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Abstract

In this paper a modification of finite
element methode is suggested which, at re-
latively small number of elements gives be-
tter solution of nodal displacement.

The modification is based on analysisof
convergence condition of finite element me-
thode, conditions which are to satisfy sha-
pe function of conforming elements, as well
as on the base of behaviour of non-confor-
ming elements analysis, which being applied

usualy give a quick convergence solution.

The leading idea of modification of fi-
nite element methode consist of using a
quick convergence of non-conforming eleme~
nts and monotonic convergence of conforming
elements. A "controlled non-conforming ele~
ment" is introduced for that purpose which
is assigned to fundamental conforming ele-
ment and its shape function is addopted in
this form.

F () = (1 - N+ anT(R)
i i i
where N?(i) - is a clasical shape function

which corresponds to fundame-
ntal conforming element,

Ng(i) - additional, corrective shape
function which describes the
shape of equilibated displac-
emen within an element.

Functions Ng(i) represent those displa-
cements within an element which are effect
of nodal forces Kij‘ These functions do not
fulfil continuity conditions on inter-ele-
ment boundaries, so they correspond to non-

conforming elements and are defined numeri--
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cally. Well known patch test id used for
defining parametar o value for group of el-
ements,; on the data base regarding simill-
ar construction behaviour. Parametar value
depends on relative diameter of finite el-
ement and its ratio is between 0 and 1.For
a = 0 conforming fundamental element is ob-
tained while for ¢« = 1 a completely non -
conforming, equilibrated element is obtai-
ned. Solutions limitting exact solution fr-
om upper and lowere boundaries correspond
to these elements, while parametar o defi-

nes the exact solution.

On the base of a defined parametar a,
group of elements, as sub-structure has st
iffness matrix which in the best way appr-
oximates the real local stiffness of the
part of the real structure. Forming the da-
ta base based on previous conciderations of
the parts of the structure, a base for qu-
ick and more real analysis of aeronautical
construction is obtained. Having in ming
that the structure is modeled with smaller
number of elements, that is smaller number
of global nodes this methode makes possib-
le very quick analysis which at the same

time are exact.

Introduction

Conforming elements that is, elements
fulifiling continuity of displacements co-
nditions at the inter-element boundaries,
are most frequently applied elements in the
finite element method. Their main charact-

eristic is achievement of monotcnous conv-
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ergence of the obtained results increasing
the element number by which a certain str-
ucture is modeled. This convergence is very
often a slow process what requires, in or-
der to obtain an "exact" result, a great
number of finite elements modelling the st-
ructure.

In the theory of finite elements non-
conforming elements are introduced either
because of difficulties in achieving the

C1 continuality,

that is continuality of
both the displacements themselves and their
first derivatives at the inter-element bo-
undaries, or for the improvement of finite
elements behaviour. So by introducing the
incompatibile displacement modes (Wilson
and others) the behaviour at bending of the
rectangular element is improved for state
of the plain stress, as well as eight-nodes

of brick element.

In order to decrease the necessary elem-
ent humber, and at the same time to obtain
"exact" results, modification of finite el-
ement methode based on applying non-confo-
rming elements which are formed in specific
way is considered in this paper. Without
diminishing generality of the suggested
modified procedure, and because the easier
presentation and simple formulas, all con-
siderations in this work will be refere to
state of the plain stress case.

Different to the standard formulation,

shape functions are introduced through:

N?(x,y) = (1—a)N?(x,y)+aN§(x,y).

Without going, this time, into conciderat-
ions which brought up this shape functions
formulas, only certain basic ideas will be

explained.

Parametar o is dependant on relative el
ement size and the way its definition will
be showen here, N?(x,y) is shape function
of the basic conforming element attached
to i-nodal displacement whilest Ng(x,y) is
added, incompatible shape function and its
formulation will be defined.

The parametar a value goes between 0
and 1 but in practical problems it never

takes its extreme values. The value a = O
is achieved when the element is "smalll,
that is when the element grid is very fine,
and confofming element behaviour is obtain-
ed, what is obvious in the very shape fun-~
ction formulation. In the case of "big" el-
ement, that is crude grid of finite eleme-
nts, the parameter o« will be betveen O and
1 and according to the previously introdu-
ced formulation shape function element is
non-conforming. Notious "small-big" are re
lative in the sence that their are dependa
nt on both the order of interpolating poli-
nome of conforming element and where the
element is applied, that is on its capabi-
lity that at certain size gives "exact" pl-
ain displacement state and stress in its

range.

Function N?(x,y), are known shape func-
tions of tasic conforming element and are
not going to be discussed separately. It
should be noted that the expression basic
element unerstands any of already known el-
ements, with this formulation a new noncomn
forming element is formed, wich with the
basic element has the same shape, same no-
dale degrees of fredom and partly the same
shape functions. This joined, derived, el-
ement when decreasing its size, a->0, beca-

omes its basic element.

Functions Ng(x,y), two for each nodal
displacement: Ngu(x,y), Ngv(x,y), and in
the case of the plain stress state corres-
ponds to displacement distrbution on ele-
ment in case that i-th nodal displacement
caused by force which is equal to relevant
stiffness coefficient Kii’ whilest all ot-
her nodal displacements are equal to 0. It
is obvious that in that case i-th nodal di-
splacement is equal 1, while the nodal fo-
reces achieving this state equal stiffness
coefficients Kji' These functions do not
achive displacement continuality at inter-
element boundaries so the obtained element

is nonconforming one.

Modification of triangular finite element

Finite element of triangular shape is
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well known. Displacement in element are

expressed in the form of:

o1
2
ulx,y)] [N;0 N0 Nyo0 ]S
tud = e s O N, ON, ON .g“
1 2 3 e
6
1 .
where: Ni = jﬁr(ai+bix+eiy) i=1,2,3 are

known shape function

y
VXp Y8y = XPemXYg
246= 41 X5 Yol bi = y‘j - Yy
1 x3 y3 ey = X - xj,

Big. 1

and u(xi,yi)=U21_1, V(xi’yi)=U21’ (i=1,2,3)
nodal displacements.

Stiffnes matrix and other characteristic
of this element are well known and will not
be quoted here.

In oreder to define functions NE(X,y),
consider now finite element of triangular
shape as structure (that is as supereleme-
nt) modeled throught set of smaller finite
elements. Restricted displacement as the
applied force in the node, for analized ca
xes, are shoun on picture 2, where forces
F3x’ F3y,..., may have arbitrary values,

subjected thet the problem is in the range of li-

near elasticity. EY
5;7_‘,‘:“ 3
1 2 1
a Py 2
Fig. 2

Using the standard program, displaceme-
nt & stresses in the superelement and rea-
ctions in supports, for shown cases, may be
defined. Deviding obtained results by valwu
es of the obtained nodal displacement, co-
rresponding to the outher force a normali-
zed displacement distribution is obtained,
normalized distribution of stress and nor-
malized values of outher nodal forces sys-
tem. Normalized values of this nodal disp-
lacement is equal to 1 now, whilest the re-~

levant in thus way normalized nodal force
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is equal to stiffness coefficient K., (be-
cause it represents the force, which caus-
es unit displacement in the node i, and all
other nodal displacement equals to 0). No-
rmalized stress distribution now can be de-
fined as stress distribution caused by unit
displacement Ui' The stresses are in bala-
nce with outher force Kii’ as well as with
and their

values in this case are equal Kji' It sho-
uld be pointed out that with the finite el-
defined on the base of displaceme-

the reactions in the supports,

ements,
nt in general case stresses in element are
not in balance with the corresponding nod-
al forces Kji' 01l these results are obta-
ined by program. So examining rectangular
triangle, its division into smaller finite
elements is showen in the picture 2, dist-
ribution of normalized displacement is ob-
tained, some of them are showen in the fi-
gures 3 and 4. This displadement distribu-

tions are in fact looked for functions Nz(x,y).
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To form stiffness matrix of modified finite determined by the expression

element, we will express displacement on the
(k%1 = L£IB1T(DIIB1AV®

element throught all nodal displacements by - ve

£ PN . B

means of modified shape functions. So, ba and now, the following can be written:

sed on the previous, we may write:

[ke]=(1-u)2£BTDB dVe+m(1—u)£BTDB ave
v o o v 1" o

k .r w0 kK .r
) (1—a)N1+aN1u o NZu (1—a)N3+aN3u
{ul =
' RS IEY e 2 T e
o N‘lv (1 a)N2+aN2V o N3V U1 + mvé B1DB1dV .
U
r k .r r 2
a*N (1-a)N +oN. = «a-N U e T e e _ T e
Lu r - 5u 6u X U3 koo -éBODBOdV , k11 = £B1DB1dV
(1- NS+l oS (1 s ot | |V ! !
yroly,  aNg, - Mg+« Nev| v
e _ T e _ e _ T e
that is, after reducing the equotion, the k10§£B1DBodV T k01 'VéBoDB1dv
following:
e _ 2, e e 2, e
81 k¥ =(1 -a) koo + 2<:L('¥-~ez)l»(o1 + o k”.
2
 (1..yIN, 0 N, 0O N U
{ub = (1-a) |41 N, 0N, o3 N, ui| * The first matrix kS represents the st-
35 andard stiffness matrix of a basic finite
) 81 6 element, which is known or can be determi-
rogr ro.roro.r 2
‘e N1u 20 1\131‘1 Nuu N'Su N6u 83 ned by standard procedure.
N?IN;,N;,NQIN;,N6V 32 Third matrix k?1 has also been determi-
6 ned numerically at the previous determina-
tion of normalized forces applied at the
where: NS=NKon_, nKonKono, nKowKan
17727717 3742 56T nodes of finite element. So for the given

element, taking for example F3x=200 (daN)
achieved displacement U5:0.007O208 (em) and
reactions on the supports are showen in fig

Now, element deformation may be express-
ed in a standard form

(B 1=z (1-0) [B_ ] +alB.] 5a. By normalizing these values with obta-
- ’
° ° ! ined displacement stiffness coefficients

where: are determined Kji’ showen in the fig 5b.
Other coefficients of matrix k?1 are dete-
3/ax O . .
N. 0 N. 0 N. O rmined in the same way.
[BO] = 0 a/8y 1 2 3
0 N 0 N 0 , 22351483 31838.874
8/8y a/dx 1 2 3
9200 F1
is a known expressicr fer deformation on a 3 Us 3| 28489.271
finite element, whilest [B1] is obtained
on the base of th m ix-diff i - 318
e same matrix-differenti 223.5148 . 2235‘492" ~34838.874 5|5349.6009
al operator applied only to added (equili- S va y
brated) shape functions: ﬂZOO 2554821 ﬁ'za%g'zﬂ -33496005
Fig,5a. Fig.5b.
r .r .r .r o .r .r
a/ex O N1u N2u N3u Nuu N5u N6u e sot o N ; k”
= / efcre determining matrix an
(B41={0 aidy N? N;v Ng Nz . Ng g - 10 01°
a/ay a/ax|| 'V v hv T5v v notice that these two matrix are transpos-
ed one to another and due to it, it is su-
Stresses may be writen in the form of fficient to examine one of them. If we ta-
X e . .
ke to calculate the matrix k which is de-
{o}=[DI[BI{U}=(1-a)[DI[B_J{U}+a[DIB UL 01
o fined with
Element stiffness matrix, as known, is K& = fBTDB ave
01 e o 1
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and notice that the matrix Bo is constant
(that is all its elements are constants)
and may be put in front of the integral si-
gn. Also observe that expression DB1 repre-
senrts stresses on an element due to unite
displacement, which have been previously
determired. As these stresses are constant
in each element with which superelement is
modeled, the following can be written:

e T e e
kgq = Boéé{°1}dv
and taking care that all elements are equ-
al among themselves, we have:

n

e 5T 5 (o)
ne ovez1" 1 ’

e = -
kOT =t

. e
so matrix k01

mple way and the subroutine for its deter-

is obvously obtained in a si-

mination is easy to write.

For determining parameter o examine now
the structure showen in fig. 6a for which
solution is being achived using the stand-

ard programe. Let say that the same struc-

ture is modeled as in fig. Bb where these
elements are formulated as previously det-

ermined modified way.

= h = P
2 1 = 6 2% ! g 36
2
1 /N4
2|3
4 2
3 5 31 213 1
4 5 5
Fig.Ba. Fig.Bb.

As all nodal displacements are equal 0
but the displacement U1, which is krown
from previously obtained solution and sin-
ce the relevant nodal force is also known,
follovs that on the base of known procedu-
re for forming the global stiffnes matrix

we can directly write:

2 1 2 4
[k 3= (1= 2 (D lelkG eli 1D+

2 2 3 4
+2a(1-a)([k22 + k33 + k22]+[k11))01 +

2,01 2 3 U _
+a ([k22]+[k33 + k223+[k”])11 =

2
=(1- Tk, (oo)]+2“(1'°)[k11(01)]+a2£k11(”)] .

F
(]! 2,11 1x

100y 2k 1=K g gqy* e Ryq(qy [

where the only unknown o is easy to obtain.
In order to clarify the meaning of para-
meter o« let’s examine a simple example sho-

wn in Fig. 9. The structure is modeled with
1\\\
I T I

Fig.7

three successive meshs of finite elements
of triangular shape, where each of triang-
ular element could be modeled in the fcll-

owing way:

N
N

DN NN

I mo 11,
Fig. 8

Element I is a known triangular element
with a ccnstant state of deformations, whi-
lest the elements II and III are derived
superelemerts where the elimination of in-
ner nodal degrees of freedom was performed.

The initial idea was to find-out what
results would be obtained in case of fini-
te elements being connected through nodes
in spots in a global model, and after that
according to the W. Dirschmid’s idea [Ref.1]
make self adaptive programe, which by iterative
procedure connects previously reciprocally
unconnected ncdes in individual edges of
these elements and eventually depending on
the stress diference value in neightouring

elements going onto the next division.

Explaining the obtained results, their
tipical form is shown in Fig. 10, the idea
to modify the metode of finite elements was
born.

Introducing a new sign II1 in case where
element II is connected in all its nodes,
as well as the sign III1 when the element
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ITI is connected in the nodes in the midd-
le of its edges, that is the sign 1112 wh-
en connected in all its nodes along the

edges. These elements are showen in Fig.8.

Fig.9

The combination of these signs and the
signs A,B and C for the applied finite el-
ements mesh, whole range of mocels with
different nodal connection degrees on the
element boundary is obtained. Tipical set
of results is shown in Fig.)). The results
obtained by successivly connected nodes
are put together by broken lines, marking
the change from one model to another. Dir-
schmid’s iterative procedure "goes" along
one of the lines and it is ended when the
displacement difference of the disconrect-
ed nodes and the relevant nodal displace-
ments as a linear interpolation obtained
by displacement at the neighbouring alrea-
dy connected ncdes is less then some in ad-
vanced defined value.

Instead of successive iterative calcu-~
lation of ressults which define the broken
line this prccess can be define inadvance.
Let the set of finite elemerts models be
so defined that with the decreasing of the
element thiz geoes throught a set of N, N-1
.. where N, N-1, are defined successive
finer divisions of the element than those
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showen in the Fig. 8. If it’s, at the same
time, imagined that with the decrease of el-
ement, we go trought the set A, B, C, succ-
essively finer meshes of structure, it is
obvious from the picture that we are coming
closer to the exact solution from the upper

side, along the curve AN - BN_1 - C sh-

N-2

own on the Fig.10.

A
AN

»

B 4 c
Fig. 10

For each h characterizing the size of
the element, there are now two solutions,
one on the lower curve, corresponding to
the application of conforming elements of
the size h and is marked with Uk(h), and
other on the upper curve corresponding to
the superelement of the same size h., As in
this superelement equilibrium conditions
at all inner nodes are satisfied and as it
is not connected to other elements trought
but only at the

spots, that’s why this element is marked

the rnodes along the edges,

as equilibrized, and the solution on the
upper curve is marked with Uk(h). These
two solutions limit the exact solution fr-
om the both lower and the upper side. Hav-
ing that in mind it can be writen that for
each division h, there is a number of{h) such
as that



v (n)=0K(n) 4 (n)LUT (h)-UX (1)) =

=(1=-a) 0¥ (M) +a(n)U (h)

where Ut(h) is the relevant exact solution.
A certain number of global nodes correspon-
ds to each h,
exact solutions for displacement in same
G(h) nodes.
tes to sexact solutions in all global nodes

it means that we wouid have
The conforming model converge-
too, but the exact solution is obtained
only in case of large number of small ele-
ments.

Nonconforming rodel, as previously

shown, can give exact solutions in limi-
ted number of nodes, and in the case of
very crude dividions but in that case par-

ameter o(h) must be defined.

On the base of the previously shown me-
thod for determing parameter o by means of
it is obvioust that
that
depends on the configuration of the eleme-

"etalon substructure”

it refers to the groupe of elements,

nt mesh and depends on the character of the
stress distribution in that part of struct
ure. The standard wing construction, fuse-

lage or tale surfaces in aircraft structu-

res, as the standard loads of these parts,
with

on finite elements,

t.he standard divisions of these parts
what 1s already proved
in practice, enables that once defined pa-
rameter o can be used for all simillar co-
nstructions. Parameter o« is so defined for
a certain group of elements and for a cer-

tain part of the structure.

In order to show the rate of convergen-
ce of the results obtained by applying th-
ese elements, we’ll take example from Ref.
[21.

The same structure is modeled as shown
in Fig. 12 stressing that the system has
only 16 degrees of treedom, for vertical
displacement it’s achived at the free end
v=0.50205 (cm) as average value of deflec-
tions at the nodes 1 and 2 in wich displa-
V,=0.4923 (em) and V,=0.5118

The stress in node 8 is determined

cemerts are:
(em).

as average stress value o, in elements wh-

X
ich are conected through this node and re-

ads: 58276.32 (N/cm?). The value of para-
meter a = 0.78 is obtained for this case.
%
Y 48 cm
VZ
7 X J Parabolically varying
2emp 77 T 1./ end shear
7 )/ Totol lood P=40kN
7
7 £=20000 kN/em?,1=0-25
’ 4 = thickness =lcm
Beam and lood system
Wmnmmnuamm
PR FERFINTINI A AP AN
TSR I U RN
ST LA T
Mesh C-1 128 constant Mesh L-2 128 lineor stroin
strain riongles triongles
Mesh C-2 512 constant: Mesh Q-1 8 quadratic
siroin triongles stroin friongies
Mesh =1 32 linear sfrain Mesh Q-2 32 quadrotic

iriongles strain triongies

Cantilever beam under end shear load—Triangular meshes

CANTILEVER BEAM: COMPARISON BETWEEN CONSTANT, LINEAR AND
QUADRATIC STRAIN MESHES

Deflection and normal stress
Stress
Element Mesh To«:}lm Tip deflection 0, (N em™)
anknowns v, (cm) at X=12cm
Y= 6cm
Constant strain | C-1 160 0-458 34 $1-225
triangle C-2 576 0-51282 57:342
Linear strain L-1 160 0-532 59 59-145
triangle L-2 576 0-533 53 60-024
Quadratic strain | Q-1 68 0-530 59* 58-973%
triangle Q-2 214 0-532 59 59-843
Beam theory
(Upper bound for v,) 0-53374 60-000
*Average of values at ¥ = §cmand ¥ = ~6 ¢m
Fig. 1
9 7 5 3 1 ﬁ 20kN
20kN
10 8 6 4 25

Fig.12

Concluiscn

The paper presents a description of the
modification of finite element methode. -

The sugested modified method has alrea-
dy been used for some practical purposes

and there are possibilities of developing
it further.

1478



References

[1] W.Dirschmid,

"An Iteration Procedure for Reducing
the Expenses of Static, Elastiplastic
and Eigenvalue Problems in Finite Ele-
ment Analyses",

Computer Methods in Applied Mechanics
and Engineering 35, pp.15-33, 1982.
[2] C.A. Brebbia, J.J. Connor,

"Fundamentals of Finite Element Tech-
niques",

Butterworths & Co., London, 1973.
[3] A.Samuelsson,

"The Global Constant Strain Condition
and the Parch Test"”

pp.47-58,

"Energy Methods in Finite Element An-
alysis"

edited by R.Glowinski, E.Y.Rodin, O.C.
Zeinkiewicz, John Wiley & Sons, New
York, 1979.

[4] K.P. Jacobsen,

"Fully Integrated Superelements: A Da-
tabase Approach to Finite Element Ana-
lysis",

Computers & structures Vol. 16, No.1-4,
pp 307-315, 1983.

1479



