the upper panel for the all free
variation. With this set it is possible to control a
finite-element net with 25 panels for the predesign
task. And it will be possible to control this model
with a onedimensional polynomia! function, too. The

Onedimensional Twodimensional

=V
C%gf/‘

IPolynomials and Splines (Bezier Splines, B-Splines) as interpolating functions ]

Fig.6: Interpolating functions in one- and two-

dimensions

next step to a more accurate analysis is a refinement
with 125 paneis for the upper-plate structure. And in
a further refinement phase it is also possible to
extend the number of Finite Elements up to an
arbitrary value. In the figure a refinement with 500
elements for high accuracy analysis is presented for
this design task.

HWN -

Tw

Coarse mesh with 25 elements on upper panel
intermediate mesh with 125 elements
Refined mesh with 500 elements on upper panel

odimensional function of the upper panel

Fig. 7:

Different degrees of refinement with a wing-box structure, controlled by an

interpolating function. Number of elements and function for the upper-panel
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it should be mentioned here, that each element
brings in its own stress constraint into the
optimization process, so that the variation process
itself is not limited because of a reduction in accuracy
for the stress analysis. The major effort is the
reduction of the computation time due to the
variable cut down, as it will be presented later on.

Aircraft structures with this method

It has been described that this method of variable
reduction will give almost the full variational
freedom if it is implemented correctly and if there
are no discontinuities in the force distribution nor
the geometry of the structure itself. Some aircraft
structures should be presented and their according
interpolating functional sets.

Figure 8 describes a twinjet wing structure which has
been presented before. Two cubic/quadratic patches
are necessary to give the variational freedom for

l Upper panel ]

[ Rear spar }

each plate structure. To match the discontinuities in
the areas of engine and wheelbase attachment, each
patch varies only in between these regions. If the
wing structure isn't influenced by those attachment
points, such as the structure of an executive jet for
example, it may be useful to have only one
cubic/quadratic patch, or, if a higher variational
freedom is required, it may be necessary to use a
bicubic function with only 16 parameters.

To control the spar- and rib-thickness distributions,
several onedimensional functions are implemented.
Square functions in between the related areas for
the spars and an identical set for the ribs, if it is
assumed for those ribs to have continuous
thicknesses in chordwise direction.

With this model and its total parameter number of
57 it is possible to control a discretized structure with
several thousand elements for analyis. In the figure
the structural mesh consists of 430 elements and 900
degrees of freedom for preliminary design

optimization.

Double square/cubic patches

...

{Lowerpanelj L Front spar l

Fig. 8:
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=
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Double square function

Double squareicubic patches

L2
——

Interpolating functions and control point set for the twinjet wing-box structure,
consisting ot 430 four-point continuous elements



Comparison of effectiveness and accuracy

Several optimizations have been carried out with the
twinjet wing-box to discuss the effectiveness of this
method and to compare the accuracy of reaching the
weight optimum, given by the ‘all-free' design with
this Finite-Element model.

To reduce the graphics output and to have a better
overview only the upper panel with its thickness and
stress contours are presented for the final
computation to convergence. But it should be
mentioned that the complete wing-box has been
taken into account for the calculations. Load case is
‘flatten-out’ in point 'd' of the velocity/load-factor
curve.

The computations themselves have been carried out
with a Penalty-Functions method for constraint re-
duction and a Conjugate-Gradient search algorithm
910). The finite-element model itself consists of
continuous quadrilateral elements and the sensivity
analysis itseif is carried out internally by the FE
analyzer.

Fig.9 presents the result of the 'all-free' design
nearby the result with the interpolated model (Fig.
8).

Nearly the whole wing-panel is designed to the limit
stress point. Only the wing-tip with its low thickness
constraint does not reach this value. In spanwise di-
rection the thickness distribution varies with a square
to cubic behavior and has a weak discontinuity in the
area where the engine and the kink is located. In
chordwise direction a nearly square thickness beha-
vior could be stated.

In relation to it the stress contour of the interpolated
computation gives nearly the same results with a
slight change in the fuselage-engine area, which
comes from the differences of the thickness
distribution, compared with the ‘all-free’ model.
Here. the thicknesses are slightly different in
chordwise direction, because of the square degree of
freedom in this direction, which causes some weak
difficulties to match the distribution exactly. But to
compare the stress values, these differences are
smaller than 3% in relation to the limit stress-value,
which means a difference of less than 5 N/mmz2 in
practice. And the weight increase because of it is less
than 1% for the upper-panel. '

It could be stated here, that the chosen interpolating
functions are matching a high accuracy ‘all-free'
design, but with only 57 parameters instead of 430.
The saving in computation time and costs is about a
factor of 4.2, Fig.10.

In comparison to it, a computation has been carried
out with a constant thickness distribution in between
the area of two ribs. The results of this computation
are presented in Figure 11.
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ES Eg o ig S 83
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R 2 o g
All free model 10 -1.5% 125 1.0
All free interpolated 1.01 -3.% 21 24
Chordwise constant model 1.11 -10. % 25 .37
Chordwise constant 111 -11. % 5 A7
interpolated

Fig. 10: Comparative study with interpolating func-

tions on a twinjet wing-box (upper-panel)

It needs no question the stress contour matches the
design point only in a small area of the plate struc-
ture and the stresses themselves are varying much
stronger. Here the maximum stress-difference for the
upper wing-panel is nearly 10% of the limit-stress
value, thats approximately 30 N/mm2. And the
contour realizes its maximum values in the rear spar
area, nearby the fuselage, changing to the center of
the panel in chordwise directions.

To interpolate this thickness contour a onedimen-
sional double-square function is useful, such as for
the spars and ribs. This reduces the number of
parameters to 25 for the complete wing-box instead
of 57. The resulting thickness distribution with it is
nearly identical to that of the chordwise constant
model. The worst difference does not exceed 1% of
the reference values. This results in a nearly identical
stress distribution and the same weight.

. Accuracy and the computation times for this task are

presented in Fig. 10, too. A time reduction of a factor
of 2.2 could be stated without loosing the quality of
the optimum for this computation.

General applications with interpolating functions

. Previous examples with a twinjet wing-box and
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interpolating functions described the accuracy and
the effectiveness with this method. But it should be
possible to handle nearly every structure with it, if
the dimension behavior, which is to be optimized, is
smooth and is being discribed by polynomials or
splines.

Figure 12 gives some more examples of aircraft
structures and their interpolating functions for
thickness variation of the upper panels, such as for
the multicell wing-box and delta wing structure. The
distribution for the first example is described by a
bicubic patch and by an additional linear control
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Comparison of the 'chordwise constant’ and the interpolated weight optimum wing-



point set for the center wing-box. If this
twodimensional function does not match the
accuracy standard, maybe because of a more
complex load condition, it should be no problem to
extend the degree of freedom for it up to the desired
value. For the delta wing upper panel an identical
patch is used but with a higher degree of freedom in
chordwise direction.

A further example is a fuselage shell structure which
is a bit more difficult to handle it within the
interpolating model because of the single force
adaptions of the wing-fuselage intersection. For this
type of structure the shell itself is not designed to be
built with a strong varying thickness distribution. So
a linear patch combination has been chosen to
represent the thickness behaviour of it. Control
points are related to the critical parts of the wing-
fuselage intersection to match the desired accuracy.

But not only thickness or stiffness distributions of
continuous structures are useful to be handled with
this procedure. The figure presenis a problem of
shape optimization too. Here a small number of
node points controls the shape of the hole. And
because of the small number of parameters within

this problem it may be possible to variate it
simultanously within the optimization of the
thicknesses of the wing-box structure. This will lead
to an additional saving of computation time due to
the reduction of multiple analysis models for shape
optimization to be generated in detail analysis and
variation.

Concdlusion

As presented before, interpolating functions have
been used to reduce the variable number for the
optimization process with structures. 1t was possible
to cut down the computation times and costs for the
optimization process rapidly without reducing the
variational degrees of freedom for the task itself.
With a moderate wing-structure consisting of 430
elements, the factor of time reduction was 4.2
compared with the ‘'full-variational' task and it
increases with larger analysis models. Efficiency of
this method could have been increased furthermore
by combining it with the well known ‘variable-
slaving' procedure to match manufacturing
constraints, such as constant thickness distributions
in chordwise directions.

_Fuselage structure

Structural details

Fig.12: Further Examples with interpolating functions on aircraft structures with the
interpolating functional set and relating control points



Coming back to the two tasks which have been
described at the beginning of this contribution, it
should be possible to reduce the parameter number
for the 'overall’ design process to a value which will
enable the designer to carry out this tasks with
acceptable computation times on a large mainframe
today. And it should be no problem to implement
this method for variable reduction within the
interactive design process. Relating to the twinjet
wing box, a remaining turnaround time of
approximately 2 to 3 minutes instead of 11 minutes
will result with the presented models and
interpolating functions. This should be acceptable
for this task with graphic data output on the
workstation.

Especially for the interactive design and optimization
process, it is possible to bring in the interpolating
functions from the CAD system directly. Geometric
modelling of the structure deals with the generation
of the structures contour which has to be refined and
fitted by interpolating functions within this CAD
system. Functions for it are almost splines, piecewise
continuous and additionally implemented in patches.
So a modern CAD system gives the structural desig-
ner the desired functions which may be implemented
also in the variable reduction process.

it needs no discussion that this process depends
mainly on the know-how of the designer to bring in
the correct interpolating functions, patches and
control points. Future systems will have the capability
of 'knowledge based intelligence'. With this it might
be possible to lead the user througout the design
stages and help him to have a correct task with a
hopefully excellent solution.
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