ICAS-86-5.7.3
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A. Badach and P. Form

Technical University of Braunschweig, West Germany

Abstract

This paper analyses the performance of
a linear recursive technique for the air-
craft altitude prediction. This prediction
technique has been employed in the colli-
sion avoidance system (TCAS II). It is
based on altitude reports which are deri~-
ved from barometric altimeters and are
guantized in 100-foot increment. This pre-
diction technique employs the observed le-
vel occupancy time, i.e. the time within
the aircraft crosses one increment of 100
feet. It is shown that the estimate of the
aircraft is biased. The bias value is eva-

luated in dependence on the aircraft velo- -

city, the update time and the velocity es-
timation time. Formulas for the probabili-
ty density function of the velocity esti-

mator is given. The use of this probabili-
ty distribution for the aircraft altitude

prediction is presented.

I. Introduction

In this paper we study the following
problem. Consider an aircraft as a moving
object. Its altitude at time t is z(t)
and its vertical velocity is constant. We
will determine this velocity.

The estimate of the vertical aircraft
velocity is based upon altitude reports
derived from encoding barometric altime-
ters and are guantized in g-foot (g=100

or g=25) altitude increments.(1’2) When
simple linear recursive tracking techni-
ques (for example alpha-beta smoothing
filter) are applied to such quantized al-
titude reports, certain errors in estima-
tion of vertical velocity can be directly
attributed to the altitude quantization.
These errors can be reduced by use of the
estimation technique which explicitly re-
cognizes the quantized nature of the alti-
tude measurements. This velocity estimate
technique has been employed in the colli=-
sion avoidance system TCAS II. It is ba=-
sed on the observed level occupancy ti-

(1),

me, "i.e. the time within the aircraft
crosses verticaly one increment of g feet.
The measured value of the level occupancy
time is the time difference between obser=
ved altitude transitions of two succesive
guatization levels. Errors in this measu-
rement are attributable to the sampling
(update) interval. In TCAS (Threat Alert
and Collision Avoidance System) this in-
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terval is 1 second. If altitude tracking
is based on ground-based sensor data, the
sampling interval may be 4 seconds or
greater.

II. Characteristics of the level

occupancy time technique

Let the altitude of an aircraft be z(t)
at the time t and its velocity at time t
be
) d

z(t) = 3% z (t)

(2.1)
For simplicity we assume that z(t)=v_ =
const. and v,> 0. The considerations reta-

in their generality since the case of
Vo< O is obtained by reflecting the alti-

tude z(t) around the origin of the coordi-
nate system.

Let to be the level occupancy time,

i.e. the time required for z(t) to chan-
ge by an amount g. The value g we call
here altitude quantization level. Therefo-
re, the level occupancy time is the amount
of time which is required for the aircraft
to cross a single quantization level.

The altitude =z (t)

times ?;, ZH, Z}, cen

interval , i.e.

7T -

1

is observed at the
with the sampling

’Z; + 1T, i=1,2, ... (2.2)

To describe the altitude measurement error
we define the following function
INT (x) = x - R_(x) = ne
q() q() q

(2.3)
0 £ Rq(x) <q

where n 1is a positive integer number.
The function Rq(x) denotes the fractio-
nal remainder of (.

The measured altitude position zi at
time Z'}’z is given by

z¥* = INTq(z(?']:)) (2.4)

k

The altitude at time Zi is measured with

the error
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e = Rq(z(tf;)) (2.5)

For our investigations we distinquish two
cases: t_ > 7 and to\<2"

The case t > 7

In this case the
is greater than the
the k-th estimation

level occupancy time
sampling interval and

t¥* of the level occu-

pancy time to may be calculated as fol-
lows
* = * 5
er = 1% 'l (2.6)
where lﬁ is a positive integer number.

An illustration of this situation is shown
in Figure 1.
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Figure 1. Illustration of the situation

when the level occupancy time
to is greater than the sampling
interval
This number lﬁ must satisfy the follo-
wing condition:

INTq(z(Z’;; + 1}§T))—INTq(z(‘Z.’}§)) = g

(2.7)

After some algebraic manipulations we get
the following formula for the k-th esti-
mation of the level occupancy time to:

* = -
tk to + (ek ek_1)/vo (2.8)
where €pqr ey denote the altitude obser-

vation errors. (1,3)

If we introduce the relative error

gk = ek/q (2.9)
we get from Eq. (2.8):
tr o=ty vt (& - Ek_1) (2.10)

The error in ti is proportional to the

difference of the initial and final values
of the observation errors.

The case to\< Y

In this case the level occupancy time
is not greater than the sampling interval

and the k-th estimation tﬁ of the level

occupancy time tO is given by:

th = T/m]"{‘ (2.11)

where m* is a positive integer number.
This sitidation is shown in Figure 2.
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Illustration of the situation
when the level occupancy time
to is not greater than the

Figure 2.

sampling interval T

It is obvious that

m# =-;—(INTq(z( Ty +T))-INT (TY)

(2.12)

It may be shown that the number mﬁ of

quantization level transition observed
within on the sampling interval Z can be
written as follows:

/INT(Z‘/tO) » 1f e /a < 1—R(2'/to)

N

m

INT(T/t )+1, if e, /q 2 1-R(T/t,)

(2.13)

where INT(Z7tO) = INT1(27tO). The value

of R(Z’/t ) is defined as the fractional

remalnder of the ratio 27t , 1.e. R{x)=
R (x) (see Eg. (2.3)).

After simple algebraical manipulations
we get the following formula

t
- -9 -
tE o=t o+ m}:( £, _; Ek) {2.14)

In this case the error in t#*

* is recipro-
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cally proportional to the number of obser-
ved guantization level transitions within
the sampling interval 2° . Therefore, the

guality of the estimation ti is propor-

tional to the vertical aircraft velocity.

Let vﬁ be the k-th observation of
the vertical aircraft velocity. Taking

into account the relationship

* o= *
v q/tk (2.15)
we get
/vo/<1+ £ -&_ ), if £>7T
v£=\\
- * i
v/ & - &) /mx), if £ §T
(2.16)
IITI. Probability distribution of the
level occupancy time observations
Let
* = * -
dt} (£ =t )/t (3.1)

denote the relative error of k-th level

occupancy time observation tﬁ. Thus, from
(2.10) and (2.14) we get
. _/gk—sk—V it >7
N 811_1 ~ 8}'{, if t K2
(3.2)

‘
where £k = Ek/mﬁ.

To determinate the probability distri-
bution of the level occupancy time obser-
vations we introduce the following parame-
ter

Z'/to, if £t > 7

7~

N 1/INT (87t ), if tosz‘3'3)

(3.3)

a

It is assumed that errors Ek, k=0,1,

... are independent of each other and
their statistic is stationary. Therefore,
the error sequence Stﬁ, k=0,1, has

stationary statistics, as well.

The magnitude of the relative error Ek
is limited to

Eksmin{Z', £ § Ity (3.4)

rurthermore we assume that errors E% are
uniformly distributed over the interval
0, min{Z, £} /¢t )

Let AT* represent the relative errors

(3.1) of level occupancy time observations.
Under the forementioned assumptions it

follows,
dom variable A4T*

that in the case to:>f the ran-

has the probability den-

sity function

/%(1+§), a<x &0
pAT*(X)=\\ (3.5)
1
3(1 —-§), 0L x K a

To determinate the density function of

AT* in the case tos Z', we assume that

the numbers

m¥, k=0,1, ... , are indepen-

dent of each other and their statistics

are stationary. Let M*
numbers.
random variable

represent these
It follows from (2.13) that the
M#* has the following

probability distribution:

P( M* = INT(Z’/tO)) = 1 - R(Z‘/to)
P{ M* = INT(Z’/tO)) = R(Z’/to)
(3.6)
Therefore, in the case t_< Z’, the proba-

bility density function of AT*

may be ex-

pressed as follows:

Pars (X) =Py qs (x;M*=INT(z'/tO) 134 (M*=INT(8‘/tO) )

*P s (x| M*=INT (Z/t ) +1)P (M*=INT (z’/to) +1)
(3.7)
The conditional density functions have the
form:(3)

Pppx (le*=INT(t’/tO))=

1 X
-a—(""-g), -a ¢ x L0

1 X
-5(1*5—), OgLx La
(3.8a)
Pars (le*=INT(Z'/tO)+1) =
/-;-1(”?1)' eI
= (3.8b)
1 X
31(1—51), 0 £ x < a,
where
a, = a/(1+a) (3.9)
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following formula for the probability den- The above results allow the following
density function of AT*: practical and important conclusion: When

the values of a are nearly egual to 1,
a then the quality of the level occupancy
- 0+, “a< x £ -ay time technique is highly degraded.

1+aR | 1+ (2a+a)R IV. Probability distribution of verti-

/ a 2 ’ cal velocity observations

We will now calculate the probability
Y 1+aRr 1+(2a+a2)R distribution of velocity observations vi,
” - 1 k=0,1, ..., {(see Eg. (2.16)).

\ a 2
a
\ Let

* = *
$ X <a vr,k vk/vO (4.1)

where R=R(Z/t ). be the relative vertical velocity. It is
o

Y . assumed that velocity observations v* .,
The probability density function of A4T* F'k
is shown in Figure 3. k=0,1, ... , have stationary statistics.

Let V; be a random variable that repre-

a) Bar () sents these velocity observations. It may
be shown that the probability density func-
tion of V¢ has the following form:(3)

- The case to>Z'

Ao Uxalx = 1 g/ (va) e x g
a

-a ] a x .../ 2 X3 =
. Py (x) =
Pype (%) r \\\
b) aT - (1-a)x 1

T
2 T — 3 !
a X

n
»
A
b

(4.2a)
- The case to T

1 . J a x

-al ~a/(1+a) © a/{1+a) Ia x
X 1/(1+a) € x £ {1+a)/(1+2a)
Figure 3. Probability density function /1 ) € )
of AT*; a) the case t >7, 2 2
o 1 (1+a+2(a+a”)R)x-(1+(2a+a”)R)

b) the case to$?:' 2 3 ’
The parameter a determines the maxi- B (1+a) /(1+2a) & x <1
mum value of relative errors ti, k=0,1, pv*(x)—
i
Figure 4 shows the parameter a vs \ 1 (1+ta{2+a)R)-(1-a+2aR)x
the aircraft vertical velocity A :;f 3 ’
x

1 & x g l+a

1-R  1-(1=-a)x

2 3 !
a X

1+ta € X < A

va (4.2b)
/5
' , ‘ where R=R(f7to) and
o q/7 29/ 3q/7 /T sq/T sq/T Yo
- 1/ (1-a) , a <1
Figure 4. Parameter a vs the aircraft A =\\\
lim_1/(1-a) =% , a = 1

vertical velocity v
[e) a—»1
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Figure 5 shows how the values of the - The case t_ £ C
parameter a influence the probability o

distribution of the aircraft velocity ob- — 1

servations (4.1). If the level occupancy Vi =73 [(1—2R)(1+a)ln(1+a) *

time tO and the sampling interval T are a

nearly equal, i.e. ag1, then we have a + (1-R) (1-a)ln(1-a) - R(1+a)(1+2a)lnf%§§]
great deviation between the observations a
vﬁ, k=0,1, ... , of the vertical velocity (4.3b)

and its real value vy
It is advantageous to introduce an im-

a) Pt portant parameter

B* = E( V* ) -1 (4.4)

which denotes a bias measure of velocity
observations. Figure 6 shows the bias of
velocity observations vs the ratio ?/to.

5 [+

40

30

b) 'v:"’
20

T T T

o 1 2 3 e T/

Figure 6. Bias of velocity observations
(2.15) wvs the ratio Z/t_,

z- sampling interval, to—le—

vel occupancy time

The achieved results allow the conclu-
) o ) sion that the bias of one velocity obser-
Figure 5. Probability density function vation (measurement) can be nearly 40% of
Pyx (x) vs the parameter a; the real velocity value v .
r
<z

~

and R(27t0)=0, b) the case
2‘ =
R( /to) 0.5

a) the case ty> 7 or ty
V. Estimation of the level occupancy

time

] The estimate of the level occupancy ti-
If the mean value of V; is equal to me over K observations can be expressed
h as follows:

1, i.e.

= . 1 st

VE = E(VE) =1 X et e, >Z
then the observation vﬁ of the vertical ///
velocity is unbiased. It may be shown that - (5.1)
the mean value $* has the form:(3) \\\ K

4 kK/> mx, t &7F

- The case t_> Y4 k=1 K o=

Fk P
vy = -]—t%ln(1+a) + 2 1n(1-a) (4.3a)

a a
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Taking into account the definition

t = %/t = 1+ 8@

r o (5.2)

the following for-

we get from Eq. (5.1
) of level occupancy

mula for the error §%t

\ X . Al
time estimation t:

€,) /K, to>’£’

/ .
ot (5.3)

K
( EO - EK/kzﬂ m¥, to\<Z"

A
Let AT be a random variable that re-
presents the relative errors (5.3). Under
the forementioned assumptions (Section III)
the variable AT has the probability den-

sity function:(3)

- The case to>’£'
.1.(1.,._.).{.
///d 3 ~-d < xgO0
Pyt (x) =\\\ (5.4)
1
301 - %), 0O gxc¢d
where
d = a/kK = 27(K.to) (5.5)
- The case tost
Bk + Akx , —dk < x g dk+1
k=0,1, ; K-1
/BK toRgx , =dyp & x & O
A =
RQT(X) \\
BK—AKx, O\<x\<dK

k kX ¢ Gge$X <
k=K-1, R=-2, ... , O
(5.6)
where
d; = 1/(Km* + i) (5.7)
and
m* = INT(ZVté) (5.8)

and B we have:

k

k
A = E (f) (Rm* + i)zRi(1-R)K_i
1=0

For the parameters Ak

k

(5.9)

k . ,
B =S :<‘i<> (km* + 1)rY(1-r) K71
i=0

for k=0,1, ... , K-1, K.
Figure 7 shows, the distribution of the
relative error ,§t in the level occupancy

time estimate t.

Figure 7. Probgbility density function
of AT vs K (i.e. number of

observations); a) the case
m*=0 and R(Z/t _)=0.5; b} the
case m*=1 and §(27t0)=0.5

It may be shown that the estimate (5.1)
of the level occupancy time is unbiased.
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VI. Estimation of the vertical aircraft

velocity
The estimate of the vertical aircraft
velocity v, over K observations is cal-
culated according to

¢ = q/f (6.1)

where
tion
locity

g denotes the altitude quantiza-
level. We introduce the relative ve-

P A
v = Vv/v
/O

. (6.2)

Then from (5.1) and (6.1)

&

we get

To=1/01 4

r (6.3)

M
Let Vr be a random variable that re-
$ . o1t
r

may be shown that the probability density

presents the relative velocity

. o L (3)
function of Vr has the form:
- The case t, > '
J_ (1+d)x-1 1
3 T Tyg ¢x €1
d X
pg (x) = (6.4a)
r \\\
1 1-(-d)x 1
2 5 1€ x<53
X
- The case t_ < z

(A, + Bk)x - A

k k 1 1
’ < x&
X3 1+dk ~ 1+dk+1
k=0,1, , K-1
(AK + BK)x - Ay .
/ 3 ¢ 7A€ x & 1
p(,“r(X) = K
i \ (6.4b)
AK - (AK—BK)X 1
' 1€ xg
3 1-d
be K
Ak - (Ak—Bk)x S < %< 1
X3 1--dk+1 ~ 1—dk

k=K-1, K-2, ... , 1, O

The parameters d, dk, Ak and Bk are cal-

culated according to Egs. (5.5}, (5.7) and

(5.9).
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The probability density function 124 (x)
r

vse XK (i.e. number of observations) is
shown in Figure 8.

vyt
Ve

a)

AR PR L ORI

o 1.0 .8 2.0 =

Figure 8. Probgbility density function

of Vr vs K; a) the case m¥*=1
and R(27to)=0.5, b) the case
m*=1 and R(27t0)=o.5

The estimate ¥ (see Egs. (5.1) and
(6.1)) of the vertical aircraft velocity,
Ve is unbiased, when the mean value of Vr

is equal to 1, i.e.

<>

A
r = E ( Vr ) =1

"
It may be shown that ¥ 1 and the mean

r >

2 .
value Vr can be calculated according to:

- The case to> A

Pal -
v = lié.ln(1+d) , 1=d In(1-d) (6.5a)
r d2 d2



- The case tO < T
=1
A 2{::[ 1—di (1+dk)(1—dk_1)
v_= A 1n + B, 1n
r — k™42 kK™ (1+d ) (1-4,)
k=0 1 dk+1 k+1 k
2 Ty
+ AKln(1—dK) + BKln 1”dK , K2 2,m*> 1
(6.5b)
The bias measure
] 2
Br = V.- 1 (6.6)
of the velocity estimation 7 versus the

ratio ZVto is shown in Figure 9.

8 [

b o e n o

Figure 9. Bias of the velocity estimation

(6.1) vs the ratio‘f/to :

7- sampling interval, to‘ level
occupancy time

In Figures 6 and 9 we can observe that
the parameter K has a great influence on
the bias of velocity estimation (6.1).

VII. Distribution of the aircraft

altitude prediction

In collision avoidance applications, it
is of interest to know the aircraft posi-
tion at some future time. Altitude predic-
tion is obtained by a simple linear pre-
diction of the aircraft motion according
to

2(t) = z*(t;) + v (t=t)) (7.1)

where z*(t;) is the measured altitude at

time tg (see Eq. (2.4)); ¥ is the esti-

mated vertical velocity (5.1)

and (6.1)).
If z*(ﬁ;) =neq, then the true altitu-

de at time té

(see Egs.

(i.e. z(t;)) belongs to an

interval [p‘q, {(n+1)« g} and is unknown.

The outlined probability distribution
(6.4} of the vertical velocity allows to
obtain the probability distribution of the
predicted aircraft altitude (7.1). If we
consider only the case to>—Z , it can be

shown thatAthe probability density fun-

ction of Z(t) has the following form:
0. %gng+ 11%
aa? | do? (1+a) Bt
2qa2  2qd%(Z-nq) 2 qa (2-nq)
TP .
ng + 75 <2 $nq 0t
ati2d-1 | _0-a)de 9e) 2
2qa’ qd? (8-ng} 2qa% (8-ng) 2
ng+dt < % gng -+ 11’;
1 kas a e
pi?) = ——— T ng 4 e < Z X (n+l)g + Tva
\ (1+a) 6t 1+2a-a2 $e)?
qa (2~ (n+1)a) 2qa® 2q8% (8- (n+1)q) 2

< 2 £ (n+1}g +vt

Py
vt
{n+llg + %3

@#e?
2qa% (2 (n+11q) 2

t-a32 (1-aydt
2q4% qda? (2- (n+1)q)

4
(nv11g +0t < £ < (nellg + -5

The parameter d 1is calculated according

to (5.5).

rigure 10 shows the distribution of the
predicted aircraft altitude. It can be
seen that the longer the prediction time
(i.e. t—t;), the greater the significance

of the estimation ¢ in comparison with
the altitude quantization error.

If the level occupancy time to and

the sampling ({(update) interval Z are near-
ly equal and only one velocity observation

Vﬁ (2.16) 1is assumed as the velocity esti-

mation ¢ (i.e. da&1 and K=1) then the
altitude prediction error may be longer
than the altitude quantization level g.
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M4l Yol (et .
z (to)*v(t to)+a

2X () +0 (et J

altitude 2(t) § predicted altitude

z"(to) =~ measurement of the aircraft
altitude at time £

£ ’
2M (L) =

Figure 10. Probability density function

time

p [ 2(t)] of the linearly

predicted aircraft altitude

VIII. Conclusions

In this paper we have presented a per-
formance evaluation of a linear technique
for aircraft altitude prediction in air-
born collision avoidance systems. This
technique is based on observation of the
level occupancy time.(T)

We have outlined the probability dis-
tribution functions for the estimations of
level occupancy time and aircraft vertical
velocity. It is shown that the vertical
velocity estimation which is based on the
evaluation of level occupancy time is high-
ly biased. If one velocity observation
(measurement) is assumed as the estimated
velocity and the level occupancy time and
the sampling (update) interval are nearly
equal, then the bias of this velocity es~
timation can be nearly 40% of the real
velocity value.

It should be noted that the results
presented here may be useful for the de-
velopment of airborn collision avoidance
systems. Particularly, they may be used
to investigate a statistical test for de-
tection of the aircraft velocity changes.
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