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Abstract. This paper is concerned with guidance
strategies for near-optimum performance in a
windshear. The take-off problem is considered with
reference to flight in a vertical plane. In addition
to the horizontal shear, the presence of a down-
draft is assumed.

First, trajectories for optimum performance in
a windshear are determined for different windshear
models and different windshear intensities. Use is
made of the methods of optimal control theory in
conjunction with the dual sequential gradient-
restoration algorithm (DSGRA) for optimal control
problems. In this approach, global information on
the wind flow field is needed.

Then, guidance strategies for near-optimum
performance in a windshear are developed, starting
from the optimal trajectories. Specifically, three
guidance schemes are presented: an absolute gamma
guidance scheme, based on the absolute path
inclination; a relative gamma guidance scheme,
based on the relative path inclination; and a theta

guidance scheme, based on the pitch attitude angle.
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In this approach, local information on the wind
flow field is needed.

Numerical experiments show that the gamma/
theta guidance schemes produce trajectories which
are quite close to the optimum trajectories. In
addition, the near-optimum trajectories are
considerably superior to the trajectories arising
from alternative guidance schemes.

An important characteristic of the gamma/
theta guidance schemes is their simplicity. Indeed,
these guidance schemes are implementable using
available instrumentation and/or modification of
available instrumentation.

Key Words, Guidance strategies, gamma
guidance, theta guidance, flight mechanics, take-
off, optimal trajectories, optimal control, feed-
back control, windshear problems, sequential
gradient-restoration algorithm, dual sequential
gradient-restoration algorithm.

1.  Introduction
Low altitude windshear constitutes a

considerable hazard in the take-off and landing of
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both civilian airplanes and military airplanes. For
this reason, considerable research has been done

on this problem over the past 15 years. Most of the
research has been concerned with meteorology,
instrumentation, aerodynamics, flight mechanics,
and stability and control. Recently, optimal flight
trajectories in the presence of a windshear have
been studied (Refs. 1-3). This opens the road to
the development of guidance schemes for achieving
near-optimum performance in a windshear (Refs. 4-
5).

Previous Research. Previous research on the

topics covered in this paper can be found in Refs.
6-42. For a general review of windshear studies,
see Ref. 6. For the equations of motion without
windshear, see Ref. 7; for the equations of motion
with windshear, see Refs. 8-11., For windshear
models, see Refs. 12-16.

Concerning trajectory optimization, for a
recent overview of theoretical calculus of
variations and optimal control, see Ref. 17. For
algorithmic optimal control by means of gradient
methods, see Refs, 18-22 (primal formula*ion) and
Refs. 23-24 (dual formulation), For minimax optimal
control, see Refs., 25-37; in particular, for
aerospace applications of minimax optimal control,
see Refs. 26 and 33-37. Finally, for guidance
schemes, see Refs. 4, 5, 16 and 38-42.

Present Research. This paper is concerned with

guidance schemes for near-optimum performance in a
windshear. In addition to the horizontal shear,
the presence of a downdraft is assumed. Note that
the downdraft had been neglected in Refs. 1-5,

The take~off problem is considered with
reference to flight in a vertical plane., In take-
off, once an aircraft becomes airborne, the pilot

has no choice but to fly through a windshear. His
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only control is the angle of attack. Indeed, it is
logical to assume that, if a plane takes off under
less~than-ideal weather conditions, the power
setting is being held at that value which yields
the maximum thrust.

First, trajectories for optimum performance in
a windshear are determined for different windshear
models and different windshear intensities, Use is
made of the methods of optimal control theory in
conjunction with the dual sequential gradient-
restoration algorithm (DSGRA) for optimal control
problems. In this approach, global information on
the wind flow field is needed.

Then, guidance schemes for near-optimum
performance in a windshear are developed, starting
from the optimal trajectories, specifically: gamma
guidance, based on aither the absolute or
the relative path inclination; and theta
guidance, based on the pitch attitude angle. In
this approach, local information on the wind flow
field is needed.

The gamma/theta guidance schemes are evaluated
through numerical experiments (i) in order to
determine whether the resulting trajectories are
sufficiently close to the optimum trajectories and
(i1} in order to compare the resulting trajectories
with those arising from alternative guidance
schemes. An important characteristic of the gamma/
theta guidance schemes is their simplicity. Indeed,
these guidance schemes are implementable using
available instrumentation and/or modification of
available instrumentation.

Outline. Section 2 contains the notations, and
Section 3 contains the formulation of the problem.
Section 4 pertains to optimum flight trajectories.
Section 5 refers to the gamma/theta guidance

schemes for near-optimum flight trajectories.



Finally, the conclusions are given in Section 6.
2. Notations

Throughout the paper, the following notations
employed:

aircraft reference line;

CD = drag coefficient;

CL = 1ift coefficient;
D = drag force, 1b;
g = acceleration of gravity, ft sec'z;
E = energy per unit weight, ft;
h = altitude, ft;
K = gain coefficient;
L = 1ift force, 1b;
m = mass, 1b 1"‘t'1 seczg
S = reference surface, ftz;
T = thrust force, 1b;
V = relative velocity, ft sec'];
Ve = absolute velocity, ft sec'];
W = mg = weight, 1b;
W = wind velocity, ft sec'];
W, = h-component of wind velocity, ft sec'];
W, = x-component of wind velocity, ft sec'];
X = horizontal distance, ft.
Greek Symbols
o = relative angle of attack, rad;
A = absolute angle of attack, rad;
B = engine power setting;
y = relative path inclination, rad;
Yo = absolute path inclination, rad;
§ = thrust inclination, rad;
6e = elevator deflection, rad;
6 = pitch attitude angle, rad;
p = air density, 1b £t sec 2,
Subscripts
e = denotes Earth-fixed system;
% = denotes direction orthogonal to relative

velocity;
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%e = denotes direction orthogonal to absolute
velocity;

h = denotes h-direction;

x = denotes x-direction;

v = denotes direction of relative velocity;

ve = denotes direction of absolute velocity.

Supérscripts

+ = denotes derivative with respect to time;

-+ = denotes vector quantity;
~ denotes nominal value.
3. Formulation of the Problem

3.1. Coordinate Systems. In Ref., 1, three

coordinate systems were considered: (i) the Earth-
fixed system, (ii) the relative wind-axes system,
and (iii) the absolute wind-axes system. It was
assumed that flight takes place in a vertical plane.

Let V denote the velocity of the aircraft with
respect to the airstream; let ﬁ denote the velocity
of the airstream with respect to the Earth; and let
Ve denote the velocity of the aircraft with respect
to the Earth, With this understanding, the above
coordinate systems are defined as follows (see Fig.
1):

(i)

0 is fixed with respect to the Earth; the x-axis is

in the Earth-fixed system Oxh, the point

horizontal, positive in the sense of the motion;
and the h-axis is orthogonal to the x-axis, hence
vertical, positive upward;

(ii) in the relative wind-axes system vayz,
the point P moves together with the aircraft; the
xv-axis has the direction of the relative velocity
vector V; and the yl-axis is orthogonal to the Xy~
axis;

($14) in the absolute wind-axes system vaeyie’
the point P moves together with the aircraft; the
X, .-axis has the direction of the absolute velocity

ve
vector Ve; and the yze-axis is orthogonal to the



-axis.
Xye-aX

3.2. Equations of Motion. In this paper, we

make use of the relative wind-axes system in
connection with the following assumptions: (a) the
aircraft is a particle of constant mass; (b) flight
takes place in a vertical plane; (c)‘Newton's law
js valid in an Earth-fixed system; and (d) the wind
flow field is steady.

With the above premises, the equations of

motion are written as follows:

X = Vcosy + W (1a)
h = Vsiny + W, (Tb)
Q = (T/m)cos(a + &) - D/m - gsiny

- (ﬁxcosy + ﬁhsiny), (1c)
v = (T/mW)sin{o + 8) + L/mV - (g/V)cosy

+ (1/V)(ﬁxsiny - ﬁhcosy). (1d)

Because of assumption (d), the total derivatives of
the wind velocity components and the corresponding

partial derivatives satisfy the relations

wx = (8wx/ax)(Vcosy + wx)

+ (wa/ah)(VsinY + wh), (2a)
»kh = (oW, /ox) (Veosy + W,)

+ (oM, /3h) (Vsiny + W), (2b)

/s a consequence, the equations of motion can be

rewritten in the form

x = Vcosy + WX, (3a)
h = Vsiny + W, (3b)
V = {T/m)cos{a + §) - D/m - gsiny

- [(awx/ax)(Vcosy + wx)

+ (awx/ah)(VsinY + wh)]cosy

[(awh/ax)(vCosy + wx)
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+

(awh/ah)(Vsiny + wh)]siny, (3c)

(T/mV)sin{a + 8) + L/mV - (g/V)cosy

<
"

+

[(awx/Bx)(Vcosy + wx)

+

(wa/ah)(VsinY + wh)](1/V)sinY

[(awh/sx)(VCOSY + wx)

+ (awh/ah)(VsinY + wh)](T/V)cosy. (3d)
These equations must be supplemented by the
functional relations
T =T(h,V,8), (4a)
D = D(h,V,a), L= L(h,V,a), (4b)
W, = wx(x,h), wh = wh(x,h), (4¢c)
and by the analytical relations
Vex = Ycosy + wx, weh = Vsiny + wh, (5a)
Ve = /(Véx + Vgh), Yo = arctan(veh/vex), (5b)
8 =oa+tY, a4, TotY - Y. (5¢)

For a given value of the thrust inclination
5, the differential system (3)-(4) involves four
state variables [the horizontal distance x(t), the
altitude h(t), the velocity V(t), and the relative
path inclination y(t)] and two control variables
[the angle of attack a{t) and the power setting
B(t)1. However, the number of control variables
reduces to one (the angle of attack o), if the
power setting g is specified in advance, The
quantities defined by the analytical relations (5)
can be computed a posteriori, once.the values of
X,h,aV,y,0,B8 are known.

3.3.

attack o and its time derivative & are subject to

the inequalities
O < Oy

(6a)

-C < &<+,

(6b)



where o, is a prescribed upper bound and € is a
prescribed, positive constant.

For the optimé] trajectories of Section 4,
Ineqs. (6) are satisfied indirectly via
transformation techniques converting the inequality
constraints into equality constaints (see Ref. 1,

Part 2), specifically,

a = Oy - u2, (7a)
u = -(C/2u)sinw, Jul > e, (7b)
= -(C/Zu)sinz(nu/Za)sinw, lu] < e. (7¢)

Here, u(t), w(t) are auxiliary variables and ¢ is
a small, positive constant, which is introduced to
prevent the occurrence of singularities.
Incidentally, the right-hand sides of Egs. {7b)-(7c¢)
are continuous and have continuous first derivatives
at Ju} = e.

For the guidance schemes of Section 5, Ineq.
(6a) is satisfied directly. On the other hand,
Ineq. (6b) is satisfied indirectly through the
proper choice of the gain coefficient K.

3.4. Approximations for the Force Terms.

In this section, we discuss the approximatiens
employed in the description of the forces acting
on the aircraft, namely, the thrust, the drag, the
1ift, and the weight. Because the trajectories
under investigation involve relatively minor
variations of the altitude, the air density is
assumed to be constant.

Thrust. The thrust T is approximated with the
quadratic function

T=Ag+ AV + AV, (8)

where V is the relative velocity. The coefficients
AO, A], A2 depend on the altitude of the runway,
the ambient temperature, and the engine power

setting; they can be determined with a least-
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square fit of manufacturer-supplied data over a
given interval of velocities,
Drag. The 4rag D is written in the form

2

D= (1/2)CDpSV ’ (9a)

Cy = By + Byo + Bya?, o < oy ()
where p is the air density, S is a reference surface,
V is the relative velocity, and CD is the drag
coefficient. The coefficients BO’ B], 32 depend on
the flap setting and the undercarriage position

(gear up or gear down); they can be determined with

a2 least-square fit of manufacturer-supplied data
over the interval 0 < a < o.

Lift., The Tift L is written in the form

= (1/2)¢ 08V,

[
i

(10a)

C = Co * Cyos o < Gygr (10b)

(9]
]

L =Co* Cla + Cz(a - u**)z, Oy < @ < Ogy  (10C)

where p is the air density, S is a reference
surface, V is the relative velocity, and CL is the
1ift coefficient. The coefficients CO’ C1, C2 depend
on the flap setting and the undercarriage position
(gear up or gear down); they can be determined with
a least-square fit of manufacturer-supplied data
over the intervals 0 < o < 04y and agy < 0 < 04,
Weight. The mass m is regarded to be constant.
Hence, the weight W = mg is rega;ded to be constant.

3.5. Approximations for the Windshear. In this

section, we discuss some of the approximations

employed in the description of the windshear. We
observe that, under the assumption that the wind
flow field is steady, the wind components wx, wh

have the form

Wx = wx(x,h), Nh = Nh(x,h). a1

Windshéar Models. Over the past several years,

considerable attention has been given to the study



of a severe meteorological condition known as a
microburst (Refs. 6 and 8-16). This condition
involves a descending column of air, which then
spreads horizontally in the neighborhood of the
ground. This condition is hazardous, because an
aircraft in take-off or landing might encounter a
headwind coupled with a downdraft, followed by a
tailwind coupled with a downdraft, A qualitative
example of the vertical cross section of a micro-
burst is shown in Fig. 2.

It is clear that, in order to perform
realistic analyses of take-off and landing under
severe meteorological conditions, one must
represent wind flow fields of the type shown in
Fig. 2. The representation of the wind flow field
can be obtained from the combination of theory
and experimental measurements.

From an engineering point of view, a
simplifying observation can be made. Because take-
of f trajectories involve relatively minor
variations of the altitude, the wind components
wx, wh can be assumed to depend only on the
horizontal distance. Within this frame, three

different windshear models are of interest:

(Ws1) wx = wx(x), wh\= 03 (12a)
{Ws2) WX =0, Wh = Wh(x); (12b)
(Ws3) Nx = NX(X), Wh = Wh(x) (12¢)

Windshear model WS1 includes the horizontal
shear and neglects the downdraft; this is the
model considered in Refs. 1-5; windshear model WS2
is complementary to WS1, in that it neglects the
horizontal shear and includes the downdraft;
finally, windshear model WS3 generalizes WS1 and
WS2, in that it includes both the horizontal shear

and the downdraft.
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The study of the optimal trajectories and
associated guidance schemes for each of these wind-
shear models is essential to build a qualitative
understanding of how an aircraft must fly in a
microburst; it is also essential to construct
either automatic or semi-automatic guidance
schemes which are robust, that is, capable of
functioning under a variety of operating conditions.

4, Optimal Flight Trajectories

4,1, Optimal Control Problem. We refer to

take-off trajectories and we assume that: (i) the
aircraft is airborne; (ii) global information on
the wind flow field is available, that is, the
functions (4c) are known in advance; (iii) the
power setting 8(t) is given; and (iv) the angle
of attack a(t) is subject to Inegs. (6). Hence,
upon converting the inequalities into equalities,
we refer to the differential system described by
Egs. (3), (4), (7). In this system, the state
variables are x(t), h(t), V(t), v(t), a(t), u(t)
and the control variable is w(t). In accordance
with the terminology employed in Refs. 1-5, we
formulate the following optimization problem.
Problem (P8). Minimize the peak value of the
modulus of the difference between the absolute
path inclination and a reference value, assumed
constant. In this problem, the performance index

is given by

1= mixlye - Yepl» 0<t<rt, (132)

where
Ye = arctan{{Vsiny + Nh)/(VCOSY + wx)], (13b)
YeR = Ye0® (13¢)

This is a minimax problem or Chebyshev problem
of optimal control, It can be reformulated as a

Bolza problem of optimal control (Ref. 37), in



which one minimizes the integral performance index

T
J = jO(Ye - YeR)th: (13d)

for large values of the positive, even exponent q.

4,2, Boundary Conditions. Concerning the

initial conditions, it is assumed that the values

of x,h,V,v,a are specified at t = 0, that is,

h(0)

1t
o

V(o) = v (14a)

0’

il

v(0) = vgs a(0) = ag. (14b)
Upon combining (7a) and (14b), we see that the
specification of the initial value of a implies
the specification of the initial value of u, that
is,

ug = V(a, - ao). (14c)

Concerning the final conditions, it is assumed

that the value of y is specified at t = 1, that is,

¥{1) = vqe (15)

The remaining state variables are free at the

final point. The final time t is chosen to be large

enough to correspond to a no-windshear condition.
Clearly, use of (15) means that, at the final

point, one intends to restore the initial value

of the relative path inclination. In accordance

with the terminology employed in Refs, 1-5, this

type of boundary condition is called boundary

condition BC1.

4.3. Segquential Gradient-Restoration

Algorithm. Problem (P8), governed by Eqs. (3)-(4),
(7), (13)-(15), is a Bolza problem of optimal
control. It can be solved using the family of
sequential gradient-restoration algorithms for
optimal control problems (SGRA, Refs. 18-24), in
either the primal formulation (PSGRA, Refs. 18-22)

or the dual formulation (DSGRA, Refs. 23-24).

Regardless of whether the primal formulation
is used or the dual formulation is used, sequential
gradient-restoration algorithms involve a sequence
of two-phase cycles, each cycle including a gradient
phase and a restoration phase. In the gradient
phase, the value of the augmented functional is
decreased,while avoiding excessive constraint
violation. In the restoration phase, the value of
the constraint error is decreased, while avoiding
excessive change in the value of the functional. In
a complete gradient-restoration cycle, the value of
the functional is decreased, while the constraints
are satisfied to a preselected degree of accuracy.
Thus, a succession of suboptimal solutions is
generated, each new solution being an improvement
over the previous one from the point of view of the
value of the functional being minimized.

The convergence conditions are represented by

the relations

P<eps Q< ey (16)
Here, P is the norm squared of the error in the
constraints (3)-(4), (7), (14)-(15); Q is the norm
squared of the error in the optimality conditions;
and €1s €, are preselected, small, positive
numbers.

In this work, the sequential gradient-
restoration algorithm is employed in conjunction
with the dual formulation. The algorithmic details
can be found in Ref. 1, Part 3. They are omitted
here,for the sake of brevity.

4,4, Data for the Examples. In this section,

we present the data used in the numerical
experiments.

Aircraft. The aircraft under consideration
is a Boeing B-727 aircraft powered by three

JT8D-17 turbofan engines. It is assumed that: (i)



the aircraft has become airborne from a runway
located at sea-level altitude; (ii) the ambient
temperature is 100 deg Fahrenheit; (iii) the gear
is up; (iv) the flap setting is 8¢ = 15 deg; (v)
the engines are operating at maximum power setting;
and (vi) the take-off weight is W = 180,000 1b,
Complete data for this aircraft are omitted
here, for the sake of brevity; they can be found
in Ref. 1, Part 4, It is of interest to note that
the maximum 1ift-to-drag ratio of this configuration
is (L/D)max = 10.52 and that the average thrust-
to-weight ratio over the velocity interval
200 < V < 300 ft sec”! is (T/W),, = 0.22.

Windshear Models. Three windshear models are

considered. They are described by Eqs. (12) and
are shown in Fig. 3.

Model WS1. This model has the form {12a); it
includes the horizontal shear and neglects the

downdraft. The function wx(x) represents a linear

transition from a uniform headwind of -40 ft sec']

]; hence, the

1

to a uniform tailwind of +40 ft sec”
wind velocity difference is AW = 80 ft sec” . The
transition takes place over a distance Ax = 4,000
fi, starting at x = 300 ft and ending at x = 4,300
ft; hence, the average wind gradient is AWX/Ax =
0.020 sec™'.
Model WS2. This model has the form (12b); it is
complementary to model WS1, in that it neglects
the horizontal shear and includes the downdraft.
The function wh(x) has a bell-shaped form; in
particular, the downdraft vanishes at x = 300 ft
and x = 4,300 ft and achieves the maximum negative

value of -20 ft sec”!

= 20 ft sec'].

at x = 2,300 ft; hence, Awh

Model WS3. This model has the form (12¢); it
generalizes models WS1 and WS2, in that it includes

both the horizontal shear and the downdraft, The
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function wx(x) is the same as in model WS1; the
function wh(x) is the same as in model WS2.

The assumed wind models are smoothed in such
a way that the continuity of the functions, the
first derivatives, and the second derivatives is
assured; for details of the smoothing procedure,

see Ref. 1, Part 2.

and its time derivative are subject to Inegs. (6),
with

C =3 deg sec!,

a, = 16 deg, (17)
The constant € in Eqs. (7) is set at the level
e = 0.4. (18)

Initial Conditions. The following initial

conditions are assumed:

«(0) = 0 ft, h(0) = 50 ft, (19a)
v(0) = 276.8 ft sec™',  v(0) = 6.989 deg, (19b)
a(0) = 10.36 deg. (19¢)

We note that the initial velocity is FAA
certification velocity V2, augmented by 10 knots.

In turn, the velocity V2 + 10 (in knots) corresponds
approximately to the steepest climb condition in
quasi-steady flight.

Final Conditions. In boundary condition model

BC1, it is required that

v(t} = 6.989 deg. (20)
The final time is set at the value
T = 40 sec, (21)

This is about twice the duration of the windshear
encounter (At = 18 sec).

Performance Index. The numerical constants

appearing in the performance indexes I and J of

Problem (P8) are given below:



Yer * 8.165 deg, q = 6. (22)

4.5, Numerical Results. Problem (P8), minimax

|Aye{, was solved in connection with boundary
condition model BC1. The sequential gradient-
restoration algorithm was employed in conjunction
with the dual formulation (DSGRA, Refs. 23-24).

This algorithm was programmed in FORTRAN 1V, and

the numerical results were obtained in double-
precision arithmetic. Computations, were performed
at Rice University using an NAS-AS-2000 computer.

k The interval of integration was divided into
100 steps. The differential systems were integrated
using Hamming's modified predictor-corrector method,
with a special Runge-Kutta starting procedure.
Definite integrals were computed using a modified
Simpson's rule. Linear algebraic systems were
solved using a standard Gaussian elimination
routine.

Windshear models WS1, WS2, WS3 were
considered. Alternative windshear models were
generated by changing the windshear intensities
(hence, the values of ANX, Awh) and by subsequent
proportional scaling of the functions Nx(x),
Nh(x). However, for the sake of brevity, we Timit
our presentation to models WS1, WS2, WS3. We
recall that these models are characterized by the

following values of wa, AW

(Ws1) M, = 80 ft sec'], Wy, = 0 ft sec']; (23a)
(Ws2) i = O ft sec™!, MM = 20 ft sec™1;(23b)
(WS3) &, = 80 ft sec™!, oW = 20 ft sec™'. (23c)

For computational efficiency, the state
variables and the time were suitably scaled. For
Problem (P8), the functional being minimized was
suitably scaled. The following stopping conditions

were employed for the dual sequential gradient-
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restoration algorithm:

P < E-10, Q < E-08, (24)

where P denotes the constraint error and Q denotes
the error in the optimality conditions.

The results are given in Fig. 4, which contains
eight parts: the wind velocity components wx, wh;
the flight altitude h; the relative velocity V; the
relative path inclination y; the relative angle of
attack a; the pitch attitude angle ©6; the absolute
path inclination Yol and the energy per unit weight
E=h+ V2/29. The following comments are pertinent.

Altitude. For all the optimal trajectories,
the altitude distribution h(t) exhibits a mono-
tonic behavior, regardless of the windshear model.
For model WS2, the function n{t) is almost identical
with that characterizing the nominal trajectory
in the absence of downdraft., This means that
Ye B Yog? @ condition which can be achieved by
properly adjusting the angle of attack a(t).

For model WS3, there is large time interval,
approximately At = 18 sec, in which the optimal
trajectory is nearly horizontal (ye 2 0); this is
due to the combined effect of the horizontal shear
and the downdraft; after passing through the shear
region, the aircraft resumes climbing.

For model WS1, the function h(t) is intermediate
between that of model WS2 and that of model WS3,
being closer to the latter than to the former.

Ang?efof‘Attack. For model WS2, a gradual,
moderate change in the angle of attack is
required in order to compensate for the downdraft.
However, the angle of attack boundary is never
reached. - This is why, by properly adjusting the
angle of attack distribution a{t), one can obtain
an optimal trajectory close to the nominal

trajectory in the absence of downdraft.



For models WS1 and WS3, an initial decrease
in the angle of attack is needed, followed by a
gradual, sustained increase until the angle of
attack boundary is reached., This occurs at about
the time when the shear end (t = 18 sec). After-
ward, the angle of attack i kept at the maximum
permissible value for a relatively long time
interval (At = 10 sec). As a consequence, for both
models WS1 and WS3, the optimal trajectory departs
to a considerable extent from the nominal
trajectory.

It is interesting to note that the angle of
attack distributions of models WS1 and UWS3 are
nearly the same, which means that the control
action is mostly determined by the horizontal shear.
This also means that the effect of the downdraft
is mostly kinematical, rather than dynamical: the
function h(t) for mode] WS3 is shifted downward
with respect to that for model WS1,

Absolute Path Inclination. For model WS2, the

optimal trajectory is such that y, E Yoo+ Hence,
the performance index of Problem (P8), minimax
|avg]s is nearly zero.

For models WS1 and WS3, the behavior of Yo
is quite different. Initially, Yo Must be
decreased until a certain critical value Yo = Yec
is reached; then, this value is nearly
maintained for a relatively long time interval
(At = 24 sec for model WS1 and At = 18 sec for
model WS3). After passing through the shear
region, the value of Ye is gradually increased
o vy ¥ vgoe

The critical value of the absolute path
inclination is of interest in constructing a

guidance algorithm. From the inspection of the

optimal trajectories, we see that Yec/YeO 71 for
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model WS2, Yec/YeO 2 0.4 for model WS1, and
yec/yeo 2 0 for model WS3.

Relative Path Inclination. For model WS1, the

relative path inclination vy behaves in about the
same way as the absolute path inclination Yer This
is due to the absence of. downdraft.

For models WS2 and WS3, the relative path
inclination vy is larger than the absolute path
inclination Yer This is in order to compensate for

the presence of downdraft.

Relative Velocity. For model WS2, there is a

mild decrease in relative velocity, consistent with
the increase in the angle of attack. The

velocity decrease ends at about the time when the
downdraft ends.

For models WS1 and WS3, there is a stronger
decrease in relative velocity. The maximum drop in
relative velocity depends mainly on the wind velocity
difference wa and occurs at about the time when
the shear ends (t = 18 sec).

4,6, Comment, From the present study of
optimal trajectories (Fig. 4) as well as from
previous studies (Refs., 1-3), the following
conclusions can be inferred. For weak-to-moderate
shear/downdraft combinations, the optimal
trajectory is characterized by a monotonic climb,
For severe shear/downdraft combinations, the
optimal trajectory is characterized by an initial
climb, followed by nearly-horizontal flight,
followed by renewed climbing after the aircraft
has passed through the shear region,

5. Gamma/Theta Guidance

This section pertains to guidance schemes for
near-optimum flight trajectories. First we
introduce a gamma guidance scheme, based on the

absolute path inclination Yer Because it might be



difficult to measure Yos We then convert the
absolute gamma guidance scheme into the relative
gamma guidance scheme, which is based on y, Finally,
we introduce the theta guidance scheme, based on
the pitch attitude angle 6.

5.1. Absolute Gamma Guidance. This guidance

scheme is based on certain basic facts, which can
be established by inspection of the optimal
trajectories presented in Fig. 4:

(1)

certain critical value is reached; the critical

initially, Yo must be decreased until a

value of Ye is nearly maintained for a relatively
long time interval; after passing through the shear
region, the value of Ye is gradually increased to
Ye ) Yeo?

(ii) the critical value of Yo depends on the
intensity of the shear ﬁX/g and the intensity of
the downdraft wh/v; it decreases as the intensities
of the shear and the downdraft increase,

From facts (i) and (ii), as well as from
previous work on optimal trajectories and guidance
schemes in the absence of downdraft (Refs. 1-5), we
surmise that the absolute gamma guidance law should

have the form

Yo = Tl /95 W/V), (25)
where
Yo = ALl - B(W,/9)1 + B(W,/g) (W /V),

Y1 < Vo < Vepr (26)

Here, A, B are suitable constants, to be derived
from the study of the optimal trajectories; and
?e], ?ez are specified Tower and upper bounds to
the absolute path inclination.

Alternatively, providing v, can be measured,
Eq. (25) can be implemented through the feedback

control Tlaw

o < ogs (27)

a = G(V) = Kl = T4(i, /9,4 /V)]1,

where K is the gain coefficient. In Eq. (27), &(V)
denotes the nominal angle of attack, whose structure
is discussed in Section 5.4, and ve(v':x/g, W, /)
denotes the nominal absolute path inclination, which
is supplied by (26}.

5.72. Relative Gamma Guidance, Because it

might be difficult to measure Yor W convert the
absolute gamma guidance scheme into the relative
gamma guidance scheme, which is based on y. We
observe that the following relation exists between
the absolute and relative path inclinations [see

(5a), (5b)1:

tany, = (Vsiny + Wh)/(VCOSY + WX). (28)
If one assumes that

tany, S Yo (29a)
cosy 21, siny v, (29b)
]WX/V|<< 1, {29¢)
Eq. (28) reduces to

Yo =¥+ WV, (30a)
with the implication that

qe =§ 4 wh/v. (30b)

Upon combining (25)-(26) with (30), we deduce

that the relative gamma guidance Taw should have

the form

¥ = Y0 /g, W /YD, (31)
where

= (A=W /N0 - BH/9)], T £ T < Ty (322)
with

R (s26)
Vo = Yep - W/ (32¢)



Alternatively, Eq. (32a) can be implemented

through the feedback control law

@ - GV) = Ky - T /g, W/, o< o (33)

where K is the gain coefficient. In Eq. (33), &(V)
denotes the nominal angle of attack, whose structure
is discussed in Section 5.4, and ?(Qx/g, wh/v)
denotes the nominal relative path inclination,
which is supplied by (32).

5.3. Theta Guidance. An alternative to the
gamma guidance scheme is the theta guidance scheme,

based on the pitch attitude angle 9. Wé recall
the first of Egs. (5¢),

6 =0+, (34a)
with the implication that
‘é‘ = & + \7, (34b)

Upon combining (31)-(32) with (34), and upon
recalling that & = &(V), we deduce that the theta

guidance law should have the form

6 = 5(”)(/9: wh/vav)s (35)
where
B=a) + (A- W/ - B /g)1,

6, <8 <8, (36a)
with
61 = &(V) + ?el - Wh/V, (36b)
52 = G(V) * Tgp - W /V. (36c)

Note that (34a) and (35) imply that

o = B(H /g, W/V,V) - v, a < 0. (37)

Here, the nominal pitch attitude angle
é(wx/g, W, /V,V) is supplied by (36).
Alternatively, Eg. (35) can be implemented

through the feedback control law

a - G(V) = K6 - B(H/g, W/VV)1s o < o (38)
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where K is the gain coefficient. In Eq. (38), a(V)
denotes the nominal angle of attack, whose
structure is discussed in Section 5.4, and

§(ﬁx/g, wh/v,v) denotes the nominal pitch attitude
angle, which is supplied by (36).

5.4. Nominal Angle of Attack. From the

analysis of the optimal trajectories of Fig. 4, it
appears that there is some relation between the
angle of attack and the velocity; it also appears
that this relation is relatively insensitive to
the windshear model and the windshear intensity;
more specifically, low angles of attack correspond
to high velocities, and high angles of attack
correspond to low velocities., An analytical form
for the function (V) is derived below,

Recall Eq. (1d), and assume that, along a

large portion of the optimal trajectory,

cosy ¥ 1, siny 2 v, (39a)
;Qxy/g|<< 1, |ﬁh/g|<< 1, |Vy/g|<< 1. (39b)
Under these conditions, Eq. (1d) yields the
following nondifferential equation:

(T/W)sin(a + &) + L/W -1 =0, (40)

which supplies implicitly the function &(V).
Next, we employ the representation (8) for
the ‘thrust and the representation (10) for the

lift, namely,

T= A+ A+ ANVE, (41a)
L= (1/2)(cy + Cya)osV?, @< g, (41b)
L= (1/2)ICy + Cyo + Cyla = ) PT05V2,

O < G < Oys (41c)

Also, we expand the trigonometric term sin{a + §)

in Taylor series as follows:

sin{a + 8) 2 (a + 8). (42)



From (40)-(42), we obtain the following algebraic

equations:
D0 + D1oc =0, O < Ogys  (432)
Eg + E](oc - Quy) Ez(a - a**)z = 0,

Ui < O < Qys  (43b)
which admit the solutions
a = —DO/DT’ O < Oggs  (44a)
o= ot (1/26,) -6, + /(6] - 4EEI,

Oes < 0 < 04, (44b)

The coefficients DO’ D] and EO’ El’ E2 depend on

the velocity. They are given by

. 2
Dg = -1+ (cS/mg)(AO + A1V + AZV )

+ (COpS/ng)Vz, (45a)
D, = (1/mg)(Aq + AV + szz)

+ (Cy08/2mg)V?, (45b)
and
Eg = Dg * Dq%ss (46a)
Ey = Dys {46b)
E, = (C,p8/2ng)V2. (46c)

Equations (44), in conjunction with Egs. (45)-(46),
supply explicitly the function (V).

5.5. Implementation. The practical
implementation of the gamma/theta guidance schemes
requires the determination of the values V, v, 6, a
as well as the values of ﬂ, Q and ﬁx’ wh, Yo+

The state variables V, vy and the control
variables 8, o can be measured with present
instrumentation. An analogous remark holds for the
rate of climb 5. The derivative V can be obtained
by differentiation of the measured relative

velocity V with respect to the time t. The values

of wx, Nh,yé cannot be determined directly; they
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must be determined indirectly with the procedure
below.

Computation of ﬁv. Consider Eg. (la) and

observe that its time derivative is given by

% = Vcosy - Vsinyy + ﬁx‘ (87)

If one assumes that

cosy £ 1, siny £ v, (48a)
Wy / V)<< 1, (48b)
Eq. (47) reduces to

W= % -V (49)

In turn, X can be obtained from the measurement of
the inertial acceleration, while 0 can be obtained
by taking the time derivative of the relative

velocity.

Computation of W, . Consider Eq. (1b) and

rewrite it in the form

W, = h - Vsiny, (50)
This enables one to compute the downdraft wh, once
the values of V,y,ﬁ are known. They can be measured

with present instrumentation.

Computation of y .Consider Eq. (28) and make
use of the approximations (29). This leads to the

relation

Yo =Y W/, (51)

which enables one to compute Yg ONCe the -values of
V,y,wh are known.

Alternatively, combine Egs. (1b), (28) and
make use of the approximations (29a), {29c). This

Teads to the relation
ve = WYV, (52)

which enables one to compute Yg» ONCe the values of

V,ﬂ are known.



5.6. Elevator Deflection. In the previous

sections, the gamma/theta guidance schemes were
expressed in the feedback control forms (27), (33),
(38). Because the‘rotationa] motion of the aircraft
is not considered in this paper, the angle of

attack o is the control variable.

If the rotational motion is considered, the
elevator deflection 6e replaces the angle of
attack o as the control variable. As a

consequence, the feedback control laws take the

following more practical forms:
S - Bg = Klvg = Tolh/, W/I1a16,] < 8y s (532)
8y = 8y = KLy = (W /g, W /)1, [8,] < 6, (53b)
8 = 8 = —KI6 - 5(@x/g, W /YT,

[6e| < 8y (53c)

where 5e is the nominal elevator deflection and

§

ox is the upper bound to the elevator deflection.

We note that §e is a function of the state
variables, to be suitably defined.

5.7. Numerical Results. The gamma/theta

guidance schemes were programmed in FORTRAN IV,
and the numerical results were obtained in double-
precision arithmetic. Computations were performed
at Rice University using an NAS-AS-9000 computer.

The interval of integration was divided into
500 steps. The differential system (3) was
integrated using Hamming's modified predictor-
corrector method with a special Runge-Kutta
starting procedure.

The data for the examples are the same as those
of Section 4.4, In particular, the initial
conditions are given by Eqs. (19a), (19b) and the
final time is given by Eq.(21). The angle of attack
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is subject to Ineq. (6a), with o, = 16 deg.

Windshear models WS1, WS2, WS3 were considered.
Alternative windshear models were generated by
changing the windshear intensities (hence, the
values of wa, Awh) and by subsequent proportional
scaling of the functions wx(x), wh(x). However,
for the sake of brevity, we 1imit our presentation
to models WS1, WS2, WS3. We recall that these
models are characterized by the values (23) for
AW s AW .

The gamma/theta guidance schemes were
implemented using the feedback control laws (27),
(33), (38), with K = 10, However, for the sake of
brevity, the computations presented here refer only
to the relative gamma guidance scheme. Consistent
results were obtained with the remaining schemes.

In implementing the relative gamma guidance

scheme, the numerical constants appearing in Egs.

(32)-(33) were set at the following levels:

B

4,

A = vy = 0.1220 rad, (54a)

0.0087 rad, ¥ Yo = 0.1220 rad.  (54b)

Yel e2
The results are given in Fig. 5, which
contains eight parts: the wind velocity components

wx, wh; the flight altitude h; the relative
velocity V; the relative path inclination y; the
relative angle of attack a; the pitch attitude
angle 8; the absolute path inclination Yeb and the
energy per unit weight E = h + Vz/Zg.

Comparison of Figs. 4 and 5 shows that there
is a remarkable qualitative agreement between the
gamma guidance trajectories and the optimal
trajectories. In particular, the following points
must be noted.

Altitude. For model WS2, the function h(t) of
the gamma guidance trajectory (GGT) is almost

identical with the function h(t) characterizing



the nominal trajectory in the absence of down-
draft; therefore, it behaves as the function h(t)
of the optimal trajectory (OT).

For model WS3, there is a large time interval
in which the function h(t) of the GGT is nearly
constant. For model WS1, the function h(t) of the
GGT is intermediate between that of model WS2 and
that of model WS3, being closer to the latter
than to the former; therefore, it behaves as the
function h(t) of the OT.

Angle of Attack.Fecr model WS2, the GGT exhibits
a gradual, moderate change in the angie of attack;
the angle of attack boundary is never reached;
hence, the function o(t) of the GGT behaves as
the function oft) of the 0T.

For models WS1 and WS3, the GGT exhibits an
initial decrease in the angle of attack, followed
by a gradual, sustained increase; the angle of
attack boundary is reached at about the time when
the shear ends; once more, the function o(t) of
the GGT behaves as the function a(t) of the OT.

Absolute Path Inclination. For model WS2, the

GGT is such that Ye S Ye0$ this property is

consistent with the analogous property of the OT.
For models WST and WS3, the absolute path

inclination Ye of the GGT decreases until a

certain critical value Yo 5 Y is reached; then,

ec
this value is nearly maintained for a relatively
long time interval; after passing through the shear
region, the value of Ye is gradually increased to
Yo 2 Yeg$ ONCe more, this property is consistent
with the analogous property of the OT.

Relative Path Inclination. For model WS1, the

relative path inclination vy of the GGT behaves in
about the same way as the absolute path
inclination Yo' this property is consistent with

the analogous property of the 0T.
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For models WS2 and WS3, the relative path
inclination y of the GGT is larger than the
absolute path inclination Y Once more, this
property is consistent with the analogous property
of the 0T.

Relative Velocity. For model WS2, the GGT

exhibits a mild decrease in relative velocity; the
velocity decrease ends at about the time when the
downdraft ends; this property is consistent with
the analogous property of the 0T.
For models WS1 and WS3, the GGT exhibits a
stronger decrease in relative velocity; the
maximum drop in relative velocity depends mainly on
the wind velocity difference wa and occurs at
about the time when the shear ends; once more, this
property is consistent with the analogous property
of the OT.
5.8. Comment. From the present study of
gamma guidance trajectories (Fig. 5) as well as from
previous studies (Refs. 4-5), the following
conclusions can be inferred. For weak-to-moderate
shear/downdraft combinations, the GGT is
characterized by a monotonic climb. For severe
shear/downdraft combinations, the GGT is
characterized by an initial c¢limb, followed by
nearly-horizontal flight, foliowed by renewed
climbing after the aircraft has passed through
the shear region. These properties are consistent
with the analogous properties of the OT.
6. Conclusions
This paper is concerned with guidance
strategies for near-optimum performance in a
windshear. The take-off problem is considered with
reference to flight in a vertical plane. In addition
to the horizontal shear, the presence of a down-

draft is assumed.



First, trajectories for optimum performance in a
windshear are determined for different windshear
models and different windshear intensities. Use is
made of the methods of optimal control theory in
conjunction with the dual sequential gradient-
restoration algorithm (DSGRA) for optimal control
problems. In this approach, global information on
the wind flow field is needed.

Numerical experiments with the optimal control
approach lead to the following conclusions: (i)
for weak-to-moderate shear/downdraft combinations,
the optimal trajectory is characterized by a
monotonic climb; and (ii) for severe shear/down-
draft combinations, the optimal trajectory is
characterized by an initial climb, followed by
nearly-horizontal flight, followed by renewed
climbing after the aircraft has passed through the
shear region,

Then, guidance strategies for near-optimum
performance in a windshear are developed, starting
from the optimal trajectories. Specifically, three
guidance schemes are presented: an absolute gamma
guidance scheme, based on the absolute path
inclination; a relative gamma guidance scheme,
based on the relative path inclinationjand a theta
guidance scheme, based on the pitch attitude angle.
In this approach, local information on the wind
flow field is needed,

Numerical experiments with the gamma/theta
guidance schemes show that these schemes preserve
properties (i) and (ii) of the optimal trajectories.
Not only the resulting trajectories are close to
the optimum trajectories, but they are considerably
superior to the trajectories arising from

alternative guidance schemes.

An important characteristic of the gamma/theta

guidance schemes is their simplicity. Indeed,
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these guidance schemes are implementable using

available instrumentation and/or modification of

available instrumentation.
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Gamma guidance: Altitude h versus time t.
Gamma guidqnce: Relative velocity V
versus time t.

Garmma guidance: Relative path inclination
vy versus time t,

Garmma guidance: Relative angle of attack
a versus time t.

Garma guidance: Pitch attitude angle 6
versus time t.

Gamma guidance: Absolute path inclination
Y Versus time t.

Garma guidance: Energy per unit weight E

versus time t.

Microburst

FIG. 2: MICROBURST ENCOUNTER.
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FIG.3A: WIND COMPONENTS.
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FIG.4R: OPTIMAL TRAJECTORY.
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F1G6.48: OPTIMAL TRARJECTORY.
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FI1G.38: GRADIENTS OF WIND COMPONENTS.
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FIG.5A: GAMMA GUIDANCE.
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FI1G.5B: GAMMA GUIDANCE.
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FIG.4C: OPTIMAL TRRJECTORY. FIG.5C: GAMMA GUIDANCE.
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FI1G.4D: OPTIMARL TRAJECTORY. F1G.5D: GAMMR GUIDANCE.
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FIG.4E: GPTIMAL TRAJECTORY. FIG.5E: GAMMA GUIDANCE.
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FIG.4F: OPTIMAL TRRJECTORY.
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FIG.4G: OPTIMAL TRAJECTORY.
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FIG.4H: OPTIMAL TRAJECTORY.
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FIG.S5F: GAMMAR GUIDRNCE.
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FIG.5G: GAMMAR GUIDANCE.
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FIG.SH: GAMMA GUIDANCE.




